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Abstract 
NeuralCT [1] has been recently proposed as an implicit neural representation-based image reconstruction that can 

produce time-resolved images from CT sinograms and reduce motion artifacts, even when undergoing complex 

motions. NeuralCT does not require the prior motion model or estimation of object motion. Instead, it utilizes a 

network to implicitly represent the time-varying object boundary by singed distance function and optimizes the 

network via differentiable rendering. In this work, we modify the NeuralCT framework to reconstruct scenes that 

have multiple moving objects with distinct attenuation levels. We show that the performance of NeuralCT 

reconstruction depends on the quality of the initialization of the network (in this case, object segmentation in motion 

corrupted FBP image). We show how spatially aware object segmentation can improve motion-corrected 

reconstruction in moving objects with multiple attenuation levels despite high angular motion and complex 

topological changes.  

 

Index Terms— Motion Correction, Implicit Neural Representation, Differentiable Rendering 

 

1.  INTRODUCDTION 

Cardiac computed tomography (CT) has emerged as a noninvasive method to evaluate the coronary artery disease and 

assess the cardiac function. However, image quality can be limited by motion of cardiac structures. For example, even 

slow coronary vessel motion (~15mm/s) can cause significant blurring of vessels [2]. Improved hardware such as 

faster gantry rotation or dual source designs can avoid/reduce motion artifacts but further improvement appears limited 

by physical constraints. Machine learning algorithms [3], [4] have been used to correct motion artifacts in 

reconstructed images. However, current approaches are limited by the need as a true motion vector field (for training) 

is unavailable in clinical data.  

 

Recently, implicit neural representations (INR) [5] have been used to improve reconstruction of medical images [6], 

[7]. Gupta et al. [1] recently developed an INR-based framework to improve reconstruction of CT data corrupted by 

object motion. This framework, called “NeuralCT”, takes CT sinograms as the input and produces time-resolved 

images and was shown to correct motion artifacts. A key benefit of NeuralCT is that it does not impose a motion 

model nor require estimates of the object motion. An overview is shown in Fig 1. 

 
 

 
Fig. 1.  NeuralCT framework. FBP = filtered backprojection, SDF = signed distance function, DR = 

Differentiable Rendering. In this study we proposed a new segmentation (red box) to extend NeuralCT to more 

complicated scenes. 
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NeuralCT utilizes a neural network to implicitly represents (neural representation) the moving object boundary via 

the signed distance function (SDFs). Concretely, the INR maps the spatiotemporal domain of the moving object (a 

point at a particular position and time) to SDF value domain (the real-time relative position of this point with respect 

to the object boundary). In this work, the neural representation was initialized using intensity-based segmentation of 

the motion corrupted Filtered Backprojection (FBP) result. The representation was then optimized via differentiable 

rendering (DR) [5], a technique used to identify the shape of an object that best “explains” its acquired projection. 

Thus, NeuralCT aims to identify the optimal time-varying shape of moving object such that the resultant projection 

agrees with the CT sinogram (ground truth projections). We emphasize that NeuralCT is not a learning task that 

requires training and testing datasets as such approaches depend on data driven priors which have a tendency to 

introduce bias in the reconstruction. Instead NeuralCT builds on work where INR problems are solved via 

optimization. In this case, NeuralCT performs optimized reconstruction by forward rendering the moving object to 

acquire projection estimates, calculating the error between projection estimates and the true sinogram, and then 

updating the reconstruction by backpropagating the error via gradient descent. 

 

In the initial description of NeuralCT, Gupta et al. showed high-quality motion-correction for a single foreground 

object with high angular motion (up to 200o displacement per gantry rotation) as well as complex topological 

deformation [1]. However, clinical CT scans are not composed of a single foreground class. Therefore, the core 

contribution to this study is to extend NeuralCT to successfully correct motion artifacts in scenes with multiple (i.e., 

different intensity) moving objects. In particular, we observed that imaging multiple moving objects with different 

attenuations can limit the accuracy of intensity-based segmentation and consequently decrease the reconstruction 

performance. As a result, we incorporate spatial information into the segmentation and compare our improved 

reconstruction result with the initial NeuralCT and FBP. 

 

2. METHODS 

A.  NeuralCT Framework 

The NeuralCT framework is described in Fig. 1 and the full description can be found in Ref [1]. The CT sinogram is 

the input and a time-resolved attenuation map 𝐼*(𝑥, 𝑡) (motion-corrected image) is the output. The steps of the 

algorithm are: 

 

Step 1: FBP images are created via backprojection of the sinogram P (comprised of a set of projections {P1, P2, …, 

Pn} for n gantry positions). This results in a series of motion-corrupted attenuation images 𝐼𝐹𝐵𝑃(𝑥, 𝑡).  

