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ABSTRACT

We discuss some recent results on Statistical Mechanics approach to dense granular media. In particular, by
analytical mean field investigation we derive the phase diagram of monodisperse and bydisperse granular assem-
blies. We show that “jamming” corresponds to a phase transition from a “fluid” to a “glassy” phase, observed
when crystallization is avoided. The nature of such a “glassy” phase turns out to be the same found in mean
field models for glass formers. This gives quantitative evidence to the idea of a unified description of the “jam-
ming” transition in granular media and thermal systems, such as glasses. We also discuss mixing/segregation
transitions in binary mixtures and their connections to phase separation and “geometric” effects.

1. INTRODUCTION

An important conceptual open problem concerning granular media, is the absence of an established theoretical
framework where they might be described. Several methods and theories, many of them reviewed in this volume,
were put forward in the last years. Edwards,"»? in particular, proposed first that a Statistical Mechanics
approach might be feasible to describe dense granular media. He introduced the hypothesis that time averages
of a system, exploring its mechanically stable states subject to some external drive (e.g., “tapping”), coincide
with suitable ensemble averages over its “jammed states”.

The Statistical Mechanics approach to dense granular media was later supported by observations from ex-
periments® 7 and simulations'™'® which suggested that when the system approaches stationarity during its
“tapping” dynamics, its macroscopic properties are univocally characterized by a few control parameters and do
not depend on the system initial configuration or dynamical protocol. Of course, the open problem remains to
understand and predict the features of the “suitable” ensemble average for the system. This is a very important
current research issue in granular media which has recently seen interesting contributions from both computer
simulations and experiments.

We discuss here the basic ideas in the Statistical Mechanics of dense granular media at stationarity and recent
results about its extensions. A central concept in this approach is the configurational entropy, Scony = In€,
where Q(F,V) is the number of mechanically stable states corresponding to the volume V and energy FE.
From Scons conjugated thermodynamic parameters can be derived: the compactivity, X ! = 0Scons/0V, and
the configurational temperature chnllf = 0Sconf/OE. The “thermodynamic” parameters should completely
characterize the macroscopic properties of the system, as much as pressure or ordinary temperatures in gases.
Methods have been developed, thus, to measure these parameters by exploiting different techniques. In the
stationary regime we consider here, for instance, one can show that Ti..,; can be related to an equilibrium
Fluctuation-Dissipation (FD) Theorem.'!»28731  As reviewed in Sect. 2, this allows a simple evaluation of Teop
from measures, for example, of the sample bulk density (or height) and its fluctuations, taken in the stationary
regime of, e.g., a tap dynamics. The knowledge of the system distribution function and its parameters can be
exploited to depict a first theoretical comprehensive picture of the vast phenomenology of powders, ranging from
their phase diagrams to segregation properties. This was partially accomplished in Ref.s.!! 3436

A different approach!® 2526 to measure an “effective temperature”, Tyy,, in granular media which are far
from stationarity, is based on the out-of-equilibrium extension of the Fluctuation-Dissipation Theorem discovered
in glassy theory.?%23 Interestingly, it was shown'3 263! that in the limit of small shaking amplitudes, Tiyn
coincides with the above “configurational temperature”, Teon .
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We review below the basic ideas in the Statistical Mechanics of dense monodisperse granular media at
stationarity and in such a framework derive their “phase diagram” in mean field approximation. This allows
to discuss the nature of jamming in non-thermal systems® ' and the origin of its close connections to glassy
phenomena in thermal ones.? As an extension and a further application of this approach, we also consider the

intriguing phenomenon of segregation in bydisperse mixtures.

2. STATISTICAL MECHANICS OF DENSE GRANULAR MEDIA

In this section we summarize the essential ideas in the Statistical Mechanics of dense granular media.>* These
are strongly dissipative systems not affected by temperature, because thermal fluctuations are usually negligible.
Therefore, in absence of driving, the usual temperature of the external bath can be considered zero and these
media called non-thermal. As the system cannot explore its phase space (unless perturbed by external forces,
such as shaking or tapping) it is frozen, at rest, in its mechanically stable microstates (see Fig. 1).

