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Abstract. An automated procedure for detecting breast cancer using
near-infrared (NIR) tomographic images is presented. This classifica-
tion procedure automatically extracts attributes from three imaging
parameters obtained by an NIR imaging system. These parameters
include tissue absorption and reduced scattering coefficients, as well
as a tissue refractive index obtained by a phase-contrast-based recon-
struction approach. A support vector machine (SVM) classifier is uti-
lized to distinguish the malignant from the benign lesions using the
automatically extracted attributes. The classification results of in vivo
tomographic images from 35 breast masses using absorption, scatter-
ing, and refractive index attributes demonstrate high sensitivity, speci-
ficity, and overall accuracy of 81.8%, 91.7%, and 88.6% respectively,
while the classification sensitivity, specificity, and overall accuracy
are 63.6%, 83.3%, and 77.1%, respectively, when only the absorp-
tion and scattering attributes are used. Furthermore, the automated
classification procedure provides significantly improved specificity
and overall accuracy for breast cancer detection compared to those

by an experienced technician through visual examination. e 2008 Soci-
ety of Photo-Optical Instrumentation Engineers. [DOI: 10.1117/1.2956662]
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1 Introduction

Near-infrared (NIR) diffuse optical tomography (DOT) is
emerging as a potential clinical tool for breast cancer detec-
tion due to its ability to quantitatively image the high optical
contrast that arises intrinsically from molecular and cellular
signals generated through the presence of blood, water, and
lipid, as well as cellular density, which are the predominate
transformations associated with malignancy. Clinical studies
conducted at multiple institutions and countries have repeat-
edly shown that there exist 2:1 and higher absorption con-
trasts in breast cancers that can be tomographically
imaged.l"10

Since 1997, our laboratory has developed three complete
clinical platforms for NIR optical tomography of the breast,
evolving from single-wavelength/2-D to multiwavelength/3-D
capabilities. These systems have been used to evaluate the
potential of our approach through a series of studies designed
to quantify the imaging contrast in the normal and abnormal
breast and to provide initial assessments of the operating char-
acteristics of the imaging systems for diagnostic decision-
making in the setting of screen-detected breast lesions.'*"*
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Specifically, both absorption and scattering properties of
breast tissues can be obtained to sensitively distinguish be-
tween normal and abnormal breast tissues. Cysts can be
clearly differentiated from solid tumors based on these two
properties alone. Further, Hb and HbO, are two important
parameters for enhancing sensitivity, consistent with the find-
ing from Chance et al."> However, these imaging parameters
available from the current NIR tomography, do not appear to
be able to fully characterize breast tissues, resulting in limited
sensitivity and specificity. In 2003, it was shown for the first
time that refractive index/phase contrast could be used as a
new imaging parameter for NIR tomography where refractive
index and absorption/scattering parameters were recon-
structed using two different algorithms.'® Our initial clinical
results demonstrate that phase-contrast DOT combined with
conventional DOT offers considerably improved sensitivity
and specificity compared to that by using conventional DOT
alone." In addition, our results show that cellular density and
size derived from the scattering spectra can characterize the
nature of breast lesions more accurately than the scattering
property or scattering amplitude/scattering power. Initial re-
sults in 14 breast abnormalities show that malignant tumors
can be differentiated from benign lesions with high
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Fig. 1 An infiltrating ductal carcinoma: (a) Refractive index image. (b) and (c) Absorption and scattering coefficient images. The axes (left and
bottom) illustrate the spatial scale (mm), whereas the color scale (right) records the refractive index (dimensionless), absorption, or scattering

coefficient (mm™"). Circled area indicates the tumor location.

accuracy,14 meaning that phase contrast and cellular density/
size together with the functional parameters can provide a
more complete spectrum with much improved sensitivity and
specificity for accurate characterization of breast lesions.