 

Step 2: Segmentation Seg is used to identify different foreground objects from 𝐼𝐹𝐵𝑃(𝑥, 𝑡). The choice of Seg will be 

further discussed in Section II.B and II.C. Segmentation results in a binary time-varying images 𝐵(𝑥, 𝑡, 𝑘) where the 

𝑘th channel corresponds to the 𝑘th foreground object. 

 

Step 3: The time-varying scene of 𝑘 binary images 𝐵(𝑥, 𝑡, 𝑘) is implicitly represented using the signed distance 

function (SDF). Specifically, 𝑆𝐷𝐹(𝑥, 𝑡, 𝑘) is generated to represent the position of the boundary as the signed 

distance of a point at location 𝑥 in space at a particular time 𝑡 to the boundary of the 𝑘𝑡ℎ object. 

 

Step 4: For each location 𝑥 ∈ 𝑅𝑁 where N is the number of spatial dimensions, the temporal evolution of an object’s 

SDF was represented by Fourier Features (FF) using Fourier coefficients {A0, A1, …, AM, B0, B1, …, BM}: 

𝑆𝐷𝐹(𝑥, 𝑡, 𝑘) ≜  
1

𝑀
∑ 𝐴𝑖(𝑥, 𝑘)𝑠𝑖𝑛(2𝜋𝜔𝑖𝑡)  + 𝐵𝑖(𝑥, 𝑘)𝑐𝑜𝑠(2𝜋𝜔𝑖𝑡) 

𝑀

𝑖=0

  (1) 

Here, 𝜔𝑖 are M randomly sampled frequencies. In our work, we approximated the SDF map 𝑆𝐷𝐹(𝑥, 𝑡, 𝑘) by a 

SIREN neural network [8] (an efficient framework to capture high frequency information). This neural network 

𝒈(𝑥, 𝑘; 𝒘), where w are weights in the network, was trained to output correct Fourier coefficients {Ai, Bi} in Eqn. 1: 

𝐴𝑖(𝑥, 𝑘; 𝒈) and 𝐵𝑖(𝑥, 𝑘; 𝒈). The weights 𝒘 were initialized randomly, and then updated by the standard gradient 

descent, 

𝒘 ←  𝒘 −  𝛼∇ℒ  (2) 
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where ℒ =  ℒ𝑆𝐷𝐹 + 𝜆ℒ𝐸 . ℒ is the total loss; ℒ𝑆𝐷𝐹 is the mean difference of the true SDF map (derived from FBP) 

versus 𝑆𝐷𝐹(𝑥, 𝑡, 𝑘; 𝒈) for all 𝑥, 𝑡, 𝑘; ℒ𝐸 is the Eikonal constraint computed as the mean value of absolute value of 

||∇𝑥𝑆𝐷𝐹(𝑥, 𝑡, 𝑘; 𝒈)||2 -1 for all position 𝑥. 𝜆 is the regularization factor. To conclude, after Steps 1-4 a SIREN neural 

network 𝒈 is created that implicitly approximates the SDF map of the motion corrupted FBP images so 𝒈 contains 

motion artifacts present after FBP.  

 

Step 5: Differentiable Rendering (DR) is used to optimize 𝒈 such that it represents a scene that is consistent with the 

acquired sinogram. Specifically, DR was used to identify the optimized shape 𝑆*of an object that minimizes the 

projection loss ℒ𝑃  between the true projections (𝑃𝑖) and the projections obtained via rendering of the estimated shape 

S: 

ℒ𝑃 = ∑ |𝑃𝑖  −  𝐷𝑅(𝑆; 𝜃𝑖)| 

𝑛

𝑖=0

   (3) 

Here, 𝐷𝑅(𝑆; 𝜃𝑖) is the differentiable rendering operator; in CT, it represents the projection of an object shape 𝑆 from 

“spatiotemporal attenuation space” 𝐼(𝑥, 𝑡) to the “projection space” 𝑃𝑖 by the line integral of attenuation along the x-

ray path 𝑢 traversing through the scene at a gantry position 𝜃𝑖: 

𝐷𝑅(𝐼(𝑥, 𝑡); 𝜃𝑖)  = ∫ 𝐼(𝑥, 𝑡)ℛ𝜃𝑖
(𝑡)𝑑𝑢

𝑢

  (4) 

where ℛ𝜃(𝑡) is the time-varying rotation matrix describing the gantry rotation with angle 𝜃𝑖.  