In the Statistical Mechanics of powders introduced by Edwards! it is postulated that the system at rest (i.e.,
not in the “fluidized” regime) can be described by suitable ensemble averages over its “mechanically stable”
states. The issue is to individuate the probability, P,, to find the system in its generic mechanically stable state
r. A possible approach to find P, stems'! from the maximization of the system entropy,

S:_ZPrlnPr (1)

with the macroscopic constraint, in the case of the canonical ensemble, that the system average energy, E =
>, PrE,, is given. This assumption leads to the Gibbs result:

P. x e PeonsEr (2)

where Beons is a Lagrange multiplier, called inverse configurational temperature, enforcing the above constraint

on the energy:

6Sconf _
ﬂconf Ty Sconf = an(E) (3)

Here, Q(F) is the number of mechanically stable states with energy E. Thus, summarizing, the system at rest
has Tyatn = 0 and Teony = 1 # 0. Analogously, by assuming that the system volume, V, is given (as in

conf
-V /AX

Edwards’ original approach! ?), similar calculations lead to P, e , where V,. is the volume of microstate

rand X = A1 (9Seons/OV) ! is called the compactivity.

These basic considerations, to be validated by experiments or simulations, settle a theoretical Statistical
Mechanics framework to describe granular media. Consider, for definiteness, a system of monodisperse hard
spheres of mass m. In the system whole configuration space Qr1,:, we can write Edwards’ generalized partition
function as:

7 = Z exp(—Huc — BeongmgH) - 11, (4)

rEQTot

where Hyc is the hard core interaction between grains, mgH is the gravity contribution to the energy (H is
particles height), and the factor II, is a projector on the space of “mechanically stable” states Q: if r € Q then
IT, =1 else 1L, = 0.

As well as in usual equilibrium “thermal” Statistical Mechanics, it is straightforward to verify that in the
present approach a “standard” (i.e., not “out-of-equilibrium”) Fluctuation Dissipation (FD) Theorem holds
linking at stationarity, for instance, the system average energy, F, to its fluctuations, AE?:

__OF
a/Bconf

= AE?. (5)
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Figure 1. The present models for granular media are subject to a Monte Carlo dynamics made of “taps” sequences. A
“tap” is a period of time, of length 79 (the tap duration), during which the system evolves at a finite bath temperature
Tr (the tap amplitude); after each “tap” the system evolves at 7Tt = 0 and reaches a mechanically stable states in its
exploration of the configuration space.

Usefully, the integration of such equilibrium FD relation may provide direct access to [eons from energy (or
density, etc.) data measured at stationarity'!:

E

Beomt(E) = s — / (AE*) dE . (6)

Eo

Summarizing, such an “equilibrium” Statistical Mechanics approach is based on the hypothesis that at sta-
tionarity the system properties do not depend on the details of the dynamical history. This has to be checked
by computer simulations and experiments. The next step is to verify that a few macroscopic parameters (such
as energy or density, etc.) are completely characterizing the status of the system, i.e., that a “thermodynamic”
description is indeed possible. In such a case, Secons can be derived, for example, from Eq.(6). Finally, one
must check that time averages obtained using such a dynamics compare well with ensemble averages over the
distribution Eq.(2).

In the following sections we discuss some recent results'’2” about schematic models validating and gener-

alizing Edwards’ Statistical Mechanics approach. In particular, we show by mean field analytical calculations
that granular media undergo a phase transition from a (supercooled) “fluid” phase to a “glassy” phase, when
their crystallization transition is avoided. The nature of such a “glassy” phase results to be the same found
in mean field models for glass formers: a discontinuous one step Replica Symmetry Breaking phase preceded
by a dynamical freezing point. These results are supported by Monte Carlo (MC) “tap dynamics” simulations
which, in the region of low MC shaking amplitudes, show a pronounced jamming similar to the one found in
experiments on granular media. As an application to mixtures we also discuss segregation/mixing phenomena
in these systems.