Given the relatively large set of imaging parameters now
available from our NIR reconstruction approach, it is natural
to adapt and develop methods for computer-aided classifica-
tion of breast lesions. Computer-aided diagnosis has been well
studied and widely accepted in the fields of conventional
imaging.”’zo This paper reports our initial effort in applying
automatic classification algorithms to the analysis of tissue
phase contrast, absorption, and scattering parameters. Our
classification results of 35 breast masses using a support vec-
tor machine (SVM) classifier demonstrate for the first time
that the specificity can be significantly improved from 71%
based on the visual examination to 92% when phase contrast,
absorption, and scattering parameters are all used.

The rest of this paper is organized as follows. First, the
visual examination process for detecting breast cancer is re-
viewed in Sec. 2. Then, the automated procedure for extract-
ing image features is proposed in Sec. 3. These image features
in turn will be used in Sec. 4 to detect breast cancer by an
SVM classifier. Last, concluding remarks and future studies
are discussed in Sec. 5.
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2 Visual Detection of Breast Cancer

2.1 Image Presentation of Optical Parameters

Thirty-five breasts from 33 different patients were imaged us-
ing a compact, parallel-detection diffuse optical mammogra-
phy system.”' The absorption and scattering images were re-
constructed using a finite-element-based algorithm,zz_24 while
the refractive index images were recovered using a finite-
element-based phase—contrast DOT algorithrn.16 All the im-
ages were reconstructed using a finite element mesh consist-
ing of 700 nodes, thus giving the refractive indices,
absorption, and scattering coefficients at 700 locations evenly
distributed across the entire sample area. To enable visual
examination of the reconstructed optical parameters, the par-
tial differential equations (PDE) toolbox in MATLAB is used
to display the obtained parameters. Figures 1 and 2 demon-
strate the coronal refractive index, absorption, and scattering
images from two representative patients. The first case (Fig.
1) is a 52-year-old female with a 3-cm infiltrating ductal
carcinoma, and the second case (Fig. 2) is a 64-year-old fe-
male with biopsy-confirmed benign microcalcifications.
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Fig. 2 Benign microcalcifications: (a) Refractive index image. (b) and (c) Absorption and scattering coefficient images. The axes (left and bottom)
illustrate the spatial scale (mm), whereas the color scale (right) records the refractive index (dimensionless), absorption, and scattering coefficient,

respectively (mm™'). Circled area indicates the lesion location.
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Table 1 Statistics of breast cancer detection by visual examination of refractive index, absorption, and

scattering images.

Rate of
True True False False false positive  Overall
positives  negatives  positive  negatives  Sensitivity  Specificity  (FPR) accuracy
9 17 7 2 81.8% 70.8% 29.2% 74.3%

2.2 Visual Detection

Using the refractive index, absorption, and scattering images
plotted by the MATLAB PDE toolbox, an experienced tech-
nician may visually distinguish a malignant tumor from a be-
nign one. For instance, examining the absorption and scatter-
ing images shown in Figs. 1(b) and 1(c), the tumor area can
be identified at around the coordinate (-1, —28). Inspecting
the corresponding area in the refractive index image shown in
Fig. 1(a), it is clear that the refractive index in this area is
lower than the surrounding area. Thus, this is a cancer case.
For the images shown in Fig. 2, the lesion area is identified at
the coordinate (10, —15) by checking the absorption and scat-
tering images given in Figs. 2(b) and 2(c). Examining the
image shown in Fig. 2(a), the refractive index in the corre-
sponding area is found higher than the surrounding area.
Therefore, this is a benign case. However, in these two cases,
visually examining only the absorption and scattering images
without checking their associated refractive index images can-
not distinguish between the malignant case and the benign
one. These two examples indicate that it is possible to use the
refractive index image in conjunction with absorption and
scattering images to differentiate malignant from benign
lesions.

To further validate the feasibility of the visual examination
method, the absorption, scattering, and refractive index im-
ages of 35 breasts were obtained from 33 patients before their
biopsy procedures. Using the aforementioned method to clas-
sify the images visualized by the MATLAB PDE toolbox, the
statistics of the visual examination results over these 35 breast
masses [biopsy confirmed 11 invasive carcinomas (malignant
group) and 24 benign lesions (benign group)] are presented in
Table 1."

