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Abstract. High performance liquid chromatography with high sensi-
tivity laser-induced fluorescence detection is used to study the protein
profiles of serum samples from healthy volunteers and cervical cancer
subjects. The protein profiles are subjected to principal component
analysis �PCA�. PCA shows that the large number of chromatograms of
a given class of serum samples—say normal/malignant—can be ex-
pressed in terms of a small number of factors �principal components�.
Three parameters—scores of the factors, squared residuals, and Ma-
halanobis distance—are derived from PCA. The parameters are ob-
served to have a narrow range for protein profiles of standard calibra-
tion sets formed from groups of clinically confirmed normal/malignant
classes. Limit tests using match/no match of the parameters of any test
sample with parameters derived for the standard calibration sets give
very good discrimination between malignant and normal samples
with high sensitivity ��100% � and specificity ��94% �. © 2008 Society
of Photo-Optical Instrumentation Engineers. �DOI: 10.1117/1.2992166�
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Introduction

ervical cancer is one of the most common female cancers,
econd only to breast cancer,1 with a combined worldwide
ncidence of almost half a million new cases annually. It is the

ost common cancer of the female genital tract in India, with
pproximately 100 000 new cases occurring each year. This
ccounts for about 20% of all new cases diagnosed worldwide
nnually.2 Squamous cell carcinoma is the most common ma-
ignant cervical tumor, but the incidence of adenocarcinomas
as been rising during the past few decades.3 Cervical cancer
rogresses in stages from dysplasia through CIN I, CIN II,
IN III, and finally to invasive cervical carcinoma.4–7 At
resent, the Pap smear is the standard screening technique,
nd this is said to be responsible for a 70% decrease of cer-
ical cancer deaths in advanced countries. However, false
egative results are reported to be high �about 15 to 25%� for
arly detection.8 Over the last several years, Raman
pectroscopy9–12 and fluorescence spectroscopy13–22 of tissues
ave been developed as useful techniques for the discrimina-
ion of normal/malignant conditions and early detection of

ddress all correspondence to: Dr. C. Santhosh, Centre for Atomic and Molecu-
ar Physics, Manipal University, Manipal-576 104. Tel: +91-820-2922526; Fax:
91-820-2571919, 2570062; E-mail: santhosh.cls@manipal.edu
ournal of Biomedical Optics 054062-
cervical malignancy. These optical methods are fast, highly
objective, can be applied repeatedly in vitro/in vivo, and give
direct information on the biochemical changes as the cells
become malignant.

Many molecular and functional changes precede and con-
tinue to take place at the cellular level in neoplasia before
morphologic or other alterations happen.4 Many of the bio-
chemical changes, such as immune responses and production
of degradative enzymes/fetal antigens, will be reflected in
blood circulation.23 It is also known that in many epithelial
cancers, even in the early stages, some of the abnormal cells
escape into the blood stream and migrate to different loca-
tions. Clinically useful cancer signature materials �biomark-
ers� should thus be observable in an easily accessible body
fluid such as serum. It is therefore highly likely that the pro-
tein profile of serum samples can possibly provide a diagnos-
tic tool for early detection of cervical cancer. Proteomics is
increasingly recognized as a very efficient area for possible
early diagnosis of many diseases, like cancer and hyperten-
sion, which remain clinically silent for long periods.24,25

Though laser-induced fluorescence and Raman spectros-
copy of tissue also have been developed for discrimination

1083-3668/2008/13�5�/054062/10/$25.00 © 2008 SPIE
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etween normal and malignant conditions, protein profiling
as some advantages over these spectroscopic methods. The
pectroscopic methods are applied to tissue samples, which
re always heterogeneous, and mistakes can happen by plac-
ng the probe at the wrong site. Biopsy is done by physical
xamination �colposcopy� and errors like “past pointing” are
ossible so that you may not be getting the sample from the
orrect location. Protein profiling is done on homogeneous
amples �serum�, sampling is easy, and the sample is always
epresentative of the subject irrespective of from where it is
btained. Though laser-induced fluorescence �LIF� and Ra-
an are quite fast �a few minutes per subject� compared to