3. HARD SPHERE SCHEMATIC MODELS FOR GRANULAR MEDIA

The simplest model for granular media we considered'! is a monodisperse system of hard-spheres of equal
diameter ag = 1, subjected to gravity. In order to check the above Statistical Mechanics scenario, we consider
by now a simplified version of such a model, where we constrain the centers of mass of the spheres to move on
the sites of a cubic lattice (see inset in Fig. 3). The Hamiltonian of the system is:

H:HHC({W})‘FQWZW% (7)
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Figure 2. The time average of the energy, e = E, and (inset) its fluctuations, Ae® = AEQ, recorded at stationarity
during a tap dynamics, as a function of the tap amplitude, 7T, in the 3D lattice monodisperse hard sphere model. Different
curves correspond to sequences of tap with different values of the duration of each single tap, 7o.

where the height of site i is z;, g = 1 is gravity acceleration, m = 1 the grains mass, n; = 0, 1 the usual occupancy
variable (i.e., n; = 0 or 1 if site 7 is empty of filled by a grain) and Hyc({n;}) an hard-core interaction term
that prevents the overlapping of nearest neighbor grains (this term can be written as Hgc({n;}) = J Z<i Jy Tl
where the limit J — oo is taken).

The grains are subject to a dynamics made of a sequence of Monte Carlo “taps” (see Fig. 1): a single
“tap”® is a period of time, of length 7o (the tap duration), where particles can diffuse laterally, upwards with
probability p,, € [0,1/2], and downwards with probability 1 — p,,. When the “tap” is off grains can only
move downwards (i.e., pyp = 0) and the system evolves with p,;, = 0 until it reaches a blocked configuration
(i.e., an “inherent state”) where no grain can move downwards without violating the hard core repulsion. The
parameter p,, has an effect equivalent to keep the system in contact (for a time 7y) with a bath temperature
Tr = mgao/In[(1 — pup)/Pup) (called the “tap amplitude”). The properties of the system are measured when
this is in a blocked state. Time averages, therefore, are averages over the blocked configurations reached with
this dynamics. Time ¢ is measured as the number of taps applied to the system.

Under such a tap dynamics the systems reaches a stationary state where the Statistical Mechanics approach
to granular media can be tested, and particularly Edwards hypothesis can be verified by comparing time averages
to ensemble averages of Eq.(2).

3.1. Stationary states and time averages

During the tap dynamics, in the stationary state, the time average of the energy, E, and its fluctuations, AE2,
are calculated.

Figure 2 shows E (main frame) and AE (inset) as function the tap amplitude, Tt, (for several values of the

tap duration, 7). Since sequences of taps, with same Tt and different 79, give different values of E and EQ, it
is apparent that Tt is not the right thermodynamic parameter. On the other hand, if the stationary states are
indeed characterized by a single thermodynamic parameter the curves corresponding to different tap sequences
(i.e. different Tr and 79) should collapse onto a single master function, when AE is parametrically plotted as
function of E. This is the case in the present model, where the data collapse is in fact found and shown in Fig.
3. This is a prediction that could be easily checked in real granular materials.
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Figure 3. Energy fluctuations Ae? plotted as function of the energy e. The symbols ®, A and M are time averages, E
and AFE?, obtained with different tap dynamics in Fig.2. The symbols O are independently calculated ensemble averages,
(E) and (AE?), according to Eq.(2). The collapse of the data obtained with different dynamics shows that the system
stationary states are characterized by a single thermodynamic parameter. The agreement with the ensemble averages
show the success of Edwards’ approach to describe the system macroscopic properties.