60
(a) »
40 iy
20 1.35
E
E 0
> 1.3
-20
1.25
-40
60— . 1.2
-50 0 50
X(mm)

X(mm)

While the results shown in Table 1 are promising, the vi-
sual examination process has several drawbacks. First, it is
time consuming, because the technician has to manually cre-
ate MATLAB files to visualize the images. Second, the visual
identification of malignant lesions depends on the subjective
judgment of human beings: physicians or technicians have to
be specially trained to make a reliable classification, and hu-
man errors may be inevitable. Third, some images, especially
the refractive index images, are relatively noisy, and it is dif-
ficult to give a reliable classification using visual examination.
For instance, the images shown in Fig. 3 can be classified as
either a malignant or a benign case using visual examination
because half of the lesion area (the corresponding lighter
color areas in the absorption and scattering images) has high
refractive index while the other half has low refractive index.
The technician or physician has to make a best guess based on
his/her experience. Therefore, the accuracy of the classifica-
tion is questionable. Last, only 700 discrete points of the
sample area on a triangular mesh were used to obtain the
refractive index, absorption, and scattering parameter values
(see Fig. 4). These 700 values are then visualized into smooth
images, as shown in Figs. 2—4, using the MATLAB PDE tool-
box. This visualization process may introduce imprecision to
the visual classification of images.

To address these drawbacks, an automatic procedure is
proposed in this paper to first directly analyze the image data
to extract the classification attributes and then to detect breast
cancer using an SVM classifier.

3 Automatic Feature Extraction

The first step of our automated classification procedure is to
automatically extract classification attributes from the refrac-
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Fig. 3 A benign lesion: (a) Refractive index image. (b) and (c) Absorption and scattering coefficient images. The axes (left and bottom) illustrate the
spatial scale (mm), whereas the color scale (right) records the refractive index (dimensionless), absorption, and scattering coefficient, respectively

(mm").
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Fig. 4 The finite element mesh fused with the images shown in Fig. 2. (a) Refractive index image. (b) and (c) Absorption and scattering coefficient
images. The axes (left and bottom) illustrate the spatial scale (mm), whereas the color scale (right) records the refractive index (dimensionless),

absorption, and scattering coefficient, respectively (mm=1).

tive index, absorption, and scattering images. Unlike the
manual process, which uses the PDE toolbox in MATLAB to
generate color images of the optical parameters, a program is
developed using the C programming language to automati-
cally extract interested features from the recovered image data
to avoid possible errors introduced by the visualization pro-
cess. This feature extraction process consists of two phases:
image segmentation and parameter extraction.

3.1 Image Segmentation

It is important to identify the lesion area before extracting
features for classification. The lesion areas will be identified
by analyzing only the distribution of absorption and scattering
coefficients because the refractive index data are relatively
noisy. Due to their cellular morphology and biochemical com-
positions, some lesions may show higher absorption and scat-
tering coefficients than normal tissues (e.g., Fig. 1), while
other lesions may yield lower absorption and scattering coef-
ficients relative to the surroundings (e.g., Fig. 3). This is an-
other reason that it is unreliable to use only the absorption and
scattering coefficient values to distinguish cancers from the
benign lesions.

To automatically identify the lesion areas, the image seg-
mentation process must first determine whether the areas with
high coefficient values or low coefficient values should be
selected. Because our automated classification procedure is
designed for early noninvasive detection of breast cancer, it is
reasonable to assume that a lesion usually exists in a small
area of the entire imaging domain. Therefore, applying statis-
tical analysis on the absorption and scattering coefficients can
determine the possible background data range and identify the
potential lesion areas. At first, the median absorption and scat-
tering coefficient values of the 700 data samples are calcu-
lated. Then, the mean values of the upper quartile (upper
25%) sample data and the lower quartile (lower 25%) sample
data are computed. If the difference between the mean of the
upper quartile sample data and the median is greater than the
difference between the median and the mean of the lower
quartile sample data, lesion areas should have high coefficient
values; otherwise, the lesion area should have low coefficient
values. Although the refractive index images are relatively
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noisy, the same statistical analysis can be used to identify the
background to apply the same segmentation process.

