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Abstract. We present an automated method to perform accurate,
rapid, and objective measurement of the blood oxygen saturation over
each segment of the retinal vascular hierarchy from dual-wavelength
fundus images. Its speed and automation �2 s per entire image versus
20 s per segment for manual methods� enables detailed level-by-level
measurements over wider areas. An automated tracing algorithm is
used to estimate vessel centerlines, thickness, directions, and loca-
tions of landmarks such as bifurcations and crossover points. The hi-
erarchical structure of the vascular network is recovered from the
trace fragments and landmarks by a novel algorithm. Optical densities
�OD� are measured from vascular segments using the minimum re-
flected intensities inside and outside the vessel. The OD ratio �ODR
=OD600/OD570� bears an inverse relationship to systemic HbO2
saturation �SO2�. The sensitivity for detecting saturation change when
breathing air versus pure oxygen was calculated from the measure-
ments made on six subjects and was found to be 0.0226 ODR units,
which is in good agreement with previous manual measurements by
the dual-wavelength technique, indicating the validity of the automa-
tion. A fully automated system for retinal vessel oximetry would prove
useful to achieve early assessments of risk for progression of disease
conditions associated with oxygen utilization. © 2005 Society of Photo-
Optical Instrumentation Engineers. �DOI: 10.1117/1.2113187�
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1 Introduction

Oxygen utilization is altered in many disorders of the
retina.1–6 The present work is motivated by the need for de-
veloping automatic and noninvasive ways of measuring the
percent blood O2 saturation from retinal images. Evaluations
of blood oxygenation along vascular segments of individual
artery and vein networks can show, respectively, the distribu-
tions of oxygen supply and extraction from local regions.
Here we describe automated image analysis techniques based
on dual-wavelength oximetry7 and present results from nor-
mal subjects of indices from retinal vessels that are propor-
tional to O2 saturation. Additional information concerning the
vessel diameter, which has previously been correlated with
blood flow changes,8 is forthcoming in the analysis. Future
applications for an automatic system could include large-scale
screening for assessing risk for progression of the stages of
diabetic retinopathy, postoperative monitoring or image-
guided intervention with patients receiving laser treatments
for proliferative retinal vessel disease, and application
to change detection studies of the retinal blood oxygen
saturation.
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Existing methods of vessel oximetry acquire images at
multiple wavelengths, where measurements are limited to a
small region in the image.7,9–12 In the present method, digital
images of continuous vessel segments of several millimeters
length, containing artery and vein pairs, are acquired. The
automated image analysis identifies serial segments of the
vessels in two images, one sensitive to changes in the percent
of HbO2 present in the blood, and the other a reference image
that is not sensitive.7 Figure 1 shows two images acquired
simultaneously at 570 nm and 600 nm. The 570-nm image,
which is insensitive to HbO2 change, has higher contrast be-
tween the blood vessels and the background than does the
image at 600 nm, where differential contrast between the ar-
tery and vein comes from the higher and lower HbO2 content
in each vessel. The apparent OD of the blood inside vessels is
measured from reflectance values taken from inside and out-
side of the vessels. Algorithms that trace the blood vessels,
reconstruct the vascular hierarchy, and measure the apparent
OD of the blood contained in the retinal vessels are described
below.

Many advances and refinements in technique for retinal
oximetry have been made over the past four decades.7,9–20

Hickam et al.9,10 were the first to report studies of retinal
oxygenation in man by noninvasive measurements, using pho-
1083-3668/2005/10�5�/054013/15/$22.00 © 2005 SPIE
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tographic methods to record vessel OD at oxygen-sensitive
and insensitive wavelengths, and ratio analysis to obtain rela-
tive measures of oxygen saturation. Later, Laing et al.11 ex-
tended this method by showing that blood saturation varied
linearly with the ratio over physiological and hypoxic ranges
of saturation. Delori developed a three-wavelength oximetry
method to obtain absolute oxygen saturation values from
single vessel segments.12 Delori’s oximeter was the first to
demonstrate altered blood saturation in optic atrophy.13 A
method to perform retinal vessel oximetry by spectroscopic
recording was introduced by Schweitzer et al.14 Relative mea-
sures of oxygen saturation along retinal vessels using a ratio-
metric measurement were reported by Beach et al.,7 using a
digital imaging technique to simultaneously record oxygen-
sensitive and insensitive images. Jensen15 and Critten et al.16

have employed the ratio technique successfully to measure
oxygen saturation changes in retinal vessels. Recently
Khoobehi et al.17 employed hyperspectral imaging to monitor
the relative spatial changes in retinal oxygen saturation of the
retina and optic disc tissue in the monkey. Uzumcu et al.18

obtained measurements at six wavelengths and estimated the
parameters related to the oxygen saturation using an iterative
algorithm. A scanning laser ophthalmoscope that images at
four wavelengths was used by Smith et al.19,20 They suggested
that the choice of wavelengths is critical and used an opti-
mized wavelength set. The analysis was done on a small se-
lected region from the images. Studies of the relationship be-
tween oxygen utilization and retinal disorders are also
extensively discussed in the literature.1–6

The motivation for our image analyses was to enable
higher levels of automation and precision using the dual-
wavelength approach with digital imaging. We have also
added the capability to automatically distinguish the oxygen
saturation values from the different levels of the vessel hier-
archy. Our vessel hierarchy algorithm automatically recon-

Fig. 1 Sample images from subject 3 at oxygen-insensitive and
oxygen-sensitive wavelengths. �a� Insensitive image acquired at
570 nm. �b� Sensitive image acquired at 600 nm and registered to the
570-nm image. The 570-nm image shows higher contrast between the
blood vessels and the background, and reflected light from the vein
�upper vessel� and artery �lower vessel� are comparable at this wave-
length. At 600 nm, the vessel contrast is low and the artery appears
lighter than the vein.
structs the vascular structure and hence enables the compari-
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son at the corresponding levels in the vascular hierarchy. This
ability should be especially useful in venous networks for
localization of areas of relative hypoxia.

