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ABSTRACT  

Cone-beam CT (CBCT) is widely used for guidance in interventional radiology but it is susceptible to motion artifacts. 

Motion in interventional CBCT features a complex combination of diverse sources including quasi-periodic, consistent 

motion patterns such as respiratory motion, and aperiodic, quasi-random, motion such as peristalsis. Recent developments 

in image-based motion compensation methods include approaches that combine autofocus techniques with deep learning 

models for extraction of image features pertinent to CBCT motion. Training of such deep autofocus models requires the 

generation of large amounts of realistic, motion-corrupted CBCT. Previous works on motion simulation were mostly 

focused on quasi-periodic motion patterns, and reliable simulation of complex combined motion with quasi-random 

components remains an unaddressed challenge.  

This work presents a framework aimed at synthesis of realistic motion trajectories for simulation of deformable motion 

in soft-tissue CBCT. The approach leveraged the capability of conditional generative adversarial network (GAN) models 

to learn the complex underlying motion present in unlabeled, motion-corrupted, CBCT volumes. The approach is designed 

for training with unpaired clinical CBCT in an unsupervised fashion. This work presents a first feasibility study, in which 

the model was trained with simulated data featuring known motion, providing a controlled scenario for validation of the 

proposed approach prior to extension to clinical data. Our proof-of-concept study illustrated the potential of the model to 

generate realistic, variable simulation of CBCT deformable motion fields, consistent with three trends underlying the 

designed training data: i) the synthetic motion induced only diffeomorphic deformations – with Jacobian Determinant 

larger than zero; ii) the synthetic motion showed median displacement of 0.5 mm in regions predominantly static in the 

training (e.g., the posterior aspect of the patient laying supine), compared to a median displacement of 3.8 mm in regions 

more prone to motion in the training; and iii) the synthetic motion exhibited predominant directionality consistent with the 

training set, resulting in larger motion in the superior-inferior direction (median and maximum amplitude of 4.58 mm and 

20 mm, > 2x larger than the two remaining direction). Together, the proposed framework shows the feasibility for realistic 

motion simulation and synthesis of variable CBCT data. 
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1. INTRODUCTION  

Cone-beam CT (CBCT) is becoming widespread for guidance and intraprocedural imaging in interventional radiology, 

but it suffers from relatively long image acquisition time that makes it prone to degradation from patient motion. Motion 

in interventional CBCT displays a complex nature and a wide variety, spanning from rigid aperiodic motion (as in brain 

CBCT) to multi-source deformable motion in abdominal imaging, mixing quasi-periodic motion components (e.g., 

respiratory) with aperiodic, quasi-random motion (e.g., peristalsis). 

Motion compensation for interventional CBCT has gained significant attention, with image-based approaches including 

autofocus methods based on handcrafted metrics [1-3], and methods leveraging deep convolutional neural networks 

(CNNs) to directly learn motion trajectories from distortion patterns [4], or to learn features associated to motion effects 

that are aggregated into deep autofocus metrics [5, 6]. Common to those approaches is the need for simulation methods 

that allow the generation of large amounts of realistic, motion-corrupted, CBCT data to enable training and evaluation. 

The fidelity of simulated datasets to experimental CBCT data is of dual nature: i) the data should show a realistic image 
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appearance, attenuation pertinent to CBCT, and realistic noise and artifacts patterns; and, ii) the synthetic motion should 

be true to motion observed in clinical CBCT. Recent work showed the capability of fulfilling the first condition via accurate 

models of the CBCT imaging chain and biological tissues [7]. However, the generation of realistic motion patterns remains 

an open question in interventional CBCT. 

Previous efforts to motion simulation yielded highly accurate models of temporal motion patterns and tissue deformation 

for quasi-periodic (respiratory and cardiac) motion simulation [8]. However, those models did not provide mechanisms to 

integrate the remaining sources of motion present in interventional CBCT, some of which feature a highly unpredictable 

nature (e.g., head involuntary motion or peristaltic motion). 