After the data range for the background is determined, pos-
sible lesion areas are identified through image segmentation.
Image segmentation is a process in which regions or features
sharing similar characteristics are identified and grouped to-
gether. Image segmentation may use statistical classification,”
thresholding,26 edge detection,”’ region detection,®® or any
combination of these techniques. The output of the segmenta-
tion is usually a set of classified elements, such as tissue re-
gions or tissue boundaries. Most segmentation techniques are
either region-based or edge-based. Region-based techniques
rely on common patterns of values within a cluster of neigh-
boring pixels or sample points. This cluster is referred to as
the region, and the goal of the segmentation algorithm is to
group regions according to their anatomical or functional
roles. Edge-based techniques rely on discontinuities in image
values between distinct regions, and the goal of the segmen-
tation algorithm is to accurately demarcate the boundary sepa-
rating these regions. A good segmentation procedure is the
key to the success of the image processing, while weak or
erratic segmentation algorithms almost always guarantee
eventual failure.

Because our image data are 700 discrete sample points
distributed on a triangular mesh, as shown in Fig. 4, tradi-
tional edge-based approaches are not suitable for these data.
Therefore, a region-based thresholding segmentation method
is used to identify the regions of interest (possible lesion ar-
eas). If the high coefficient areas are the targeted areas, the
segmentation process can start at any point with a data value
above a certain threshold, and the region is expanded by in-
cluding the points directly connecting to any point in the re-
gion with a value above the threshold. This process continues
until all points with values above the threshold are examined
and included in a region. Conversely, if the low coefficient
areas are the targeted areas, the segmentation process can start
at any point with a data value below a certain threshold, and
the region is expanded by including the points directly con-
necting to any point in the region with a value below the
threshold. Because normal tissue absorption, scattering, and
refractive index values vary for different patients, it is unde-
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Fig. 5 Segmentation results of the images shown in Fig. 2: (a) Refractive index image. (b) and (c) Absorption and scattering coefficient images. The
axes (left and bottom) illustrate the spatial scale (mm), whereas the color scale (right) records the refractive index (dimensionless), absorption, or

scattering coefficient (mm™").

sirable to use an absolute threshold for the image segmenta-
tion. Instead, a relative threshold th(0 <th<1) is used in our
image segmentation procedure. Assuming the maximum and
minimum values of sample points to be v, and v;,, respec-
tively, for any sample point with a value v, the sample point
belongs to a high-value region of interest if v—v;,
> th- (Umax—Umin)» and conversely, it belongs to a low-value
region of interest if U—vgmi> (1) (Vpmax—Umin)- The
threshold values for absorption and scattering coefficient im-
ages are set to 0.7, while the threshold for refractive index
images is 0.6 based on experiments. The reason that a smaller
threshold value is used for the refractive index images is be-
cause the variations of the refractive index values at different
sample points are much smaller than those of absorption and
scattering sample data. Figures 5 and 6 demonstrate the im-
ages after the region-based thresholding segmentation was ap-
plied on the images presented in Figs. 1 and 2 respectively.
We note that the edges of the areas of interest on the images
shown in Figs. 5 and 6 are not as smooth as those given in
Figs. 1 and 2. This is due to the fact that the segmentation
algorithm is directly applied on the 700 discrete sample
points. In addition, the background values of these images are
the mean value of the sample points in the region of non-
interest.
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3.2 Feature Extraction

