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ABSTRACT  

Photon counting detectors (PCDs) with energy discrimination capabilities allow us to perform quantitative material 

decomposition with high spatial resolution. Although PCDs provide more spectral information than conventional energy 

integrating detectors (EIDs), it is more challenging for the system to transmit projection data from the detectors across the 

slip ring to the processing computer and store the data, due to the increased amount of data with increasing number of 

energy bins. To address this problem, many approaches have been proposed to compress the bin data while maintaining 

the image quality. In this work, we compare the performance of strategies to reduce projection data and determine the 

optimal choice of bin compression strategies and the number of measurements for multiple tasks. 

We first obtain the optimal thresholds for conventional energy bins, as determined by minimizing the Cramér–Rao lower 

bound (CRLB) for material decomposition tasks with a realistic silicon detector energy response. We then consider the 

case of reducing data from 8 native energy bins by forming weighted sums, either with binary weights or continuous 

weights, by minimizing the relative CRLB between the compressed measurements and the original 8 bins. We then 

evaluate their respective performance using Monte Carlo simulation for a head phantom. The results show that the 

continuous weights strategy is superior to others, with low bias and less than 10% variance penalty for 2 weighted sums, 

with a data reduction of 75% within a large material thickness space. The other strategies have up to 50% variance penalty 

compared with the original 8 bins and are less robust when there is photon starvation. With additional weighted 

measurements, the continuous weights method can achieve less than 1% variance penalty when reducing the 8 native 

energy bins to half the number of measurements. Overall, combining energy bins by forming weighted sums with 

continuous weights is an effective strategy for reducing data while preserving spectral information. 

Keywords: photon counting detector, bin compression, Cramér–Rao lower bound 

1. INTRODUCTION 

Transmitting projection data from detector arrays on the rotating CT gantry through the slip ring to the data processing 

computer and storing them have always been challenging for CT systems. Photon counting detectors (PCDs) are advanced 

detectors that provide more spectral and spatial information than current dual-energy CT systems using energy integrating 

detectors (EIDs). For example, deep silicon PCDs with 8 native energy bins enable more precise material decomposition 

quantification by taking advantage of all the spectral information. However, the projection data transmission and storage 

become more challenging for PCDs due to the increased amount of data. There are several approaches to reducing the 

projection data by reducing the number of measurements. One direct approach is to reduce the number of native energy 

bins by setting fewer energy thresholds. Other strategies include splitting the native energy bins into 𝑁  groups and 

summing them up based on a preset figure of merit [1]. Instead of transmitting and storing the native energy bins, the 

summed bins are then used for further processing so that the data is downsampled. A more generalized method is to 

combine the native energy bins into 𝑁 measurements with binary weights. Wang et al had also proposed a weighting 

method to compress spectral information from infinite bins and an ideal detector energy response without information loss 

[2]–[4]. More recently, we proposed a generalized version of the continuous weights strategy for finite native energy bins 

under realistic non-ideal detector energy response and showed its potential in reducing projection data while maintaining 

material decomposition and virtual monoenergetic image quality [5]. 

In this work, we investigate the optimal strategy for bin compression that best preserves spectral information for specific 
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tasks, such as material decomposition and virtual monoenergetic images, with high compression ratio. We compare the 

performance by assessing bias and noise in projection and image domains between four strategies – conventional bins, 

summed bins, binary weights, and continuous weights – with different compression ratios. 

2. METHODS 

2.1 Experiment Settings 

We used a published deep silicon detector model with 0.5 × 0.5 mm2 pixels and 30 mm thickness to simulate the detected 

binned counts [6]. We used an incident spectrum of 120 kVp with 0.4 mAs per projection. The energy thresholds of the 8 

native energy bins were set to be 4, 14, 30, 37, 47, 58, 67, and 79 keV to maximize the spectral information contained in 

the native binned counts. Performance of material decomposition and virtual monoenergetic images (VMI) was evaluated 

for a basis material space that spans 0 to 40 cm water and 0 to 5 cm of calcium in cortical bone. These settings were used 

throughout our study. 

2.2 Energy Bin Compression Strategies 

2.2.1 Conventional Bins 

We use conventional bins to refer to native energy bins obtained through selection of N energy thresholds. We fix the 

lowest energy threshold to be 4 keV, which is consistent with our 8 native energy bins. To obtain the optimal remaining 

thresholds, we used an exhaustive search to find the thresholds that give the lowest average relative Cramér–Rao lower 

bound (rCRLB) over the material space. The CRLB represents the minimum variance of a task, such as basis material 

decomposition or VMIs, for an unbiased estimator given the measurements. The rCRLB is defined as the ratio of CRLB 

between the proposed methods and the 8 native energy bins,  

 rCRLB=
CRLBW

CRLB8
, (1) 

where we use subscript 𝑊 to represent the proposed bin reduction method and the subscript 8 to represent the native 8 

bins. Because each method reduces the amount of information, rCRLB ≥ 1, but should be minimized to reduce the 

increased variance. An average rCRLB for the tasks of material decomposition and VMI (at 60 keV) across a range of 𝑀 

material thicknesses can be expressed as: 

 rCRLB̅̅ ̅̅ ̅̅ ̅̅ ̅=
1
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where 𝐴 indexes the material thickness pairs. 