Several methods have been proposed in the literature for
detection of vascular features from retinal images.21–46 These
methods can be broadly classified into four categories.
The first approach is based on adaptive filtering or
segmentation.21–30 In the second method, referred to as vessel
tracking or tracing, local image properties are used to trace
the vasculature recursively starting from an initial
point.31–33,43–46 Some of these algorithms exploit a priori
knowledge on the position of one or more reference points
belonging to the vessels. In some of the methods commonly
used in quantitative coronary analysis, the initial and end
points of the vessel are entered manually.32 The disadvantage
of these methods is that they are not fully automated. The
third approach uses mathematical morphology to detect long
tubular objects representing blood vessels.38–41 The fourth ap-
proach uses classification methods to segment vessels.42

Chaudhuri et al. assume a Gaussian cross-sectional profile for
the vessels and detect them by convolving with a matched
filter.21 Hoover et al. use the matched filter response with an
adaptive threshold probing.22 Gang et al. detect vessels using
amplitude modified second-order Gaussian filter.23 Other
methods based on matched filters are described in Refs. 24
and 25. Directional edge detectors were used by Li et al.,28

while local image characteristics were exploited for detecting
the blood vessels in window-based methods described in
Refs. 29 and 30. A parameterized variation of the exploratory
approach known as “snakes” is discussed in Refs. 34 and 35.
Aylward and Bullitt36 describe a method based on intensity
ridge traversal to extract centerlines of tubular objects. Jiang
and Mojon37 implement adaptive local threshold using mul-
tiple threshold verification and a curvilinear structure model
based on angle, width, and contrast. Zana and Klein use math-
ematical morphology to detect vessel-like structures.38 Mor-
phological processing is also described in Refs. 39–41 for
finding blood vessels from retinal images. An unsupervised
classification algorithm was used by Fontaine et al. for seg-
menting the vasculature.42 In this paper we use the explor-
atory tracing algorithm developed by Can. et al.43 and further
developed in Refs. 44–46. The algorithm will be described in
detail in the next section.

2 Fully-Automatic Retinal Vessel Tracing
Algorithm

Previous research in this group has developed algorithms for
rapid automated tracing and feature extraction from retinal
images.43–46 These algorithms were originally inspired by the
need to construct computer vision tools for assisting oph-
thalmic procedures such as laser retinal surgery and perimetry.
The tracing method is based on adaptive exploratory process-
ing of the image, directly at the image intensity level, avoid-
ing image-wide pixel-processing operations such as gray-
scale filters, edge operators, morphological filters, etc. The
algorithm is designed such that the computations are restricted
to the most relevant and promising locality of pixels. In the
present work we extend these algorithms to develop an auto-

mated system to measure the oxygen content in the
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blood from images of the retina obtained at two different
wavelengths.

The tracing algorithm is based on a parallel edge model.
Over short distances, the vessel segments can be assumed to
be linear and having parallel edges oriented along a particular
direction. These parallel edges can be detected by using a set
of two-dimensional correlation kernels. The exploratory algo-
rithm starts from seed points that are selected automatically
using a two-step detection and verification stage from a uni-
formly spaced grid. Each seed is assigned a direction during
the verification stage and the tracing algorithm proceeds by
tracing in these initial directions from each valid seed point.
The algorithm takes a step in this direction and then deter-
mines the direction to proceed at that point. Given a point p�k

with initial direction sk, the directional templates are used to
estimate the next point p�k+1 and direction sk+1 in a recursive
fashion. Figure 2�a� shows how the algorithm takes a step in
the current direction and then estimates an orientation at the
new point. The exploratory algorithm terminates if it meets
certain stopping conditions. Interested readers are referred to
Refs. 43 and 44 for details of the tracing algorithm. At each
point in the vessel centerline, the algorithm estimates the
width, boundary points and also the direction. From the cen-
terline network, the branching and crossover points are de-
tected as the intersection points of the centerline trace seg-
ments. These points are referred to as landmarks and help in
determining the hierarchy of the vascular tree as described
below. Each landmark has two or more vessel segments asso-
ciated with it and also stores the angles that these segments
make with the landmark. This is illustrated in Fig. 2�b�.

3 Reconstructing the Vascular Hierarchy
The detected trace segments from the exploratory tracing al-
gorithm do not give any information about the vascular hier-
archy. Also the same vessel might be traced in parts as several
fragments. If we are able to automatically identify fragments
that belong to the same vessel and also its branches, we would
be able to make much more accurate measurements from a
single connected vessel rather than making the measurements
from the individual fragments. The information about the vas-
cular hierarchy is also desirable for picking appropriate ves-
sels to compare the oxygen saturation for detecting changes.
The traces are therefore processed using a recursive algorithm
that reconstructs the vascular structure.