igh performance liquid chromatography �HPLC� protein pro-
ling �30 to 40 min�, a major advantage of the HPLC-protein
rofile method is that it gives much more information on
hanges that take place during the various stages of the dis-
ase. LIF gives broad structureless spectra, and only limited
nformation can be derived on biochemical changes that take
lace during the progression of the disease. Though Raman
pectra is better in this context, we still cannot get detailed
nformation, since all biopolymers of a given class �say, pro-
eins� will have very similar Raman spectra and it is very
ifficult to judge whether changes have taken place in protein
omposition, etc.

Protein profiling and proteomics have been suggested for
arly detection of diseases that remain clinically silent for a
ong period of time.26–29 Proteomics is the study of functional
enomics at the protein level. Several techniques like 2-D gel
lectrophoresis, SELDI, MALDI-TOF, and protein chips are
vailable in proteomics.24,25,29 However, all these methods
ave several disadvantages compared to the HPLC-based
echnique.30

High performance liquid chromatography combined with
aser-induced fluorescence detection �HPLC-LIF� is a highly
ensitive technique for separation and detection of complex
ixtures of proteins or other biomolecules,26–28,30 even at sub-

emto mole levels. We have, in the present work, employed
PLC-LIF for protein profile analysis of serum samples from
ormal healthy volunteers and cervical cancer patients. The
esults show that there are noticeable differences between the
wo types of serum samples, even at a visual inspection level.

e have applied, to the best of our knowledge for the first
ime, the method of principal component analysis �PCA� to
he protein profiles of serum samples. This study has shown
hat serum protein profiles provide an objective method for
he diagnosis of cervical cancer. The results of our studies are
resented and discussed.

Materials and Methods
.1 High Performance Liquid Chromatography

Laser-Induced Fluorescence System
n HP 1100 gradient HPLC system with G1322A degasser,
1311A pump, and a manual injector �model number 7725,
heodyne, Perkin Elmer, Massachusettes, USA� coupled to a
ydac 219TP52 biphenyl reversed phase narrow bore column

diphenyl, 2.1�250 mm, 5 �m, 300 Å�, California, USA,
as used for the separation of proteins. The effluent from the

olumn was sent into a capillary flow cell fabricated in our
aboratory. The cell is made of quartz capillary �75-�m I.D.,
00-�m O.D. Hewlett Packard, G1600-64311� connected to
ournal of Biomedical Optics 054062-
the column with appropriate sleeves �Upchurch Scientific,
F-130X, Washington, USA�. It is mounted on a precision
mount for accurate positioning and alignment for excitation
and collection of fluorescence. Fluorescence excitation of pro-
teins in the sample was achieved by illumination with the
257-nm laser emission �15 mW� from a frequency doubled
Ar+ laser �Innova 90C FreD, Coherent, California, USA�, fo-
cused onto the capillary cell. The fluorescence was collected
and focused onto the entrance slit of a monochromator �Jobin
Yvon DH10 SPEX, New Jersey, USA�, set at 340 nm. The
fluorescence was detected by a photomultiplier �Hamamatsu
R 453, New Jersey, USA� operated at 850 V, coupled through
a preamplifier �EG&G model 5113, Maryland, USA� to a
lock-in amplifier �EG&G model 7265�. The fluorescence was
chopped with an EG&G model 651 chopper at the entrance
slit at 20 Hz, for lock-in detection.

2.2 Sampling and Sample Preparation
Normal samples of serum were collected from volunteers who
were judged to be clinically normal �with respect to cervical
cancer�, and age matched, as far as possible. All normal sub-
jects did not have any diagnosed disease. The age of the nor-
mal subjects varied from 22 to 77. Malignant samples were
collected from subjects diagnosed with cervical cancer at the
Department of Obstetrics and Gynecology, Kasturba Hospital,
Manipal, India. Samples from 25 normal and 33 malignant
subjects were analyzed. All samples were collected after in-
formed consent. Ethical clearance of the Institute Ethical
Committee was obtained for this work.