Recent advances in deep learning-based data synthesis architectures and conditional generative adversarial network 

(GAN) models, have shown the capability of such approaches to learn features associated with complex underlying 

characteristics of the training data that, when combined with random perturbation models, allowed the synthesis of highly 

realistic, variable, datasets. Such methods were recently proposed for simulation of non-periodic respiratory motion in 4D 

CT data synthesis for image-guided radiotherapy applications [9]. 

In this work we hypothesize that conditional GAN models can be used to learn the underlying motion characteristics in 

unpaired, motion-corrupted, clinical datasets, with no prior knowledge or prior assumptions on motion nature. A GAN 

model is proposed, and a proof-of-concept study is presented. This proof-of-concept study used simulated data with known 

motion fields. The training was completely agnostic to the known motion, analogous to training with clinical datasets, but 

knowledge of the true motion pattern allowed validation of the characteristics of the random synthetic motion generated 

by the trained model. 

2. MATERIAL AND METHODS 

2.1 Learning Complex Deformable Motion with a GAN model 

The proposed GAN architecture is illustrated in Fig. 1. The proposed approach leveraged the concept of Partial Angle 

Reconstruction (PAR) combined with spatial transformer modules, previously used in CBCT motion compensation [4]. A 

complete, motion-free, CBCT projection dataset, with a total of 360 projections, is reconstructed into 𝑁𝛼 = 12 PAR 

volumes of 512 × 512 × 128 voxels, each containing the backprojection from 30 consecutive projection views. Those 

PARs are the input to the generator network, which outputs 𝑁𝛼 sets of 36 × 36 × 12 B-spline coefficients that serve as a 

lower dimensionality representation for each of the 𝑁𝛼 motion vector fields (MVFs) representing the simulated 4D 

 
Figure 1. Schematic depiction of the realistic motion simulation framework, based on a deep generative adversarial network model. Motion-free 

simulated CBCT projections are divided into 𝑁𝛼 = 12 groups of consecutive projections that generate a set of  𝑁𝛼. The generator network, based on 

the U-NET architecture, receives at input the set of static PARs and a random perturbation of the latent space. The sparse 4D MVF output by the 

generator induces the deformation into the individual PARs that were added together into the final motion-corrupted volume. For GAN training, a 

discriminator receives as input the generated simulated motion volumes and samples of the real motion-corrupted volumes from the training dataset. 
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deformable motion of the volume. Dense MVFs, with size equal to that of the PAR volumes, are then generated via B-

spline interpolation. The set of dense MVFs and the original motion-free PARs are then input to a spatial transformer 

module that applies the simulated deformation to each of the PARs and add them together to obtain a final motion-

corrupted volume. In the resulting architecture PARs are considered static, effectively assuming a piecewise constant 

temporal motion trajectory. A discriminator network was used to provide a GAN loss discriminating between real and 

simulated motion-corrupted volumes. The architecture of each of the components is discussed below. 

Generator: The generator featured a non-symmetrical 3D UNet-like [10] structure with a 3-stage encoding branch, and 2-

stage decoding branch. The encoding branch received the motion-free PARs as the input and extracted into the latent space 

features associated to structural content of the image associated with motion characteristics. This way, the input, motion-

free PARs act as the condition variable of the conditional GAN architecture. Each stage on the encoder branch included a 

set of two 3×3×3 convolution layers, batch normalization, leaky ReLU activation, and a final 2x max pooling layer.  

The set of latent space features were combined with a Gaussian random perturbation field to generate random, distinct, 

motion patterns for a given input condition during both training and inference time. The set of latent features and random 

perturbation entered the decoder branch, with 2 stages implementing a 3×3×3 convolution layer, a batch normalization 

layer, and leaky ReLU activation, followed by a 3×3×3 transposed convolution for up-sampling of the feature maps. Skip 

connections were placed between equivalent levels of the encoder and decoder branches. The output of the decoder is 

input to three branches implementing a cascade of two 3×3×3 convolution layers, with leaky ReLU activations, that 

generate the B-spline coefficients for the directional components of the MVFs in the antero-posterior (AP), lateral (LAT), 

and superior-inferior (SI) directions. 

Discriminator: The discriminator acts on motion-corrupted CBCT volumes to predict whether the input comes from a real 

or simulated instance. During training, the Binary Cross Entropy (BCE) loss was calculated for the simulated and real 

datasets, and the total loss was defined as the average of both. 