The traces are first sorted according to the decreasing order
of the product of their lengths and average width and put in a
priority list. This is done to make sure that the vessel linking
algorithm starts from segments that are significantly wide and
long. Starting from the first vessel in the sorted list, the algo-
rithm checks whether this segment has any landmarks associ-
ated with it. If there are no landmarks associated with this
parent segment, it is given a unique name and removed from
the list. On the other hand, if the parent segment has one or
more landmarks associated with its end points, the segments
that are associated with these landmarks are processed and
named one at a time as follows. While selecting from multiple
segments, associated through the same landmark, the seg-
ments that are closer in direction to the current segment are
processed first followed by segments that make larger angles

with the current segment. Also if there are multiple approxi-
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mately collinear segments associated with the current seg-
ment, it is considered probable that the other segments are
part of another vessel and are therefore, not named. When
naming the segments, the following rules are followed.

1. If the intensity of the current segment and the previous
segment are significantly different �30%�, then the current
segment is not named.

2. If the directions of the current segment and the previous
segment are the same or if their widths are comparable, the
current segment is given the same name as that of the previ-
ous segment.

3. If 1 and 2 are not satisfied, the current segment is given
a name that represents it as the child of the previous segment.
This is done by appending -D- �to denote daughter� followed
by a number, to the end of the name of the previous segment.
It is also ensured that no two branches of the same vessel at
the same level have the same name.

In order to avoid naming a single segment more than once,
the named segments are removed from the list and eliminated
from further consideration. Once all the connected segments
under one parent segment have been processed, the algorithm
checks the list and process the next segment. The algorithm
proceeds until there are no more elements in the list to be
processed. A pseudo code description of the above algorithm
is provided in Fig. 3, and Fig. 4 shows the original image,
traced image, initial trace segments and their numbers and the
reconstructed vessel structure. The vessel linking algorithm is
limited by the accuracy of the initial tracing and landmark
extraction and cannot recover from errors in the tracing. An-
other source of error is significant changes in the width or
intensity of parts of the same vessel. For example, segment 10
in Fig. 4�c� is really a daughter of the vein marked as V. But
in this case, the intensity of segment 10 was significantly
higher from that of V, and hence the algorithm mistook it to
be part of another vessel. Subsequent segments �64 and 15�
are also named based on the name given for segment 10.
Hence naming errors at the higher levels of the hierarchy are
propagated to the lower levels.

4 Optical Density Measurements
Images of the eye are obtained at 570 nm and 600 nm. The
tracing algorithm is applied to the image obtained at 570 nm.
This is because at this wavelength, there is better contrast
between the vessels and the background resulting in better
detection of the vasculature. The 600-nm image is registered
to the 570-nm image using a similarity transformation. This is
a rigid transformation that allows for translation, rotation, and
scaling between two images. The registration parameters for
our images were determined using the image registration fea-
ture in IPLab �Scanalytics�.

The apparent OD can be calculated on the vessel segments
by finding the minimum intensity inside the vessel and the
average outside intensity. For each point p�k in a vessel cen-

terline, let r�k and l�k denote the right and left boundary points.
In order to find the pixel with the minimum reflection at this
particular cross section of the vessel, the pixels along the

straight line joining r�k and l�k are examined. The minimum
�k
intensity inside the vessel at p is given by:

September/October 2005 � Vol. 10�5�3



hierarc

Narasimha-Iyer et al.: Algorithms for automated oximetry along the retinal…
Iin�p�k� = arg min�I�tr�k + �1 − t�l�k�� , �1�

where, I�m� � is the image intensity at point m� and t is a pa-
rameter that varies from 0 to 1.

Extravascular light reflection at point p�k is measured from
points lying at one vessel diameter distance on either side of
the vessel boundary. It is given by:

Iout�p�k� =
1

2
�I�r�k + Du�

k � + I�l�k − Du�
k �� , �2�

where D is the diameter of the vessel at that point and u�
k is

the unit vector in the direction perpendicular to sk. In order to
minimize the effects of noise on the measurements of ex-
travascular light reflection, we can substitute the values in the
above equations with a local average. Equation �2� is modified
to:

Iout�p�k� =
1

2
�Avgw�r�k + Du�

k � + Avgw�l�k − Du�
k �� , �3�

Fig. 3 Pseudo code for the recursive vessel segment naming algorithm
that segment and name them in a recursive fashion. This results in a
where
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Avgw�p�� =
1

�2w + 1�2 �
i=−w

w

�
j=−w

w

I�px + i,py + j� . �4�

Figures 5 and 6 show, respectively, the above notation as ap-
plied to the image of the vessel, and the sample points for
calculating the minimum values inside vessels and average
values outside vessels. Now we describe two methods to cal-
culate the apparent OD for a segment.