After the segmentation, the classification attributes will be
extracted from the regions of interest. If only the absorption
or scattering images are used to classify the lesions, the region
with the largest size or having the largest mean value is se-
lected as the lesion area for each image. Once the lesion area
is identified, the mean coefficient, size, length, and width of
this area and the mean coefficient of the background are ex-
tracted as the attributes for image classification. However, the
method of determining the lesion area is different when both
the absorption and scattering coefficients are considered.
Based on our experiments, a location correlation exists be-
tween the absorption and scattering coefficients. Therefore,
when both absorption and scattering images are available, a
region of interest on the absorption image will be selected as
the lesion area only if it has the largest overlap area with any
of the regions of interest in the scattering image, or its dis-
tance to any of the regions of interest in the scattering image
is minimal if there are not any overlapped regions of interest
between the absorption and scattering images. Hence, a lesion
area identified using correlation between the absorption and
scattering coefficients may be different from that identified by
using absorption or scattering image alone. Again, the mean

Y(mm)

X(mm) X(mm)

Fig. 6 Segmentation results of the images shown in Fig. 3: (a) Refractive index image. (b) and (c) Absorption and scattering coefficient images. The
axes (left and bottom) illustrate the spatial scale (mm), whereas the color scale (right) records the refractive index (dimensionless), absorption, and

scattering coefficient, respectively (mm™').
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coefficient of the lesion areas and their size, length, and width
and the mean coefficient of the background are extracted for
image classification. In addition, the overlap ratio of the re-
gions of interest on the absorption and scattering images is
also included as a classification attribute. Because using the
absorption and scattering images is sufficient to identify the
lesion areas and the refractive index images are relatively
noisy, the refractive index images are not used to identify the
lesion areas. However, once the lesion area is identified using
absorption and scattering images, the mean refractive index
value at the lesion area and the refractive index value in the
surrounding area are included in the classification attributes
for cancer detection.

4 Image Classification
4.1 Classification Method

With the extracted diagnostic attributes, a support vector ma-
chine (SVM)zg’30 classifier is used to detect the breast cancer.
SVMs are a new generation of machine-learning systems
based on recent advances in statistical learning theory. SVMs
deliver the state-of-the-art performance in real-world applica-
tions such as image classification, bio-sequence analysis, etc.,
and are now considered one of the standard tools for machine
learning and data mining.

Given a training data set D={(x,,y,)}\_,, where x, is a
data sample and y, is the associated class label, our breast
cancer detection is actually a binary classification problem,
i.e., y, is from a label space {1} where +1 denotes the
cancer and —1 the noncancer. Let ¢(X) be a mapping function
that projects data samples from the data space to a feature
space. The SVM learning algorithm finds a hyperplane (w,b)
in the feature space to solve the following optimization
problem:

N

1
min —||w|? + C, &,
(wb) 2

n=1
subject to y, (W ¢p(x,) +b)=1-¢,, n=1,...,N,

g, =0, n=1,...,N, (1)

where C >0 is the penalty parameter of the error term. This
optimization problem can be solved in the dual domain using
quadratic programming:

N N
!
min 52 anamynymK(xn’xm) - 2 ay,
@ n.m n=1

N
s.t.zanyn=0, 0<a,<C, n=1,...,N, (2)

n=1
where K(x,,X,,)=¢'(x,) ¢(x,,) is the kernel. By solving Eq.

(3), the decision function, given an unseen test sample X, is
expressed as:
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N
f(x) = 2 a,y,K(x,,%) = b. 3)

n=1

The following four kernel functions are often used by SVM
classification:

* Linear: K(X,,X,,)=X, X,

* Polynomial: K(X,,X,,)=(yx,'%,,+r)¢, y>0.

 Radial basis function (RBF):

K(Xn,xm)=eXP (_”Xn_xm”z/o-z)-

* Sigmoid: K(x,,,x,,)=tanh (yx,’x,,+7).
Here, 7, r, and d are kernel parameters.