A technique to derive from raw data the thermodynamic parameter 374 conjugated to E (apart from an inte-
gration constant, Jy), is through the usual equilibrium Fluctuation-Dissipation relation of Eq.(5). By integrating
Eq.(5), Eq.(6) is obtained and 374 — 3y can be expressed as function of E or (for a fixed value of 79) as function
of Br = 1/Tr: Bra = Bra(Br) (the constant 3y can be determined as explained in'!). By now, we use the name
Bq for the thermodynamic parameter conjugated to F because we can conclude that 8rq = Beons only when
the average over the tap dynamics and the ensemble average with Eq.(2) coincide. Thus, even though we have
just shown that a “thermodynamic”, i.e., a Statistical Mechanics description is indeed possible, we have still to
show that specifically the distribution of Eq.(2) holds. This is accomplished in the next section and interesting
novelties will be shown in Sect. 5.

3.2. Ensemble averages

Summarizing, in Sect. 3.1 we have found that the fluctuations of the energy in the stationary state depend only
on the energy, F, and not on the past history. More generally, we found!! that all the macroscopic quantities we
observed depend only on the energy, E, or on its conjugate thermodynamic parameter, 34, thus the stationary
state can be genuinely considered a “thermodynamic state”.

We show now that ensemble averages based on the theoretical distribution of Eq.(2) coincide with time
averages over the tap dynamics. We compare, for instance, the time average of the energy, F(ﬁfd), recorded
during the taps sequences, with the ensemble average, (E)(Bconf), over the distribution Eq.(2). To this aim
we have independently calculated the ensemble average (E), as function of Seons. Fig. 3 shows a very good
agreement between (E)(Beons) and E(Brq) (notice that there are no adjustable parameters). Such an agreement
was found for all the observables we considered.!! Finally, we mention that we have also successfully tested

Edwards scenario in an other model, the “frustrated lattice gas”,'"'33 a system in the category of spin glasses.

3.3. The properties of the compaction “tap” dynamics

The MC tap dynamics exhibits a rich structure in agreement with experimental findings.>” The system
is prepared in an initial loose configuration and then tapped. Under tapping its density tends to increase as a
function of the number of shakes, in a stretched exponential way at comparatively high Tt!! and in a logarithmic
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Figure 4. Main frame The density correlation function in the TTI regime, ¢(t) = C(t), as a function of the number of
taps, t, for several values of 1T, in a hard sphere lattice model.?” Inset The characteristic relaxation time (in units of
“taps” number) as a function of the shaking amplitude Tr. A Vogel-Fulcher function, with a divergency at Tx = 0.29,
fits the data (continuous line).

way at small Tp.8  This is in close correspondence with experimental findings from the Chicago® and Rennes”

groups. At small amplitudes, “irreversibility”®® and “aging” phenomena along with huge relaxation times
diverging 4 la Arrhenius or Vogel and Fulcher® 7 are found in these systems, similarly to glass formers in the
freezing region.

Tt is interesting to consider density correlation functions such as C'(t, t,) = B(t,tw)/B(tw, tw), where B(t,t,,) =
Yol (t + tw)ni(tw)) — (ni(t + tw))(ni(tw))]. In the high Tt region, C(t,t,) has a time translation invariant
(TTT) behavior, i.e., C(t,ty) = C(t) (see inset Fig.4). Asymptotically C(t) can be well fitted by stretched
exponentials: C(t) = Cpexp[—(t/7)?] (here 3 is not the “temperature”, but just the stretching exponent of the
exponential). The exponent 3 becomes significantly lower than 1 at low amplitudes. The above fit defines the
relaxation time 7(7r) (see Fig.4): the growth of 7 by decreasing Tt is well approximated by an Arrhenius or
Vogel-Tamman-Fulcher law (as early found in® !!), resembling the slowing down of glass formers close to the
glass transition, a result also recently experimentally reported in granular media®": 7 ~ 7 exp [Eo/(Tr — T)].
The divergence point, T{ (which in simulations is difficult to precisely locate and here consistent with zero),
of 7 is interpreted as the numerical location of the point of dynamical arrest of the system, where an “ideal”
transition to a glassy phase occurs. By quenching the system at low values of Tr, the T'TI character of relaxation
is lost and logarithmic aging behaviors, as stated, are found. For slow quenches the hard spheres model is able,
anyway, to attain its crystal phase. The precise nature of the “glassy” region, very difficult to be numerically
determined, is analytically investigated in the following sections.