Case 1. In this method, the apparent OD is calculated by
averaging the inside intensities and the outside intensities and
finding one OD for the segment. Let Iin,seg and Iout,seg be the
average inside and outside values for trace segment i with M
points:

Iin,seg�i� =
1

M �
k=1

M

Iin�p�k� , �5�

Iout,seg�i� =
1

M �
k=1

M

Iout�p�k� . �6�

ting with the longest traced segment, find the segments connected to
hical representation of the vascular network.
. Star
Then the OD for segment i is calculated as:
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OD570,seg�i� = log10� Iout,seg

Iin,seg
	 . �7�

Case 2. This variation of the method is aimed at dealing
with any illumination gradient across the image. In this
method, we calculate the OD for each centerline point in the
trace segment and then average the ODs to obtain the overall
OD for the segment. The OD at centerline point pk is given
by:

OD570�pk� = log10� Iout�p�k�
Iin�p�k�

	; �8�

and the average OD for segment i with M points is calculated
as:

OD570,seg�i� =
1

M �
M

OD�p�k� , �9�

Fig. 2 Recursive tracing algorithm and landmarks. �a� The vessel
edges can be modeled to be parallel over small distances. The tem-
plates for two different orientations are shown in panel �a�. Separate
templates are used for the left and right edges. The direction of tracing
at point pk is sk. From that point the algorithm takes a step in the
direction sk. The new direction sk+1 is found at pk+1 by the application
of the templates. �b� Landmarks obtained from the vessel centerlines.
Each landmark has a set of traces associated with it and also the angle
the vessel extends at it. This information is used by the vessel linking
algorithm to reconstruct the vascular hierarchy.
k=1
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=
1

M �
k=1

M

log10� Iout�p�k�
Iin�p�k�

	 . �10�

We also calculate the standard deviation of the OD values for
each segment. Denoting the standard deviation as SD�i�, it is
calculated as:

SD570,seg�i� =
 1

M − 1�
k=1

M

�OD570�p�k� − OD570,seg�i��2�1/2

.

�11�

Two lists are created one each for the OD570 and the SD570
values of the segments.

The 600-nm image that was registered to the 570-nm im-
age is then processed as described above to get OD600 and the

Fig. 4 �a� The original oxygen-insensitive image from subject 1 to be
processed using the recursive vessel linking algorithm. Vein �top ves-
sel� and artery �small vessel below the vein�. �b� Traces and landmarks
for the image shown in �a�. The green points are the vessel centerlines
and the red lines indicate the detected landmarks �bifurcations and
crossovers�. �c� Initial trace fragments and trace numbers for the traces
shown in �b�. Each fragment is colored differently for clarity. �d� Illus-
trating the hierarchical linking of vessel traces to reconstruct the vas-
cular tree. The hierarchical names given to the fragments shown in �c�
are shown in red along the original fragments. The starting number for
the vessel names have been replaced with A and V for clarity in dif-
ferentiating arteries and veins.
SD600. The centerlines and boundary points used for this are
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the same as the ones obtained from tracing the 570-nm image.
The ratio of the OD at 600 nm to that at 570 nm is computed
as the ODR:

ODR =
OD600

OD570
. �12�

The ODR measurement was found to be related to the oxygen
saturation in the blood. This will be discussed in detail in

Table 1 Comparison of ODR �Case 1� at different SO2 levels for the s
probe. The ODR decreases as the systemic SO2 increases. The vesse
�V-D-*� represents a daughter vessel branching off from the main ves
been replaced with A and V for clarity in distinguishing arteries �A*� a

Subject
Vessel

identifier
ODR

room air
Mean±
room

A

Subject 1 A 0.2450

0.1688±0

Subject 2 A 0.2182

Subject 3 A 0.1567

A-D-1 0.1919

Subject 4 A 0.1367

Subject 5 A 0.1402

A-D-1 0.1644

A-D-2 0.1441

Subject 6 A 0.1312

A-D-1 0.1599

Subject 1 V 0.5104

0.4065±0

V-D-1 0.4593

V-D-2 0.4759

Subject 2 V 0.4874

Subject 3 V 0.3987

V-D-1 0.3651

Subject 4 V 0.3235

Subject 5 V 0.5173

V-D-1 0.2637

Subject 6 V-1 0.2782

V-2 0.2319
Sec. 6.
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5 Description of the Retinal Image Analysis
Experimental data were obtained from seven volunteer sub-
jects and the recordings confirmed to an approved institutional
review board protocol. Subjects’ eyes were dilated with 1%
topical tropicamide and 2.5% phenylephrine. Recordings were
made simultaneously from retinal artery vein pairs using a
dual-wavelength camera that is described in Ref. 7. The
present instrument uses an inexpensive 16-bit digital camera
�Apogee U-2� and upgraded optics to improve wavelength
selection and the pixel resolution is 9�9 �m. Images con-

arteries and veins. SO2 was read from a pulse oximeter with a finger
ng convention is that A �V� represents a first level vessel, and A-D-*

e first number in the name given by the vessel linking algorithm has
ins �V*�. SO2 in room air=97%, in pure O2=100%.

ODR
pure O2

Mean±SD
pure O2 Difference

0.2362

0.1462±0.0387 −0.0226

0.1810

0.1423

0.1412

0.1218

0.1204

0.1542

0.1397

0.0950

0.1354

0.4184

0.3315±0.0758 −0.0750

0.4087

0.3727

0.3295

0.3080

0.3330

0.3043

0.4125

0.2234

0.1622

0.1774
elected
l nami
sel. Th
nd ve

SD
air

rteries

.0379

Veins

.0957
taining larger retinal vessels and side-branch vessels were re-
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corded during room air breathing and again while the subject
breathed pure oxygen �10 L/min� from a mask that was at-
tached over the nose and mouth. The same retinal areas were
selected for low and high oxygen. Arterial saturation was read
with a pulse oximeter using a finger probe to assess changes
in arterial saturation. The retina was illuminated with the xe-
non flash from the fundus camera �Topcon TRC�.