In our lesion image classification, the RBF kernel is used
due to some of its advantages. First, the RBF kernel nonlin-
early maps samples into a higher dimensional space so that it
can handle the cases when the relation between class labels
and attributes is nonlinear. Conversely, the linear kernel can-
not deal with the nonlinear relationship between class labels
and attributes. In fact, the linear kernel can be viewed as a
special case of RBF since one can always achieve the same
performance using the RBF kernel with some parameters
(C,7) as that using the linear kernel with a penalty parameter

C.*' Second, although the sigmoid kernel behaves like RBF
for certain parameters, this kernel may be invalid (i.e., not the
inner product of two vectors) under certain parameters.32 Last,
the polynomial kernel has more hyperparameters than the
RBF kernel and may be more complex in model selection.

Using an RBF kernel, two parameters, C and 7y, must be
determined through the training data because it is impossible
to know beforehand which C and 7 are the best for a particu-
lar problem. In our automated classification procedure, a com-
puter program is implemented using C programming language
and the application programming interface (API) provided by
Weka data mining tools™ to automatically search for the best
parameters. Because a high training accuracy (i.e., classifiers
accurately predict training data whose class labels are indeed
known) may not necessarily result in a high accuracy in pre-
diction of unknown data due to the overfitting problem with
many advanced classification algorithms, a tenfold stratified
cross-validation is used to evaluate the accuracy of the SVM
classifier.

4.2 Classification Results Based Solely on Absorption
Coefficient

Our first experiment is to evaluate the SVM classifier trained
by the attributes extracted from only the absorption coefficient
images. Five attributes are extracted from each absorption co-
efficient image. They are the size of the lesion area in terms of
the number of sample points, the mean coefficient of the le-
sion area, the mean coefficient of the background, and the
length and width of the lesion area. Figure 7 shows the ab-
sorption attributes obtained by our feature extraction proce-
dure. The confusion matrix of the 10-fold cross-validation re-
sults is depicted in Table 2. A confusion matrix is a
visualization tool typically used in supervised machine learn-
ing. Each column of the confusion matrix represents the in-
stances in a predicted class, while each row represents the
instances in an actual class. One benefit of a confusion matrix
is that it is easy to see whether the system is confusing two
classes (i.e., commonly mislabeling one as another). As
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Fig. 7 Absorption attributes obtained by our automated feature extrac-
tion procedure. Note that three data sets (extremely small or negative
absorption coefficient) were obtained from breasts with a diameter
greater than 12 cm. For such large breasts, the coefficient values ob-
tained are not reliable due to the very low signal-to-noise ratio. How-
ever, we keep these noisy data here to test whether our automated
classification procedure can overcome the inability of our DOT sys-
tem and correctly classify these samples into the proper classes.
(Color online only.)

shown in Table 2, the first row represents the number of can-
cer instances, and the second row represents the number of
noncancer instances. On the other hand, the first column of
Table 2 represents the number of instances that are classified
as cancer by our SVM classifier, while the second column
represents the number of instances classified as noncancer by
our SVM classifier. The data in the first row show that there
are 11 actual cancer instances, and 6 of them are identified as
cancer by the SVM classifier. Therefore, the sensitivity of the
classification is 54.5% (6/11). On the other hand, the data in
the second row show that there are 24 actual noncancer in-
stances, and 17 of them are identified as noncancer by the
SVM classifier. Thus, the specificity is 70.8% (17/24). Al-
though these results show a specificity of 70.8% on the clas-
sification using only absorption coefficient images, the low
sensitivity (54.5%) indicates that using the absorption coeffi-
cient images alone cannot distinguish the malignant from the
benign cases.

4.3 Classification Results Based Solely on Scattering
Coefficient

Our second experiment is to evaluate the SVM classifier
trained by the attributes extracted from the scattering coeffi-
cient images. The same five attributes as in the first experi-
ment are extracted from each scattering coefficient image.
Figure 8 shows scattering attributes obtained by our feature
extraction procedure. The confusion matrix of the 10-fold
cross-validation results is depicted in Table 3. Again, the re-
sults shown in Table 3 indicate that using the scattering coef-

Table 2 Confusion matrix of the SVM classifier using attributes ex-
tracted from absorption coefficient images.