 

Spatiotemporal attenuation maps 𝐼(𝑥, 𝑡) in Eqn. 4 were obtained from the SIREN SDF (𝑆𝐷𝐹(𝑥, 𝑡, 𝑘; 𝒈)) by first 

converting the SDF to an occupancy map ℰ (where negative SDF value means the pixel is occupied) and then 

multiplying ℰ with the object’s attenuation 𝑎(𝑘) (Eqn. 5). 𝑎(𝑘) was approximated as the median attenuation of the 

𝑘𝑡ℎ segmented object in the FBP image. 

𝐼(𝑥, 𝑡)  =  ∑ 𝑎(𝑘) × ℰ(𝑆𝐷𝐹(𝑥, 𝑡, 𝑘; 𝒈))
𝑘

   (5) 

 

Combining Eqn. 3-5, this approach enables the loss ℒ𝑃  to be defined as a differentiable function of 𝒈. Additional loss 

terms – ℒ𝐸 (Eikonal constraint), ℒ𝑇𝑉𝑆 and ℒ𝑇𝑉𝑇 (total variances computed as the gradient of the SDF with respect to 

𝑥 and 𝑡) were added to constrain the result, leading to a total loss ℒ =  ℒ𝑃 + 𝜆1ℒ𝐸 + 𝜆2ℒ𝑇𝑉𝑆 + 𝜆3ℒ𝑇𝑉𝑇 where 𝜆1 to 

𝜆3 serve as regularization weighting parameters. 

 

Step 6: After optimization, the result 𝑆𝐷𝐹(𝑥, 𝑡, 𝑘; 𝒈*) was convert to the motion-corrected image 𝐼*(𝑥, 𝑡) (i.e., the 

final product of NeuralCT reconstruction) via Eqn. 5.  

 
Fig.2. Two different object segmentation approaches used in NeuralCT. The first image shows the ground truth motion of two dots (top 

intensity = 0.7, moving from left to right, bottom intensity = 0.2, moving from right to left). ∆∅ is the angular displacement per gantry rotation. 

SegGMM: Gaussian mixture model incorrectly assigned the motion artifacts and the bottom dot as the same class. SegSI: Spatially aware 

segmentation utilized both spatial info (by setting bounding box in this example) and intensity info (thresholding) and led to correct detection 

of both top and bottom dots. 
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B.  NeuralCT with Intensity-based Segmentation 

As outlined above, a key step in the NeuralCT framework is the initialization described in Step 4 where SIREN 𝒈 

aims to approximate the SDF map of the scene of interest. Gupta et al. [1] used a Gaussian Mixture Model (GMM) 

[9] that was solely based on the intensity histogram in 𝐼𝐹𝐵𝑃(𝑥, 𝑡). GMM fits a finite number of Gaussian 

distributions to the intensity histogram and assigns pixels with intensity from the same Gaussian distribution as the 

same class. After excluding the background, the top 𝑘 classes with the most pixel were used to identify foreground 

objects. As shown in [1], this segmentation method, hereafter referred to as SegGMM , worked well in the scenes with 

a single foreground object – as it readily separates the object from the background, despite motion artifacts. 

 

C.  NeuralCT with Spatially Aware Segmentation 

However, when SegGMM is applied to a scene with multiple moving objects, each with different attenuations, it 

becomes difficult to differentiate objects based solely on the intensity distribution. Fig. 2 shows a failure of SegGMM 

when analyzing the FBP reconstruction of two moving dots with two different attenuations (top = 0.7, bottom = 0.2). 

Based on the histogram, GMM identifies the top two intensity values with the most pixel counts from the 

distribution. However, this results in incorrect labeling of two dots as one bright foreground class and a second 

dimmer object spread throughout the image. 

 

The core contribution of this study is to improve NeuralCT performance in the case of multiple intensity objects by 

resolving this segmentation error. We did so by applying a spatially-aware segmentation approach SegSI which 

incorporated both the Spatial (S) and Intensity (I) information of each object in the FBP image. SegSI aims to assign 

different classes to objects with different spatial positions and be aware of the different intensities between the real 

object and the motion artifacts. This can be achieved using various approaches such as Region-Of-Interest (ROI) 

definition plus thresholding or data-driven methods (e.g., deep learning segmentation). Here, we focus on 

demonstrating that this improvement in segmentation leads to improvements in NeuralCT performance. In Fig. 2, 

we show a simple approach to add spatial information. Specifically, bounding boxes were used to guide 

thresholding-based segmentation. Each bounding box was defined to only contain one moving dot such that we 

assigned one individual class to each box. In the box, we defined an intensity threshold = 𝛾 ×Imax where Imax is the 

maximum intensity in the scene in each box to capture the real object. 𝛾 = 0.7 was set empirically. 