2.2.2 Summed Bins 

In this approach, we assume 8 native energy bins are acquired, and they each contribute once and only once to a summed 

bin. We used the same iterative method described in [1] to compress the 8 bins to different numbers of summed bins. In 

each iteration, the best combination of 2 bins is summed, using the average rCRLB as expressed in Eq. (2) as the figure 

of merit. The process and the results are shown in Figure 1. 

 
Figure 1: Optimization process of summed bins method. 
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∑ 𝑊𝑖,𝑗𝑏𝑖𝑖 , where 𝑏𝑖 represents the original binned counts. For summed bins, we have 𝑊𝑖,𝑗 ∈ {0, 1}, and ∑ 𝑊𝑖,𝑗𝑗 = 1 so that 

each native bin contributes once and only once to a summed bin. 

2.2.3 Binary Weights 

A more generalized bin compression strategy is to use binary weights, where the elements of energy weights matrix 

𝑊𝑖,𝑗 ∈ {0, 1}, but no longer has the constraint ∑ 𝑊𝑖,𝑗𝑗 = 1.  

To obtain 𝑊𝑖,𝑗, we start with the energy weight matrix of summed bins 𝑊S = [𝒘𝟏, … , 𝒘𝟖]𝑇, which compressed the 8 

native energy bins to 𝑁 measurements, and update it row by row (bin by bin) to select the best binary combinations. The 

pseudocode is listed below. 

𝑖 ← 0 

𝑊 = [𝒘𝟏, … , 𝒘𝟖]𝑇 = 𝑊S 

while 𝑖 < 8 do 

𝑖 ← 𝑖 + 1 

𝑦𝑖,𝑗 ∈ {0,1}, ∑ 𝑦𝑖,𝑗 > 1

𝑗

 

for all possible 𝒚𝒊 do 

if 𝑌 = [𝒘𝟏, … , 𝒚𝒊, … , 𝒘𝟖]𝑇 is full rank then 

Compute rCRLB̅̅ ̅̅ ̅̅ ̅̅ (𝐛𝑌 = 𝑌𝑻𝐛, 𝐛𝑊 = 𝑊𝑻𝐛) 

if rCRLB̅̅ ̅̅ ̅̅ ̅̅ < 1 then 

𝑊 ← 𝑌  

 

2.2.4 Continuous Weights 

For continuous weights, we fully generalize the elements of the bin weights matrix to 𝑊𝑖,𝑗 ∈ ℝ. In this case, we use 

Global-Search in MATLAB (R2021a) to minimize the objective function described in Eq. (2). 

3. RESULTS 

The optimal binary weights and continuous weights are presented in Figure 2 for 2 measurements. The binary weights are 

identical to summed bins, except bin 5 contributes to both measurements, which was found to slightly improve 

performance. The continuous weights are normalized to 1 and show that the optimal solution leverages the flexibility of 

real-valued weights, including negative weights. 

3.1 rCRLB Vs Compressed Measurements 

We first show our analytical results of the average rCRLB, defined in Eq. (1), over the basis material space of 0 to 32 cm 

water and 0 to 4 cm of calcium in cortical bone obtained from the four compression methods for different numbers of 

measurements (Figure 3). 

The results show that with increasing number of measurements, the noise performance improves for all four compression 

strategies. Of all strategies, the continuous weights method is superior to the other three methods, while conventional bins 

perform the worst. The average rCRLB of 2 measurements generated from continuous weights (1.1294 and 1.0876 for 

calcium and water decomposition in projection domain) is less than that of 5 measurements from conventional bins (1.1675 

and 1.1455 for calcium and water decomposition in projection domain), which indicates that with proper bin weighting 

combinations, spectral information from more native bins can be preserved better than simply reducing the number of 

native bins. Data reduction using summed bins and binary weights has less variance than conventional bins, but is 

substantially higher than continuous weights. 

When we reach 4 measurements, the rCRLB obtained from continuous weights is 1.0061 for calcium decomposition, 

1.0053 for water decomposition, and 1.0019 for VMI at 60 keV in the projection domain. The noise penalty of this 

strategy compared with the original data is less than 1% for all the tasks, while the amount of data is only half of the 

original. With continuous weights, the data from 4 compressed measurements performs essentially as well as the 8 native 

bins, which indicates that 4 measurements from continuous weights are sufficient to recover the information of 8 native 

energy bins across the full range of object sizes. 
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Figure 2: (a) Optimal binary weights and (b) optimal continuous weights for 2 measurements. 

Figure 3: Average rCRLB of conventional bins, summed bins, binary weights, and continuous weights of (a) calcium and (b) water 

material decomposition and (c)VMI at 60 keV, with different number of measurements. 