Recorded dual-wavelength retinal images were processed
first by separating them into 570-nm and 600-nm images as
shown in Fig. 1, and these separate images were registered.
The centerline traces of vessels in the 570-nm image were
found using the tracing algorithm. Results from the tracing
were used as inputs to the vessel hierarchy algorithm. Figures
4�a� and 4�b� show, respectively, a 570-nm vessel image with

Table 2 Comparison of ODR �Case 2� at different SO2 levels for the se
as in Table 1. SO2 in room air=97%, in pure O2=100%.

Subject
Vessel

identifier
ODR

room air
Mean±
room

A

Subject 1 A 0.2321

0.1726±0

Subject 2 A 0.2250

Subject 3 A 0.1569

A-D-1 0.1873

Subject 4 A 0.1385

Subject 5 A 0.1562

A-D-1 0.1813

A-D-2 0.1598

Subject 6 A 0.1300

A-D-1 0.1584

Subject 1 V 0.5163

0.4018±0

V-D-1 0.4583

V-D-2 0.4763

Subject 2 V 0.4845

Subject 3 V 0.3975

V-D-1 0.3684

Subject 4 V 0.3233

Subject 5 V 0.4881

V-D-1 0.2738

Subject 6 V-1 0.2827

V-2 0.2314
individually identified vessel segments overlaid by centerline
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tracings and connecting landmarks that are used to link seg-
ments based on their hierarchical structure. The full comple-
ment of detected segments in the image was then resolved
into serialized segments along the vascular tree as shown in
Fig. 4�d�. Vessel segment hierarchy is defined by us using a
naming scheme where the large parent vessel is identified
with a single number, daughter vessels having the same num-
ber and the designation D which follows, and multiple daugh-
ters or side branches that occur along the vessel moving dis-
tally being assigned higher numbers. This naming scheme is
marked on the image of vessels to confirm validity.

The algorithm for vessel hierarchy has been validated by
an ophthalmologist �one of the authors�. For each image, the
vessel names were superimposed on the segments and pre-

arteries �A*� and veins �V*�. The vessel naming convention is the same

ODR
pure O2

Mean±SD
pure O2 Difference

0.2207

0.1500±0.0317 −0.0226

0.1860

0.1461

0.1504

0.1317

0.1205

0.1545

0.1405

0.1155

0.1343

0.4194

0.3198±0.0931 −0.0820

0.4096

0.3690

0.3292

0.3070

0.3326

0.3026

0.4136

0.2237

0.1569

0.1725
lected

SD
air

rteries

.0340

Veins

.0900
sented for validation. Major vessels and its branches were
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selected and the segments that were given a name inconsistent
with the convention were marked out. The success rate of the
vessel linking algorithm is defined as the number of trace
segments correctly named by the algorithm to the total num-
ber of trace segments. For the images considered, the success
rate was found to be 87%. It has to be noted that the success
of the vessel linking algorithm is limited by accuracy of the
vessel tracing algorithm. Specifically, out of the 13% of the
errors made by the algorithm, 7% were caused due to the
errors in finding the bifurcation and crossing points by the
tracing algorithm. The other errors were caused due to the big
differences in width and intensity of the branches of the same
vessel, in which case the algorithm mistook the branch to be
part of a different vessel.

Along centerline traces, lines perpendicular to the vessel
orientation were followed to sample minimum-valued pixels
that estimate the reflected light from the blood column as
shown in Fig. 6�a�. Along the same line, approximately one
vessel diameter from the outer wall, the extravascular reflec-
tion was averaged from neighboring pixels. OD was deter-
mined either by averaging values from inside and outside the
vessel and then applying Eq. �7� for Case 1, or by finding the
OD for each pair of values along the length of the segment
and then averaging these as in Eq. �9� for Case 2, in either
case ending up with a particular OD for each segment. Case 2
should reduce the influence of light gradients on OD values
since these are determined at points along vessels rather than
from area-averaged values. Centerline traces from 570-nm

Fig. 5 Illustration of the ODR calculation method. The blue dots on
the vessel indicate the centerline point p� k, the left boundary point, l� k

and the right boundary point, r�k. The unit vector in the direction per-
pendicular to the vessel orientation is denoted by u�

k and D is the
diameter of the vessel at p� k. The two red dots on the outside of the
vessel indicate the points at which the extra vascular reflection is
measured and the black boxes represent the local neighborhood over
which the average is calculated. The white dot represents the mini-
mum intensity point inside the vessel.
images were applied to the registered 600-nm and ODs were

Journal of Biomedical Optics 054013-
obtained for 600-nm images. ODRs were then calculated as
described above.