In the proposed model, the discriminator featured a cascade of 5 convolution layers (4×4×4 kernel), followed by batch 

normalization, leaky ReLU activation, and a dropout layer (0.2 dropout). The final fully connected layer (with sigmoid 

activation) acted on the flattened set of features. 

2.2 Data Generation and Motion Model 

For this proof-of-concept study, training and validation data were generated from 70 Multi-detector CT (MDCT) 

abdominal datasets from the TCIA Lymph Node Abdomen collection. 60 distinct MDCT instances were used for training, 

5 for validation, and 5 for testing. For each source MDCT volume, we randomly selected a subvolume of 128 mm length 

at a random longitudinal position within the abdomen. The subvolume was then forward projected using a high-fidelity 

CBCT model with a geometry with source-to-detector distance of 1200 mm, and source-to-axis distance of 785 mm. The 

detector was modeled as a flat panel with 576 × 440 pixels (0.616 mm isotropic pixel size). 

Motion corrupted datasets were obtained by inducing deformable motion during forward projection. The simulated 

motion field followed a cosine temporal trajectory with random frequency between 0.75 – 1.25 cycles per scan and random 

phase. Spatial distribution of motion amplitude was modelled as an elliptical field with maximum amplitude (randomly 

set between 10 and 25 mm) at the center, and randomly placed at a soft-tissue region of the volume. The amplitude faded 

following a Gaussian decay curve that reached zero at the ellipse axis length, randomly chosen from 200 to 300 mm in the 

medial-lateral (LAT) direction and between 100 and 150 mm in the antero-posterior (AP) direction. Motion amplitude was 

kept constant across slices. Motion direction was randomly chosen, allocating between 60% and 80% of motion to the SI 

direction and the rest to the AP direction, with no lateral motion. 

To avoid unrealistic large motion of the spine region, the center of the spine was detected in the volume and a cylindrical 

motion-exclusion mask with 100 mm radius was defined. The mask performed a smooth transition from one to zero and 

multiplied the motion field, to minimize the motion in the spine, as illustrated in Fig 2. 

The motion-corrupted datasets featured 3 distinct properties that were used for validation of the GAN capability for 

inference of consistent motion instances: i) the induced motion was composed of diffeomorphic deformations; ii) the spine 

region remained nearly static for all training instances; and, iii) the majority of the motion was allocated to the SI direction 

with the rest in the AP direction. 

Motion-corrupted datasets were reconstructed into volumetric grids of 512 × 512 × 128  voxels with 0.5 × 0.5 × 0.5 mm3 

voxel size, and motion-free cases were reconstructed into 12 PARs with equivalent parameters. The PARs were 

downsampled to 128 × 128 × 32 voxels for input to the generator. 
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Figure 2. Example training case. Deformable motion was induced following with a motion field with randomly selected central location and 

amplitude. In this proof-of-concept study, the spinal region was automatically detected and an exclusion mask with smooth boundaries was defined 

(see cyan delineation). The motion field was attenuated to preserve the spine region quasi-static. 

2.3 Network training and validation studies 

A total of 720 motion-corrupted volumes based on 60 anatomical instances were included in the training set, and 15 

instances from 5 separate anatomical structures were used for validation. Each dataset contained a motion-free collection 

and a motion-corrupted collection. During training, a sample with 𝑁𝛼 = 12 PARs from the motion-free collection was 

randomly selected as input to the generator, while one sample from motion-corrupted collection was input to the 

discriminator. Training was performed with an unbalanced scheme in which the generator is updated every 1 batch while 

the discriminator is updated every 2 batches for 100 epochs, with a batch size of 12. We used the ADAM optimizer for 

both generator and discriminator with learning rates of 10−5 and 10−4, respectively. BCE Loss was selected as objective 

function to be maximized by generator while minimized by discriminator. 

To validate the results, we used a test set of 15 samples based on 5 anatomical structures not seen by the network. For 

testing, static PARs were input to the generator together with the Gaussian random perturbation. Validity of the generated 

motion fields was validated via measurements of diffeomorphism, based on the determinants of the Jacobian of the 

deformation, and metrics of average displacement at regions of maximum motion and regions static in the training set. 