Blood samples were transported to the laboratory immedi-
ately after collection. The samples were stored at room tem-
perature in an upright position for about 30 min. The sepa-
rated liquid portion was centrifuged at 3000 rpm for 5 min.
The serum thus obtained was subjected to HPLC immediately.
If storage was necessary, serum samples were stored at
−80°C in the deep freezer. They were passively thawed to
room temperature just before use. It was seen that the chro-
matograms of normal samples did not show any changes,
even when recorded after several weeks of storage in the deep
freeze.28 Table 1 gives details of the samples.

The samples were diluted 100 /500 times with HPLC
grade water. Fifty �l of the diluted sample was injected into
the HPLC system, which was fitted with a 20-�l loop. The

Table 1 Samples taken for analysis.

Sample
number Age

Clinical
condition

1 to 25 22 to 77 Normal

26 to 37 37 to 62 Stage 2B

38 to 54 37 to 72 Stage 3B

55 55 Stage 2A

56,57 45,50 Stage 1

58 60 Stage 4A
September/October 2008 � Vol. 13�5�2
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ample was then eluted under a gradient run with �water, 0.1%
/v trifluoro acetic acid �TFA�� 70 to 40%, �acetonitrile
ACN�, 0.1% v/v TFA�, 30 to 60% in 0 to 60 min, followed
y 60 to 100% in 1 min. The 100% ACN run was continued
or another 14 min, taking the total run time to 75 min. After
ach run, the column was regenerated with HPLC grade water
.1% TFA for 15 min.

.3 Data Analysis
o facilitate intercomparison of protein profiles recorded over
everal months, a rigorous protocol was followed for data
nalysis. All the chromatograms were subjected to a back-
round correction with a polynomial fit to remove the back-
round fluorescence. Background in the chromatographic runs
omes from several sources like laser light scattered from the
alls of the capillary, Rayleigh scattering from the eluent,
MT dark count, fluorescence of the acetonitrile-TFA com-
lex on excitation with 257 nm, fluorescence of biomolecules
hat are not effectively separated by the biphenyl column, etc.
ll these contributions remain more or less the same from run

o run. The background thus has the same shape from run to
un, starting with about 0.25 V �30% acetonitrile-TFA� in our
ase and increasing to about 0.4 V at the end of the run �60%
cetonitrile-TFA�. The background variation is a continuous
unction �no sudden discontinuities� and so can be expressed
ith a polynomial of the form, background=a0+a1t+a2t2

a3t3+higher terms �negligible�, where t is the time of ob-
ervation �retention time�. We can give four or more points on
he chromatogram, at places free from sample contribution.
hese points can then be fitted to the polynomial to derive the
onstant coefficients a0, a1, etc. The background can then be
alculated at any point of time and subtracted from the total
ignal at that time to give the background-free chromatogram.

Minor shifts in peak positions from run to run were cor-
ected by calibration of all the chromatograms along the time
cale, using mean values of protein peaks of species like
ransferrin, human serum albumin �HSA�, creatin kinase, etc.,
ommon to all samples. Presence of these species in all
amples provided convenient internal standards for calibration
f all chromatograms to the same time scale across the entire
ange. The chromatograms were then normalized with respect
o an HSA peak at 1666 s. Because of the relatively constant
ntensity of this peak in all samples, it has been used for
ormalization of all chromatograms for comparison purposes.

To see whether information could be obtained on the
hanges in serum profiles, in a first step, analysis of the HPLC
eaks were attempted using curve resolution techniques. For
his, band shapes were decided using single peaks fit with
ifferent types of functions �Gaussian, Lorentzian, Voigt,
tc.�, and the function that gave the best fit for the single
eaks �in the present case, Gaussian� was used for the other
egions also. Difference chromatograms were also computed
o identify any significant differences in the protein profiles of
ifferent classes of samples.