6 Determination of Oxygen Change Sensitivity
Data from six subjects were used to determine the oximeter
response resulting from changing the inspired gas from room
air to pure oxygen. Table 1 compares ODRs from normal and
high oxygen conditions in ten artery and eleven vein segments
of the superior temporal vessel arcades. Systemic arterial oxy-
gen saturation averaged 97% in the subjects during room air
breathing and 100% during pure oxygen. ODs were deter-
mined from averaged intensities along the vessel segments
�Case 1�. These vessels began one disk diameter from the rim
of the optic disk. The ODR of the arteries and veins decreases
when breathing gas was switched from room air to pure oxy-
gen. The mean change for the artery was 0.0226 ODR units.
This change is very close to the expected 0.0236 ODR units
for a blood saturation increase of three percentages, assuming
an instrument sensitivity of 0.00787 ODR/change in percent
saturation that was established with a similar methodology
and vessel analysis using Case 1.7 The high degree of agree-
ment between the two methods confirms that our automated
analysis gives the same result as the previous vessel tracking
technique which required user intervention to pick vessels and
determine the size of each scanned segment before perform-
ing the analysis.

Oxygen breathing caused a greater change in the ODRs of
veins; the decrease observed for the veins was 3.31 times that
of the artery, which corresponds to an increase in venous satu-
ration of approximately 10%. The venous saturation changes
should significantly exceed those in arteries since pure oxygen
causes the tissue oxygen source to switch from hemoglobin to
dissolved oxygen in plasma, with the result that there is less
desaturation of the venous blood. Table 2 gives results when
the vessel ODs were found by the alternate method of first
determining OD at each location along the segments and then
averaging these �Case 2�. Case 2 had little effect on the out-
come; ODRs of arteries and veins �room air� were 2.3%
higher and 1.2%lower, respectively, than the corresponding
values from Case 1. In arteries, there was no significant dif-
ference between the two methods in the response to breathing
oxygen. In veins, Case 2 resulted in a 9% greater decrease in
the ODR. Figure 7 shows vessels from two subjects for room
air �left panels� and pure O2 �right panels�, with the ODR
calculated using Case 2 and vessel diameters marked on se-
lected veins and arteries. Both the datasets show the reduction
in the ODR, which corresponds to increased saturation, and in
the reduced diameter, which resulted from oxygen-induced
vasoconstriction. In the lower panels, the responses to O2
were greater; reduced vessel diameters are easily discerned
from the images and both parameters changed by larger de-
grees. Table 3 gives the intermediate steps for the ODR cal-
culation for the two subjects shown in Fig. 7. Although the
table has many entries, all of the values are computed by the
automatic algorithm, and the user only needs to analyze the
results.

Repeatability of this method should be assessed from ar-
tery data since the saturation change is more consistent than in
veins. For results from arteries in Table 1, the coefficient of

variation �COV=SE/MEAN� for saturation changes equals
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Fig. 6 Illustration of the OD calculation method. �a� The centerlines
in white and the pixels across each cross section used for finding the
minimum intensity in blue �b� The minimum intensity pixel found
across each cross section in white and the points that are used for

calculating the extravascular reflectance in red.

Journal of Biomedical Optics 054013-
Fig. 9 �a� Illustration over larger areas of the retina with traces of
vessel interior �white points� and exterior �red points�. Oxygen-
insensitive image showing vessels arch over the macula �dark region
at bottom� from subject 7. The nerve fiber layer is visible near vessels.
�b� Oxygen-sensitive image �600 nm� from subject 7, where vessels
arch below the macula. Retinal thinning as a condition of myopia
produces intensity variations �light areas�. The traces were obtained
from the corresponding 570-nm image and are superimposed on the
registered 600-nm image. Based on these traces, the minimum inten-
sity points inside the vessels �indicated in white� were then deter-
mined by looking at the intensities in the 600-nm image.
September/October 2005 � Vol. 10�5�9
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0.21 �N=10�. This measure of variability in part reflects dif-
ferences in the actual rise in retinal arterial saturation among
the subjects that resulted from breathing pure oxygen.

The automated method also allows studying the changes in
vessel diameters with oxygen saturation. The vessel diameters
are estimated by the tracing algorithm at each trace point and
the mean width for each segment is calculated. Table 4 shows
the change in diameter of the blood vessels under room air
and pure oxygen breathing for the six subjects. The mean
decrease was 7.5% for the arteries and 9.93% for the veins for
the increase of 3% in oxygen saturation.

Plotted in Fig. 8 are values of the ODR versus distance
along a vessel segment using Case 2, for air and pure O2
breathing. The expected reduction in the ODR with increased
blood oxygen saturation is evident, while a gradient in satu-

Table 3 Intermediate ODR calculation �Case 2� for the segments sh
original trace segments that were linked together by the algorithm,
deviation �SD� is calculated over the points in each segment. The ves
pure O2=100%.

Image
Vessel

identifier

Number of
original trace

fragments linked
to form the
segment O

A

Subject 5
�room air�

A 2 0.1

A-D-1 2 0.1

A-D-2 3 0.1

Subject 5
�high O2�

A 3 0.2

A-D-1 4 0.1

A-D-2 2 0.1

Subject 5
�room air�

A 1 0.6

A-D-1 1 0.5

Subject 5
�high O2�

A 2 0.5

A-D-1 3 0.4

Subject 6
�room air�

V 5 0.2

V-D-1 1 0.0

Subject 6
�pure O2�

V 9 0.2

V-D-1 1 0.0

Subject 6
�room air�

V-1 3 0.5

V-2 1 0.7

Subject 6
�pure O2�

V-1 2 0.6

V-2 2 0.7
ration along the vessel is also observed for both cases. These
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data show how it would be possible to measure oxygen gra-
dients along retinal vessels, or even discontinuous changes
resulting from vessel occlusion.