 

Given that artifacts will always be present in the initial FBP images, we highlight here that the goal with this new 

segmentation is not to achieve a perfect segmentation but rather to provide a segmentation that is not so poor that it 

precludes improvement by the NeuralCT framework. We hypothesize that by improving the initial segmentation, we 

will avoid overt failures and improve image quality obtained with NeuralCT. 

 

3.  EXPERIMENTS AND RESULTS 
We performed two experiments to demonstrate the impact of the segmentation on the subsequent result and evaluate 

the improvement associated with our new segmentation approach. 

 

Experiment 1: Angular Displacement of Two Dots 

As shown in Fig. 2, two circular dots which translate with angular displacement ∆∅ per full gantry rotation were 

imaged. The two dots had different attenuation levels (top = 0.7, bottom = 0.2), mimicking the difference between 

contrast-enhanced vessels and the myocardium in cardiac CT. Background = 0. The image resolution was set to 

128×128 and a parallel beam CT geometry was used with 720 gantry positions per rotation. Two NeuralCT 

frameworks were then evaluated – intensity-based segmentation (NCT-SegGMM) and spatially aware segmentation 

(NCT-SegSI) – across a range of ∆∅ (from 20° to 200° per gantry rotation). Performance was evaluated using root-

mean-square-error (RMSE) and DICE coefficients relative to the ground truth image. 

 

As shown by the images and metrics in Fig. 3, FBP motion artifacts increased at higher ∆∅. Reconstruction with NCT-

SegGMM was limited when ∆∅ > 60°. In contrast, NCT-SegSI maintained high-quality motion-corrected reconstructions 

for all ∆∅ and achieved low RSME (<0.028) and high (>0.89) DICE for ∆∅ up to 160°. 
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Experiment 2: Complex Deformation of Letters 

In experiment 2, we evaluated the ability of NCT-SegSI to improve reconstruction of scenes with complex 

topological changes. As shown in Fig. 4, in this case, we simulated CT imaging during transformation of letters. The 

top letter transformed from “A” to “B” to “A” (attenuation = 0.7) while the bottom letter transformed from “B” to 

“A” to “B” (attenuation = 0.4). NCT-SegSI (red line) significantly reduced the severity of artifacts observed with 

FBP (blue) and NCT-SegGMM (orange), especially during transformation periods (2nd-3rd and 5th-6th columns). 

Quantitatively, median RMSE of NCT-SegSI (median = 0.050 [0.042-0.061]) was significantly lower (p<0.05) than 

NCT-SegGMM (0.090 [0.076-0.096]) and FBP (0.069 [0.047-0.085]). Median DICE for NCT-SegSI (0.89 [0.86-0.93]) 

was significantly higher (p<0.05) than NCT-SegGMM (0.72 [0.69-0.76]) and FBP (0.72 [0.64-0.87]). Lastly, NCT-

SegSI increased the percentage of the frames with RMSE< 0.05 (NCT-SegSI: 45.7%, NCT-SegGMM: 0%, FBP: 28.0%) 

as well as with DICE > 0.85 (NCT-SegSI: 89.6%, NCT-SegGMM: 0%, FBP: 27.6%). 

 

4.  SUMMARY 

Reconstruction of moving scenes using a neural implicit representation-based framework (NeuralCT) can improve 

image quality without the need for a prior motion model or estimation. Here, we show that when imaging scenes with 

multiple moving objects, performance of NeuralCT can be limited by poor segmentation of motion-corrupted FBP 

images. Using a spatially aware object segmentation method that incorporates both spatial and intensity information 

can result in an NeuralCT solution which maintains high reconstruction performance for moving objects with multiple 

attenuation levels despite high angular motion and complex topological changes. 

 

 

 

 

 
Fig. 3.  NCT-SegSI accurately depicts the moving dots with two attenuations and high angular displacements. FBP suffers from motion artifacts for 

all ∆∅; NCT-SegGMM failed the reconstructions for high ∆∅ (>60); Only NCT-SegSI maintained high-quality motion-corrected reconstruction for all ∆∅ with 

higher DICE and lower RMSE when compared with FBP and NCT-SegGMM. ∆∅ = angular displacement per gantry rotation. 
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Fig. 4. NCT-SegSI accurately depicts the complex topological change with multiple attenuations. The ground truth image (red box) contains 

two letters that transform over two gantry rotations. Seven frames including three stationary phases (column 1,4, 7) and four intermediate 

transformation phases (column 2-3, 5-6) are displayed. Both reconstructed images and the quantitative metrics indicates that NCT-SegSI improved 

the imaging of a complex scene. 
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