3.4. Hard sphere binary mixtures under gravity

In order to test the Statistical Mechanics approach in a more complicate system and to study segregation
mechanisms, we also considered a hard-sphere binary system made of two species 1 (small) and 2 (large) with
grain diameters ag and v/2ag, under gravity on a cubic lattice of spacing ag = 1. We set the units such that
the two kinds of grain have masses m; = 1 and mos = 2m, and gravity acceleration is ¢ = 1. The hard core
potential Hyc is such that two large nearest neighbor particles cannot overlap. This implies that only couples
of small particles can be nearest neighbors on the lattice. The system overall Hamiltonian is:

H=Huc +migH1 +magHa, (8)
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Figure 5. Main frame The average density of large grains on the box bottom layer, p3, measured at stationarity for
different Tt and 79, scale almost on a single master function when plotted as a function of the large grains height, ho.
Upper inset The average number of contacts between large grains per particle, N., obtained for different 7t and 7o,
scale on a single master function when plotted as a function of the system energy, e.

where Hi = Zgl) z; and Hy = 252) zi, the height of site ¢ is z; and the two sums are over all particles of species
1 and 2, respectively. In the above units, the gravitational energies in a given configuration are thus £1 = H;
and E2 = 2H2

As before, grains are confined in a box of linear size L with periodic boundary conditions in the horizontal
directions and initially prepared in a random loose stable pack. Under the tap dynamics the system approaches
a stationary state for each value of the tap parameters 7T and 79 used. We measure, as function of Tt (for
several values of 79), the asymptotic value of the vertical segregation parameter, i.e., the difference of the average
heights of the small and large grains at stationarity, Ah(Tr,70) = h1 — he. Here h; and hg are the average of
Hy /Ny and Hs/N> over the tap dynamics at stationarity. The Brazil Nut Effect (BNE, large grains above) is
observed at high Tt, as reverse BNE at smaller T1. Before discussing segregation mechanisms, we want to check
the Statistical Mechanics scenario described in the previous sections.

Again, we find that 7T is not a right thermodynamic parameter, since sequences of taps with different 7
give different values for the system observables. However, we found'' that two macroscopic quantities can be
sufficient to characterize uniquely the stationary state of the system. These two quantities are, for instance, the
energy e and the height difference Ah. Of course since e = ah; + 2bhy (where a = N1 /N and b = Ny /N) and
Ah = hy — he, we can also choose h; and hy to characterize the stationary state. Namely, we found that a
generic macroscopic quantity A, averaged over the tap dynamics in the stationary state, is only dependent on h;
and hg, i.e., A = A(h1,ha). We have checked that this is the case for several independent observables, such as
the number of contacts between large particles, V., the density of small and large particles on the bottom layer,
P4 and p5, and others, as shown in Fig. 5. Therefore we need both h; and hy to characterize unambiguously
the state of the system; namely all the observables assume the same values in a stationary state characterized
by the same values of hy and he, independently on the previous history (i.e., in our case independently on the
particular tapping parameters Tr and 79).

These findings imply that an extension of Edwards’ original approach is required, where at least two thermo-
dynamic parameters have to be included.!' As before, this can be obtained by assuming that the microscopic
distribution is given by the principle of maximum entropy with the constraint that the average gravitational en-
ergies of the two species F, = ZT P.Eq, and Fy = ZT P,.E5, are independently fixed. This gives two Lagrange
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where Q(F7, Es) is the number of inherent states with F1,Fs.

The hypothesis that the ensemble distribution at stationarity is the above can be tested as we have already
previously shown. We have to check that the time average of any quantity, A(hq, ha), as recorded during the taps
sequences in a stationary state characterized by given values h; and he, coincides with the ensemble average,
(A)(h1,h2), over the generalized version of distribution Eq.(2). To this aim, we have independently calculated
the ensemble averages (N.), (p3), (p%) for different values of 3; and 32; we have expressed parametrically (N.),
(p5), (p}), as function of the average of h; and ho, and compared them with the corresponding quantities, N,
ph and pY, averaged over the tap dynamics. The two sets of data are plotted in Fig. 5 showing a good agreement
(notice, there are no adjustable parameters).