Vessel traces have been applied to larger images of the
retina that were taken with the full frame of the CCD camera
using the 55-deg field-of-view setting on the fundus camera.
Figure 9 shows images of temporal vessels with trace points
included. In Fig. 9�a�, the 570-nm recording wavelength pro-
duces high contrast between both artery and vein against the
fundus background. These traces followed the larger vessels
and the numerous smaller side branches faithfully. In Fig. 9�b�
the 600-nm recording, which produces lower vessel contrast,
is also faithfully traced. In this, the only case of a thinned
retina that we have worked with, our method correctly iden-
tified retinal vessels in both the oxygen-insensitive and

Fig. 7. The table shows the name of the segment, the index of the
dividual ODs at 570 nm and 600 nm, and the ODR. The standard

ing convention is the same as in Table 1. SO2 in room air=97%, in

70 nm 600 nm

ODRSD OD SD

0.0494 0.0291 0.0099 0.1562

0.0568 0.0323 0.0083 0.1813

0.0120 0.0263 0.0065 0.1598

0.0152 0.0254 0.0147 0.1205

0.0277 0.0266 0.0177 0.1545

0.0158 0.022 0.0191 0.1405

0.0993 0.0818 0.0168 0.1300

0.1473 0.0918 0.0255 0.1584

0.0589 0.0686 0.0201 0.1155

0.1276 0.0611 0.0295 0.1343

0.0820 0.1124 0.0090 0.4881

0.0201 0.0262 0.0068 0.2738

0.0225 0.0835 0.0089 0.4136

0.0249 0.0174 0.0061 0.2237

0.0624 0.1566 0.0192 0.2827

0.0796 0.1645 0.0217 0.2314

0.1352 0.1196 0.0152 0.1725

0.1244 0.1125 0.0125 0.1569
own in
the in
sel nam

5

D

rteries

863

782

646

108

722

794

292

797

939

550

Veins

303

957

019

778

540

110

932

169
oxygen-sensitive images. Most of the small traces seen in Fig.
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9�b� between the large artery and the vein �darker vessel� do
connect with one of the large vessels, hence these are likely to
be smaller branching arteries. Even though the myopic eye in
Fig. 9 was traced faithfully, there is a possibility that the al-
gorithm might mistake choroidal pigment bands in myopic
subjects as vessels. Hence, more tests with this kind of sub-
jects are necessary to know whether the algorithm will always

Table 4 Comparison of the vessel diameters a
diameter is calculated as �D1−D2� /D1

*100, whe
at room air and pure O2 breathing, respectively,
in Table 1. SO2 in room air=97%, in pure O2=1

Subject
Vessel

identifier
Diameter

room air �D

A

Subject 1 A 10.60

Subject 2 A 8.49

Subject 3 A 14.17

A-D-1 10.47

Subject 4 A 16.53

Subject 5 A 9.95

A-D-1 8.09

A-D-2 6.64

Subject 6 A 14.31

A-D-1 10.18

Mean decrea
7.5

Subject 1 V 15.00

V-D-1 11.64

V-D-2 10.51

Subject 2 V 11.44

Subject 3 V 14.99

V-D-1 8.36

Subject 4 V 8.63

Subject 5 V 12.18

V-D-1 4.32

Subject 6 V-1 13.05

V-2 13.60

Mean decre
9.9
succeed where there are choroidal pigment bands.
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6.1 Implementation and Execution Time

The exploratory tracing algorithm was implemented in C��
and the vessel hierarchy reconstruction and OD measurement
algorithms were implemented in Matlab. After the images
were registered, the automatic algorithms took around 2 s on
an average for each subject for the analysis on a PC with

rent O2 levels. The percentage decrease in the
nd D2 are the measured diameters of the vessel
ls. The vessel naming convention is the same as

Diameter
pure O2 �D2� Percentage decrease

10.43 1.60

8.92 −5.06

11.83 16.51

10.02 4.30

12.29 25.65

9.52 4.32

8.10 −0.12

6.16 7.82

13.15 8.11

8.97 11.89

for arteries
3

12.92 13.87

10.19 12.46

9.09 13.51

9.94 13.11

12.73 15.08

7.43 11.12

10.72 −24.22

11.31 7.14

4.17 3.47

9.81 24.83

11.03 18.90

D for veins
61
t diffe
re D1 a
in pixe
00%.

1�

rteries

se±SD
0±8.8

Veins

ase±S
3±12.
Pentium IV Processor and 1 GB of RAM. This can be com-
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pared to 20 s for just a single vessel segment with 50 points
included needed for the earlier analysis.7 Also, the automatic
method produces ODR measurements over all the vessels in
the field of the image, whereas the earlier analysis took almost
an order of magnitude more time for a single segment.