For precise classification of serum protein profiles by an
bjective mathematical model, the chromatograms of a suffi-
iently large number of samples �15 to 30� were subjected to
CA �PLS PLUS/IQ software, Galactic Corporation, Salem,
ew Hampshire�. In our method of PCA, the mean of all

amples in the dataset is first formed. The differences of each
ournal of Biomedical Optics 054062-
sample from this mean are calculated to give the variations of
each sample from the mean. With n samples each having p
data points, we thus get an n� p matrix of these variations.
Because all the samples contain more or less the same com-
ponents �HSA, transferrin, immunoglobulins, etc.�, the large
amount of data can be represented by a much smaller set of
component peaks, their contributions to the chromatogram
varying from sample to sample, depending on their concen-
trations. In matrix language, this implies that the n� p matrix
of variations discussed previously is highly redundant. It will
have only a few nonzero eigenvectors �principal components�,
and the eigenvalues will rapidly come down to almost zero
after the first few. Solving the eigenvalue eigenvector problem
gives us the principal components �factors�, percent variance
�contribution of the factors to the variations in the dataset�,
and scores of factors for each sample. The scores for a given
sample correspond to the contribution of each principal com-
ponent to the variation of that sample from the mean. It is
therefore possible to simulate the original chromatogram of
any sample by multiplying the eigenvectors with their respec-
tive scores for that sample and adding these products to the
mean of the dataset.

Runs were made with 20, 15, 12, 9, and 7 factors. Seven
factors were found to contribute to more than 95% of variance
for the combined data. An analysis of the combined data,
though it gives very good discrimination between normal and
malignant cases �see below�, has several drawbacks. To over-
come these draw backs, PCA was finally done with protein
profiles of standard sets for routine diagnostic applications,
discussed in detail later.

3 Results and Discussion
Figure 1 shows typical protein profiles of serum samples from
subjects judged as clinically “normal.” A visual inspection of
all normal samples shows more or less the same pattern, irre-
spective of age, physiological state �menopause, pregnancy,
married, with/without children, etc.�, life style, or social
status.

Figure 2 shows the results for typical cases of malignant
subjects. The malignant samples show noticeable changes
from normal, in the peaks around 1200 to 1700-s region. The
main differences are 1. a shoulder is observed for 1484-s peak
in some of the cases, and 2. new peaks are observed in the
1200 to 1300-s region in some cases. These differences be-
tween normal and other classes of chromatograms can be seen
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background correction. Thick gray line is 50 years; thin black line is
23 years; and dotted line is 45 years.
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etter by looking at difference spectra, discussed later. From
he prior discussion it is seen that even a routine protein pro-
ling of serum may give an indication of possible cervical
alignancy.
Many groups31–33 have used PCA scores of Raman/

uorescence spectra of normal and malignant tissue samples
ombined for discrimination between normal and malignant
onditions. We have shown9,11,18 that a better approach for
lassification of tissue spectra as belonging to normal, inflam-
atory, premalignant, or malignant is to use the technique of
atching several parameters from PCA for test samples to

orresponding parameters of certified calibration sets from
ach class of samples. To decide whether such a situation
xists for protein profiles by HPLC also, and to optimize con-
itions of PCA for discrimination, PCA was run first with all
he samples combined, irrespective of whether they belong to
he normal or malignant group. The PCA analysis was per-
ormed by taking 12 factors, as mentioned earlier. Figure 3
hows the variations in eigenvalues and percent variance with
ncreasing factor numbers. From Fig. 3 it is clear that seven
actors are adequate to represent the data, since they contrib-
te up to more than 95% of the total variance in the dataset.