Eq. (9) shows that there are two distinct Lagrange multipliers, constraining indipendently the energy of the
two species. A consequence of this fact is that in this approach, where the total energy is not constrained, the
zero principle of thermodynamics does not necessarily hold. Indeed, only if the total energy E; + Fo could be
somehow kept constant, by maximizing the entropy one would obtain 6; = 5.

4. A MEAN FIELD THEORY OF THE PHASE DIAGRAM OF GRANULAR MEDIA

We have seen that even though granular media may form crystalline packings, in most cases they are found at
rest in disordered configurations, characterized by “fluid” like distribution functions. Gently shaken granular
media exhibit a strong form of “jamming”,>” i.e., an exceedingly slow dynamics, which shows deep connections

to “freezing” phenomena observed in many thermal systems such as glass formers.%

An interesting result reported above is that at least in some schematic hard spheres models, a Statistical
Mechanics description of granular media appear to be well grounded. This allows to evaluate the “granular”
partition function, Z, of Eq.(4) in order to derive the system phase diagram. This was accomplished for a
monodisperse system, at a mean field level, in Ref..>* In an approximation & la Bethe-Peierls, we consider
a system of hard spheres with an Hamiltonian given in Eq.(7) plus a chemical potential term to control the
overall density. We adopt here a simple definition of “mechanical stability”: a grain is “stable” if it has a grain
underneath. The operator II, has thus a simple expression: II, = limg oo exp {—KHpgdw} where Hggw =
> i 0ni(2),10n, (2—1),00m, (z—2),0 (for clarity, we have shown the z dependence in n;(z)).

By using the Bethe-Peierls approximation with the techniques of the “cavity method”,? the phase diagram
is found.>* At low N, (N is the number of grains per unit surface) or high T, s a fluid-like phase is found,
characterized by a homogeneous Replica Symmetric (RS) solution, in which only one pure state exists and the
local fields are the same for all the sites of the lattice (translational invariance). For a given N, by lowering Teon, ¢
(see Fig. 6), a phase transition to a crystal phase (an RS solution with no space translation invariance) is found
at Tp,. Notice that the fluid phase still exists below T;, as a metastable phase corresponding to a supercooled
fluid found when crystallization is avoided.

Within the one-step replica symmetry breaking (1RSB) ansatz of the cavity method,® a non trivial solution
appears for the first time at a given temperature T (Ny), signaling the existence of an exponentially high number
of pure states. In mean field theory Tp is interpreted as the location of a purely dynamical transition as in mode-
coupling theory, but in real systems it might correspond just to a crossover in the dynamics (see'? 2435 and Ref.s
therein). The 1RSB solution becomes stable at a lower point Tk, where a thermodynamic transition from the
supercooled fluid to a 1RSB glassy phase takes place (see Fig. 6) in a scenario 4 la Kauzmann with a vanishing
complexity of pure states (which stays finite for T < T < Tp).

The results of these calculations are illustrated in Fig. 6: in a system with a given number of grains (i.e., a
given Nj), the overall number density, ®, is plotted as a function of T¢o, s (here by definition ® = N,/2(z), where
(z) is the average height). The shown curve, ®(T,ony), is the equilibrium function here calculated. It has a shape
very similar to the one observed in tap experiments,>” or in MC simulations on the cubic lattice (see also®),
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Figure 6. For a system with a given number of grains (i.e., a given N;), the overall number density, ® = Ns/2(z) ({(z) is
the average height), calculated in mean field approximation is plotted as a function of Teons; ®(Teons) has a shape very
similar to the one observed in the “reversible regime” of tap experiments and MC simulations of the cubic lattice model
for ®(1T). The location of the glass transition, Tx (filled circle), corresponds to a cusp in the function ®(T,onys). The
passage from the fluid to supercooled fluid is Ty, (filled square). The dynamical crossover point Tp is found around the
flex of ®(Teonys) and well corresponds to the position of a characteristic shaking amplitude I'* found in experiments and
simulations where the “irreversible” and “reversible” regimes approximately meet.

where the density is plotted as a function of the shaking amplitude T' (along the so called “reversible branch”).
In particular, a comparison of our mean field results with simulations of the 3D model of Hard Spheres under
the tap dynamics shows a very good agreement.