Scattering Coefficient (1/mm
o
©
|

14

0.6

0.4

0.2 I

0 L e L

1 83 5 7 9 11 13 156 17 19 21 23 25 27 29 31 33 35

Blue: Benign cases; Red: Cancer cases

Fig. 8 Scattering attributes obtained by our automated feature extrac-
tion procedure. Note that the same explanation as described in the
caption of Fig. 7 is applied to the same three data sets. (Color online
only.)

ficient images alone cannot distinguish the malignant from the
benign cases since the sensitivity is only 45.5%.

4.4 Classification Results Based on Both Absorption
and Scattering Coefficients

Our third experiment is to evaluate the SVM classifier trained
by the attributes extracted from both the absorption and the
scattering images. As discussed earlier, the lesion areas are
identified by considering the co-existence of areas of interest
in the same location on both the absorption and the scattering
coefficient images. Therefore, some data shown in Fig. 9 are
different from those shown in Figs. 7 and 8, which were ob-
tained by analyzing only the absorption and the scattering
images, respectively. In addition to the 10 attributes extracted
from the absorption and the scattering images, respectively (5
attributes for each image), the overlap ratio of the regions of
interest on the absorption and scattering images is also in-
cluded as a classification attribute. The overlap ratio is calcu-
lated as twice the number of overlapped points divided by the
total number of points in the corresponding regions of interest
on the absorption and scattering images. The confusion matrix
of the 10-fold cross-validation results is depicted in Table 4.

The results shown in Fig. 9 indicate that combining the
attributes extracted from the absorption images with those ob-
tained from the scattering images improves the classification
performance. With the combined attributes, the sensitivity,
specificity, and overall accuracy of our classification are
63.6%, 83.3%, and 77.1%, respectively.

As discussed in Ref. 13, it is impossible to distinguish the
malignant from the benign cases by just visually examining
both absorption and scattering images. However, our auto-
mated classification procedure can achieve reasonable classi-
fication results using both absorption and scattering coeffi-

Table 3 Confusion matrix of the SVM classifier using attributes ex-
tracted from scattering coefficient images.

Cancer Noncancer Cancer Noncancer
Cancer o) 5 Cancer 5 o)
Noncancer 7 17 Noncancer 8 16
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Fig. 9 (a) Absorption and (b) scattering attributes obtained by our
automated feature extraction procedure considering the co-existence
of the interested regions in the same location on both the absorption
and scattering coefficient images. Note that the same explanation as
described in the caption of Fig. 7 is applied to the same three data
sets. (Color online only.)

cient images. Especially, the specificity of the results obtained
by our automated classification procedure on two parameters
(absorption and scattering images) is much higher than the
specificity of the visual examination results using three pa-
rameters (absorption, scattering, and refractive index images).
However, the sensitivity of the automated classification using
only absorption and scattering attributes is still low, suggest-
ing that it is necessary to use the refractive index attributes for
classification.

4.5 C(lassification Results Based on Absorption and
Scattering Coefficients and Refractive Index

Our final experiment is to evaluate the SVM classifier trained
by the attributes extracted from the refractive index images
combined with the attributes from the corresponding absorp-
tion and scattering images. As discussed earlier, the location

Table 4 Confusion matrix of the SVM classifier using attributes ex-
tracted from both absorption and scattering coefficient images.

osMall - Mallam HUUAR-
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Normalized Refractive index

O L A e LA e e e A

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35

Blue: Benign cases; Red: Cancer cases

(a)

<)
b
|

Difference in
Refractive index between

lesion and background
<)
[N

-0.3

0.4

Blue: Benign cases; Red: Cancer cases

(b)

Fig. 10 (a) Refractive index attributes obtained from the lesion areas
identified by the associated absorption and scattering coefficient im-
ages. (b) Difference in refractive index between lesion and back-
ground tissue. Note that the same explanation as described in the
caption of Fig. 7 is applied to the same three data sets. (Color online
only.)

correlation between the regions of interest on the absorption
and scattering images is used to determine the lesion area. In
addition to all attributes used in the third experiment, the
mean refractive index of the lesion area and the mean refrac-
tive index of the area surrounding the lesion area are added
into the attribute list. These attributes are listed in Fig. 10.
Training the SVM classifier using the attributes obtained by
all three kinds of images, the confusion matrix of the 10-fold
cross-validation results is presented in Table 5.