3.2 Projection Domain Monte Carlo Simulation  

Monte Carlo simulation was conducted to validate the analytical results, using maximum likelihood estimation to perform 

material decomposition from the compressed measurements. 104 realizations were performed at each sample point of 

water and calcium thickness. The relative variance and bias of calcium thickness estimates are presented in Figures 4 and 

5, respectively, for compressing to 2 measurements. The results of water thickness and VMI estimates are similar.  

The variance penalty is defined as 
VarW

Var8
− 1, where 

VarW

Var8
 is the ratio between variances of basis material thicknesses 

estimated from the compressed data and the 8 native bins. We found that the variance penalties of 2 measurements with 

continuous weights for calcium decomposition in projection domain is less than 10% for most material thicknesses, with 

an average variance penalty of 5.55% in the central region, while that of the conventional bins is 499.67%, 55.14% for 

summed bins, and 54.29% for binary weights. The binary weights have lower variance penalty than summed bins for 

intermediate thicknesses, but higher variance penalty at greater thicknesses. 

From Figure 5, we also observe that the bias of calcium material decomposition is small for compressing to 2 measurements 

with continuous weights, even for thicker material combinations. However, the other three strategies suffer increased bias 

when there are relatively few photons for thicker objects. The root mean squared deviation (RMSD) of the thickness bias 

is 0.0246 cm for continuous weights, which is a small increase from that of the 8 native energy bins (0.0153 cm). However, 

(a) (b) (c)
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for summed bins, binary weights, and conventional bins, the number increases to 0.0457, 0.0640, and 0.1095 cm, 

respectively. 

 
Figure 4: Relative variance between the bin compression strategies and 8 native bins for calcium decomposition. 

 
Figure 5: Bias of bin compression strategies for calcium decomposition. 

(a) Conventional Bins (b) Summed Bins

(c) Binary Weights (d) Continuous Weights

(a) Conventional Bins (b) Summed Bins

(c) Binary Weights (d) Continuous Weights
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3.3 Brain Phantom 

We also applied these four strategies on a simulated brain phantom, and the resulting of water decomposition images for 

2 measurements are shown in Figure 6. The average variance penalty of a region with uniform water is 352.35% for 

conventional bins, 33.54% for summed bins, 12.98% for binary weights, and 5.05% for continuous weights.  

The increased noise due to bin compression is visibly obvious when we use conventional bins and summed bins. The 

image quality is the best when we use continuous weights and is comparable to that of 8 native bins (not shown). In 

addition, there is no structural bias observed between the images from compressed data and 8 native bins. 

 
Figure 6: Phantom simulation results of water decomposition using data from two (a) conventional bins, (b) summed bins, (c) binary 

weights, and (d) continuous weights. (a2) - (d2) are the corresponding enlarged ROI. The display window is [0.9, 1.2] g/cc. The 

difference of the water decomposition between the proposed strategies and the 8 native bins is shown in (a1) - (d1), with display 

window [-0.05, 0.05] g/cc, showing the increased noise but no bias. 

(a) Conventional (b) Summed

(a1) (a2) (b1) (b2)

(c) Binary (d) Continuous

(c1) (c2) (d1) (d2)
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4. DISCUSSION 

We have compared the bias and noise performance of 4 different energy bin compression methods in both projection and 

image domains. The results show that using continuous weights, the compressed 2 measurements can preserve almost as 

much spectral information as the original 8 native energy bins. It enables a 75% data reduction while preserving the native 

spectral information, with only a small increase of less than 10% in image variance over a large range of material 

thicknesses. Other strategies, such as conventional bins, summed bins, or binary weights, suffer from at least 50% increase 

in image variance when using 2 measurements. With 4 measurements using continuous weights, there is almost no image 

quality degradation.  

The Monte Carlo simulation showed consistent results with the analytical CRLB predictions of noise performance. The 

bias of calcium thickness estimates is visibly higher at thicker material combinations when we use two conventional bins, 

summed bins, or binary weights, while the continuous weights and 8 native bins do not have this problem. From this 

observation, we infer that due to the lack of sufficient spectral information, if we use data from conventional bins, summed 

bins, and binary weights, the maximum likelihood estimator is no longer asymptotically unbiased when the detector 

collects fewer photon counts. We also conducted the same Monte Carlo simulation with 1 mAs per projection (not shown), 

which resulted in a smaller bias. This observation shows that the continuous weights method is more robust than the other 

three strategies in not only noise but also bias performance. It also indicates that extra calibration and higher exposures 

may be needed for large patients when only using 2 conventional bins. The silicon detector energy response is complex, 

with some high energy photons recorded in low energy bins due to Compton scattering. The 8 native bins and continuous 

weights with as few as 2 measurements contain the spectral information needed to account for the detector response, while 

other compression methods may struggle. 

5. CONCLUSION 

We found that compressing the binned data with continuous weights can best preserve the spectral information for material 

decomposition and virtual monoenergetic imaging from the original data of 8 native energy bins. Other bin compression 

strategies substantially increase image noise. With continuous weights, a compression ratio of 4 can be achieved with 2 

measurements that mostly preserves the image quality of both basis materials and VMIs. 
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