7 Conclusions
The main contribution of this work is the adaptation of auto-
mated tracing algorithms for oxygen measurement from dual
wavelength images. Automation for identification and analy-
sis of retinal vessels is important for development of clinically
useful technology for diagnosis. The steps taken thus far show
that oxygen changes are forthcoming from segments of
prominent vessels, including arteries and veins in dual-
wavelength images. The vessel tracing and linking algorithms
make it possible to obtain OD and oxygen change measure-
ments from larger areas than were previously described in the
literature. The vessel linking algorithm starts from a main
vessel segment and names its side branches and bifurcations

Fig. 7 Optical density ratios �ODR� and the measured vessel widths �
�a,b� and subject 6 �c,d�. �a,c� Room air breathing, �b,d� pure O2 bre
hierarchically. The algorithm was found to perform well in all

Journal of Biomedical Optics 054013-1
the subjects under study, and we believe that this is the right
start for solving complex problems associated with vessel hi-
erarchies. Also our vessel tracing algorithm is able to find the
vessel diameters with sufficient precision to detect oxygen
vasoconstriction. This is significant since the vessel diameter
is an important parameter in the analysis of retinal blood flow.
Automated OD measurements have also been successful in
smaller ��50 �m� veins that branch from the main vessels.
Although there is room for improvement, the result show it is
feasible for automatic image analysis to indicate areas of rela-
tive hypoxia based on distributions of venous blood satura-
tion. One problem that remains is to successfully determine
O2 saturation values in the smaller artery segments with au-
tomation. The very low vessel OD, strong central reflection
and variation in the extravascular reflection at 600 nm make
this determination difficult.

The choice of measurement wavelengths in the described
method are such that the retinal vessels can be easily traced
by measuring density against the fundus background, and sen-

in parentheses for selected arteries �A� and veins �V� from subject 5
pixels�
athing.
sitivity to saturation change is high. Retinal vessels become
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more visible against the fundus background at wavelengths
where hemoglobin light absorption is strongest, between 540
and 580 nm where our reference wavelength is set. The sens-
ing wavelength, which is longer than 580 nm, provides less
vessel contrast but gives the highest ratio of light absorption
between saturated and desaturated blood. At wavelengths
longer than 610 nm, the retinal arteries become difficult to
detect. Turbid media causes significant signal loss by scatter-
ing as measuring wavelength decreases toward blue wave-
lengths. Thus the present choice of wavelengths should per-
form reasonably well in patients with moderately turbid
media, although high turbidity limits our method as it does
color fundus imaging.

Three wavelength methods have been reported that provide
absolute calibration of blood oxygen saturation from retinal
vessels.12 By comparison, the two wavelength method de-
scribed here provides relative saturation indices using the op-
tical density ratio �ODR�. The absolute sensitivity of the ODR
to saturation changes was previously determined.7 Thus, the
method can be used to determine saturation changes in single
vessels, or between two vessels. The artery-vein saturation
difference �A-V difference� is an important parameter for oxy-
gen utilization. �Venous saturation can be estimated from the
A-V difference and the sensitivity of the ODR if the arterial
saturation is known, such as during the breathing of pure oxy-
gen.� Venous saturation during normoxia can then be assessed
from the decrease in the ODR relative to hyperoxia. Simulta-
neous imagery of the fundus at two wavelengths can be easily
acquired using image splitting techniques; this is significantly
more difficult to achieve for higher numbers of wavelength.

Results from the automated analysis were essentially simi-
lar to earlier findings with dual-wavelength imaging that em-
ployed an automated analysis that had to be initiated
manually.7 An area for improvement is in the registration of
the 570-nm and 600-nm images. Highly accurate feature

Fig. 8 ODR plotted against position along a vein segment during
room air �diamond symbols� and pure O2 �circles� breathing for sub-
ject 4. In this case, pure O2 increased the vein saturation �reduced
ODR�. The vessel showed a continuous positive gradient in saturation
left to right �negative ODR gradient�.
based registration algorithms have been developed by our
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group for retinal images.47–49 These algorithms depend on re-
liable feature extraction from the images. In the case of dual
wavelength images, the central reflex for arteries in the 600
-nm image is so strong that the two sides of the arteries get
traced separately as two segments. Although minimum values
we seek are along either of these traces, it would be better if
the centerline of the vessel was traced as one segment. Since
in the 570-nm image, this same vessel gets traced as a single
segment through the centerline, the registration algorithm
would tend to associate one or the other of the traces on each
side of center in the 600-nm image to the centerline from the
570-nm image. This could result in wrong correspondences
during registration, causing convergence to a wrong solution.
Further research is planned to make the feature extraction
better in retinal images with “hollow” vessels, which would
allow the registration to be done automatically. Our results
indicate that any light gradients present with the current
method of fundus camera imaging should not significantly
influence the calculation of vessel ODRs, which are the mea-
sure here for relative oxygen saturation.

Future work will also concentrate on refining the methods
to enable analysis of smaller vessels, particularly the more
distal networks of veins that drain blood from local areas of
the retina. These vessels carry blood away from the retinal
areas that could be affected by altered metabolic activity. This
information would allow identification of local hypoxia that is
associated with disorders of the retina, and in conjunction
with automated techniques, allow for screening of disorders in
clinical rather than research environments. The ODR values,
while not absolute measures of saturation, are highly sensitive
to saturation differences that would be present between areas
of normal and low oxygenation. Thus, a diagnostic image that
automatically reveals areas of relative hypoxia on the fundus
image is one of the important goals of this work. For the other
goal of investigating oxygen utilization in the normal and dis-
eased retina, the present stage of development can lead to an
image-based measurement of saturations and vessel diameters
across the retina. We have demonstrated the feasibility of the
methods on normal retina in this paper. Future measurements
in patients with retinal disorders will be performed to assess
clinical potential for this method.
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