Summarizing, in the present mean field scenario of a granular medium with Ny particles per surface, in
general, at high T,,, ¢ (i.e. high shaking amplitudes) a fluid phase is located (see Fig. 6). By lowering Tecony,
a phase transition to a crystal phase is found at T),. However, when crystallization is avoided, the fluid phase
still exists below T, as a metastable phase corresponding to a supercooled fluid. At a lower point, T, an
exponentially high number of new metastable states appears, interpreted, at a mean field level, as the location
of a purely dynamical transition, which in real system is thought to correspond just to a dynamical crossover.
Finally, at a even lower point, Tk, the supercooled fluid has a genuinely thermodynamics discontinuous phase
transition to glassy state. The structure of the glass transition of the present model for granular media, obtained
in the framework of Edwards’ theory, is the same found in the glass transition of the p-spin glass and in other
mean field models for glass formers.'? 24

4.1. A mean field theory of segregation

As an application of the Statistical Mechanics of powders mixtures just discussed, we now consider the intriguing
phenomenon of segregation: in presence of shaking a granular system is not randomized, but its components
tend to separate.!* An example is the so called “Brazil nut” effect (BNE) where, under shaking, large particles
rise to the top and small particles move to the bottom of the container. Interestingly, by changing grains sizes
or mass ratio or shaking amplitudes a crossover towards a “reverse Brazil nut” effect (RBNE) was more recently
discovered!'” where small particles segregates to the top and large particles to the bottom. Several mechanisms
have been proposed to explain these phenomena which, although of deep practical and conceptual relevance,

are still largely unknown.'*  Geometric effects, such as “percolation”'® or “reorganization”,'®!7 are known
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Figure 7. Main panel The vertical segregation parameter Ah/h is plotted as a function of § = (m2 —2m1)/(m2 + 2m1)
in a binary granular system in its Fluid phase in the case $1 = 32 = 1. For a given amount of large grains, No = 1, when
N; = 1 by reducing § the system smoothly crosses from BNE to RBNE, via a mizing region located around § = 0 where
Ah/h ~ 0. When small grains are comparatively more abundant, N1 = 1.8, the region where Ah/h ~ 0 disappears and
around a critical value d. # 0 the system has an abrupt transition from BNE to RBNE. Side panels The density profiles
p(z) of the two species are plotted for § = +1. Full (empty) circles correspond to small (large) grains density.

to be at work since, in a nutshell, small grains appear to filter beneath large ones. “Dynamical” effects, such
as convection'® or inertia,?’ were shown to play a role as well. Recent simulations and experiments have,
however, outlined that segregation phenomena can involve “global” mechanisms, such as “condensation”!? or,

more generally, “phase separation”.?! We focus on these properties here.

We apply the mean field approximation of Sec. 4 to the present binary mixture to give a Statistical Me-
chanics interpretation of segregation phenomena observed in the model of Eq.(8) and in the simulations (see
also Ref.?®). With the Bethe-Peierls methods the free energy, F, can be derived®® along with the quanti-
ties of interest, such as the density profile of small and large grains, pi(z) and p2(z), and average heights
hn = (zn) = >, 2pn(2)/ D, pn(z) (with n = 1,2). The system parameters (for a given grains sizes ratio) are
four: the two number densities per unit surface, N3 and Ny and the two configurational temperatures, or more
precisely mi 01 and mafs2 (conjugated to gravitational energies). In the space of these parameters, the Fluid
phase corresponds to a solution of Bethe-Peierls equations where the density field in each layer is invariant under
horizontal translations. A Crystalline phase, characterized by the breakdown of the translational invariance
(density fields are now different on neighboring sites), is also found.