The results in Table 5 show that the sensitivity, specificity,
and overall accuracy of the automated classification procedure
are 81.8%, 91.7%, and 88.6%, respectively. Comparing to the
classification results using only the attributes extracted from
absorption and scattering images, classification using refrac-
tive index attributes in conjunction with the absorption and

Table 5 Confusion matrix of the SVM classifier using attributes ex-
tracted from absorption, scattering, and refractive index images.

Cancer Noncancer Cancer Noncancer
Cancer 7 4 Cancer 9 2
Noncancer 4 20 Noncancer 2 22

Journal of Biomedical Optics

044001-8

July/August 2008 + Vol. 13(4)



Wang et al.: Automated breast cancer classification using near-infrared optical...

scattering attributes improves the sensitivity and specificity by
19 and 8 percentage points, respectively. These results are
also better than the visual examination results listed in Table
1. In particular, the automated classification procedure im-
proves the specificity of the classification by more than 20
percentage points, comparing to the visual examination
method presented in Ref. 13.

5 Conclusions

An automated procedure for detecting breast cancer based on
optical tomographic images is developed. This procedure uses
a computer program to automatically extract attributes from
absorption, scattering, and refractive index images for lesion
classification. An SVM classifier is used to distinguish be-
tween the malignant and benign lesions based on these auto-
matically extracted attributes. The classification results show
that the sensitivity, specificity, and overall accuracy using this
automated procedure are 81.8%, 91.7%, and 88.6%, respec-
tively. In contrast, the sensitivity, specificity, and overall ac-
curacy of the classification using attributes extracted from
only the absorption and scattering coefficient images are
63.6%, 83.3%, and 77.1%, respectively. These results indicate
that combining the refractive index with the absorption and
scattering coefficients can achieve significantly improved
classification performance over using only absorption and
scattering coefficients. Furthermore, these results are also bet-
ter than the results obtained by visual examination of images,
in which the sensitivity, specificity, and overall accuracy are
81.8%, 70.8%, and 74.3% respectively.

It is worth mentioning that it is critical to obtain reliable
sample data from the breast masses for accurate image pro-
cessing and classification. Our experiments show that the au-
tomated classification procedure cannot consistently classify
the samples obtained from the three large breasts (>12 cm in
diameter) due to the low signal-to-noise ratio (SNR) of the
hardware system for these cases. If these data samples were
removed, the automated classification results should have
higher sensitivity, specificity, and overall accuracy.

To achieve better classification results, we are currently
developing data collection strategies that can improve the
SNR of our imaging system so that it can produce reliable
coefficient data for large breasts. In addition, our automated
procedure used a predetermined threshold for image segmen-
tation. We are currently investigating the entropy-based and
iterative selection methods to automatically determine an op-
timal segmentation threshold for a particular image.

Last, there was possibly cross talk between the refractive
index and the absorption/scattering parameters and so the re-
covered refractive index was just an estimation. However, the
cross talk was reduced to a certain extent via a two-step strat-
egy where the refractive index and absorption/scattering pa-
rameters were reconstructed using two different allgorithms.16
Importantly, the estimation or semiquantitative nature of the
recovered refractive index, although limited in accuracy, is
sufficient for us to classify the cancer and benign groups ef-
fectively using the automated classification algorithms de-
scribed in this paper. A more accurate estimate of the refrac-
tive index will likely improve the accuracy for cancer
classification—we are currently developing schemes that can
enhance the separation of refractive index from absorption/

Journal of Biomedical Optics

044001-9

scattering parameters. In fact, we have recently reported a
region-based reconstruction approach that has shown promis-
ing results in this regard using phantom studies.”* We plan to
evaluate this and upcoming new methods for better refractive
index reconstruction on clinical data in the near future.
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