Furthermore, directional components of the synthetic motion were evaluated in comparison with underlying trends in the 

training dataset. 

3. RESULTS 

Figure 3 illustrates the predominant soft-tissue nature of the simulated motion, as well as its diffeomorphic nature. An 

example simulated MVF is shown if Fig. 3A, demonstrating the majority of the deformation induced to anterior soft-tissue 

regions with minimal deformation towards the central posterior area, where the spine is located. Fig. 3B shows the 

accumulated distribution of Jacobian determinant values across the ensemble of test datasets. The induced deformable 

motion vector fields consistently show Jacobian determinant values larger than zero, consistent with diffeomorphic motion. 

 
Figure 3. (A) Motion vector field on an example inference instance, with motion predominantly present in soft-tissue structures. (B) Validation of 

the diffeomorphism of the generated deformable motion fields for the aggregated test set. 
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 Fig. 4A shows the average displacement for the aggregated motion synthesis dataset, obtained by adding the absolute 

value of the motion amplitude for each time point (viz. PAR) and normalizing the result by the total number of PARs (𝑁𝛼 

= 12). Average displacement was evaluated in a soft-tissue region in the anterior area of the abdomen and in a region inside 

the spine. Results show displacement values in anterior soft-tissue areas of 3.9 ± 2.5 mm, while spine regions showed 

minimal motion, with average displacement of 0.5 ± 0.0 mm. Fig. 4B shows the directional properties of the random 

motion instances synthesized by the GAN model. Consistent with the trends underlying the training data, the synthetic 

motion fields exhibited larger motion in the SI direction with median amplitude of 4.58 mm and ranging upwards of 20 

mm consistent with voluntary or involuntary respiratory motion. 

 
Figure 4. Quantitative evaluation of the synthetic random motion. (A) Average displacement of voxels in the maximum amplitude and in the spine 

regions, showing preservation of the quasi-static nature of the spine. (B) Motion amplitude in the AP, LAT, and SI directions for the generated 

random motion vector fields. 

 
Figure 5. Example motion simulation cases for two motion-free source anatomical instances (A, E), and two instances of the latent space 
random perturbation (B, C, and F, G), showing distinct motion artifacts but respecting the learned properties in terms of motion distribution 

and main direction. (D, H) Distribution of motion amplitude as a function of time (viz. PAR index) for the random realization in (B, F) in red 

and the motion realization in (C, G) in green. 

Motion amplitude in the AP and LAT directions was lower, with median values of 2.02 mm, and 2.18 mm, respectively. 

The comparable amplitude observed for the AP and LAT directions illustrate the challenge in differentiation of motion 

patterns that can result in similar artifacts, as lateral motion was minimal in the training data. 

Note that while the current design did not implement any control mechanism on the output motion amplitude, several 

options for such controlled simulation can be easily integrated, including coarse stratification of the training data into mild, 
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moderate, or severe cases within a semi-supervised training strategy; normalization of the output motion fields; or 

controlled scaling of the latent space random perturbation.  

Validation of the realism of the synthetic motion-corrupted datasets and of capability to generate distinct motion for a 

given input is shown in Fig. 5. Image results in Fig. 5 show distinct, realistic motion artifacts in soft-tissue regions, with 

minimal distortion of the (static) spine. Quantitative evaluation of motion amplitude in Fig. 5D and Fig. 5H illustrates the 

generation of variable motion patterns for single input conditions.  

4. DISCUSSION AND CONCLUSION 

This work presented an adversarial model for simulation of realistic, random, deformable motion in CBCT using 

motion-corrupted datasets with no prior assumptions on the motion characteristics. The framework was evaluated in a 

controlled study in which the properties of the random synthetic motion fields were compared with known motion trends 

underlying in the training data cohort. The model was able to generate distinct motion instances, while replicating principal 

properties of the training dataset, such as diffeomorphism, proper spatial distribution of motion amplitude (maximized 

anteriorly and minimized posteriorly), and predominantly SI motion direction in agreement with learned patterns. The 

results enable generation of large training datasets for development of deep learning autofocus methods. 
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