We find a new purely thermpodynamic mechanism inducing vertical segregation: a phase separation induced
segregation. A true demixing phase separation occurs between the two species (due to the depletion force).
Finally, the presence of gravity moves the heavier of the two phases downwards.

In order to illustrate this effect, for simplicity, we consider now only the system Fluid phase and we take
the case §; = B2 = 1. The segregation status of the system changes by changing the masses ratio parameter
0 = (2m1 — ma)/(2m1 + m2): when 6 > 0 BNE is expected to be found, as well as RBNE when § < 0. This
is indeed the case, as shown in the main panel of Fig.7 which plots the usual vertical segregation parameter
Ah/h = 2(hy — ha)/(h1 + h2) as a function of 6 (here hy and hy are the average heights of small and large
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grains). For a given amount of large grains, N = 1, in the case where there are comparatively few small grains,
e.g., N1 = 1, by reducing ¢ the system smoothly crosses from BNE to RBNE, via a mizing region located
around 6 = 0 where Ah/h ~ 0 (see Fig.7,). When small grains are comparatively abundant, e.g., N3 = 1.8,
the scenario drastically changes for the enhanced role of depletion forces acting between large grains: the region
where Ah/h ~ 0 disappears and around a critical value é. # 0 the system has an abrupt transition from BNE
to RBNE. The jump observed in Ah/h is related to the crossing of a phase transition line present in the Fluid
phase (this is due to depletion forces between large grains and is, in fact, absent if grains have equal radii). In
order to compare the properties of the system microscopic configurations, Fig.7 also plots the density profiles
p(z) of the two species for § = +1.

Summarizing, the present mean field Statistical Mechanics model of granular binary mixture, here analyti-
cally treated 4 la Edwards, individuates two basic mechanisms underlying, in absence of hydrodynamic modes,
mixing and segregation phenomena corresponding to a variety of experimentally observed effects, ranging from
BNE!* and RBNE,!?:3® to coarsening.?! In these non-thermal media there is a form of segregation which is
related to thermodynamic-like mechanisms taking place in the system, i.e., phase transitions. A different kind of
segregation phenomena exists, not associated to phase transitions, which is driven in pure phases by “buoyancy”
and “geometric” effects.

5. CONCLUSIONS

An important open issue in the physics of granular media is the theoretical foundation and experimental test
of Statistical Mechanics approaches and, in particular, the approach proposed by Edwards and here briefly
reviewed. In practice the general validity of Edwards’ scenario has just begun to be assessed and there are still
many, crucial, open questions.? Within the schematic framework of simple hard sphere models, we have shown
that such an approach to dense granular media appears to be well grounded, and a first framework is emerging
to understand their physics and their deep connections with thermal systems such as fluids and glass formers.

We showed that the system stationary states are indeed independent on the sample history as in a “ther-
modynamics” system, and can be described in terms of a distribution function characterized by a few control
parameters (such as configurational temperatures). We then derived, by analytical calculations at a mean field
level, the phase diagram of these systems. In particular, we discovered that “jamming” corresponds to a phase
transition from a “fluid” to a “glassy” phase, observed when crystallization is avoided. Interestingly, the nature
of such a “glassy” phase turns out to be the same found in mean field models for glass formers. In the same frame-
work, we have also discussed segregation patterns observed in a hard sphere binary systems, where Edwards’
original approach must be extended. Here, the presence of fluid-crystal phase transitions in the system drives
segregation as a form of phase separation. Within a given phase, gravity can also induce a kind of “vertical”
segregation, not associated to phase transitions.

As a first reference picture is emerging in the physics of dense granular media, a deeper test of these theories
and their consequences, the experimental determination of the described phase diagram and segregation features,
the connections to hydrodynamics effects, are among relevant open research directions ahead in this field.

Work supported by MIUR-PRIN 2002/FIRB 2002, CRAC-AMRA, INFM-PCI, EU MRTN-CT-2003-504712.
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