The 58 samples shown in Table 1 were used in this PCA.
he sample number versus score plot is shown in Fig. 4 for
cores of factor 1, which is contributing 63% to the variance.
t is seen that the normal and malignant groups form clusters
alling in different ranges of factor 1 scores except for very
ew exceptions. Scores of 22 out of 25 normal samples lie on
he positive side of the plot and three samples are lying on the
egative score value. Similarly, 70% of the malignant samples
ave their scores on the negative side of the plot. So it is clear
rom the plot that the score values can discriminate to a very
ood extent between normal and malignant samples.
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It may be noted that PCA determines the factors necessary
to express the data to a desired level of accuracy. It is there-
fore possible that factors other than the first or a combination
of two/three factors may give better discrimination. However,
in the present case this has not happened. �Data are not
shown.� We have done cluster analysis of serum samples
also.34 The plot of scores of PCA is similar to cluster analysis.
But in our method of PCA, we can simulate a chromatogram
of any sample �e.g., stage 1� with factors of any calibration set
�e.g., stage 2�, thus accounting for all stage 2 components in
the stage 1 sample. If we now subtract the simulated chro-
matogram of the sample from its actual chromatogram, we
can get more correct information, even on small differences
between the two, since the simulation will account only for
amounts of components that can be generated by factors of
the stage 2 calibration set. These will be canceled on subtrac-
tion, while all peaks not produced by simulation will show up.

The simple approach of using scores for discrimination of
sample types has several disadvantages. To begin with, it may
not discriminate very well between normal and premalignant
types �or between premalignant and malignant classes�, be-
cause of possible closer similarities between chromatograms
of such two classes of samples. Second, in a PCA with all
types of samples, the factors have to account for all chromato-
grams, and so even factor number 1 may contain contributions
from all types: normal, premalignant, and malignant. The dis-
crimination between types will be thus diluted considerably.
Third, in a PCA with all types combined, the results can be-
come weighted more strongly toward that class that has more
representation in it, and so may not give a correct picture for
the other types of samples.

In view of this, we have developed a more reliable ap-
proach for diagnosis, combining all the information that is
available from a PCA. The third property mentioned before
tells us that if PCA is done with only one class of samples, say
normal, then the factors will be weighted highly for that class
and will correctly account for only protein profiles of
that class. Profiles from any other class of samples will be
rejected as not belonging to that class with a high degree of
probability.

A much more important aspect of such an approach is that,
like in any analytical technique where standards with calibra-
tion curves are used for routine analysis, profiles of a set of
clinically/pathologically diagnosed samples can be used as a
standard calibration set. This standard calibration set can be
subjected to PCA to derive parameters that will be highly
characteristic for samples of that type. Any test sample can
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hen be added to the set and the corresponding parameters for
he test sample can be compared to the mean parameters for
he set to decide whether the test sample belongs to that set,
nd if so, with what statistical probability.

A third advantage of this method is that sets of standard
alibration profiles can be prepared for each class—normal,
remalignant �CIN I, CIN II, CIN III, etc.�, and malignant
different stages�. Any test sample can be compared against
ach of these calibration sets and a decision can be made
ore accurately, depending on with which set it matches best.
It should also be mentioned here that calibration sets can

e prepared in a main hospital, where qualified clinicians/
athologists are available and a large number of subjects may
e examined in a reasonable period, say, in a few months to a
ear. These calibration sets can be supplied to any small
ospital/clinic, and clinicians there can carry out objective
iagnosis on their own with a blood sample routinely
ollected.

The possible errors that may arise from visual examination
fatigue factor in Pap smear and inexperience in colposcopy�
re reduced in optical methods entirely based on recording of
n optical signal and analysis of the data with standard math-
matical procedures by a computer. No visual decision mak-
ng is involved, and the system �HPLC instrument system plus
computer� is completely blind as to what sample is given for

nalysis.
Our diagnostic approach thus consists of the following

teps. Record protein profile �chromatogram� from a reason-
bly large number of subjects who are clinically/
athologically diagnosed as normal, premalignant, or malig-
ant. Take all the profiles from samples, clinically/
athologically diagnosed as belonging to one class, and do a
CA. Determine the number of significant factors required to
epresent that class. Check and remove any “outliers.” �In
ractice, a very small number, one or two, in a given class
ay stand out as not belonging to that class, for reasons such

s instrument malfunction, ill-defined disease condition, etc.�.
rom the set, randomly select 15 to 20 profiles to form the
tandard calibration set. Do PCA with this standard set to
etermine the scores of significant factors and other param-
ters. Test every member of the set by rotating them out one at
time for membership of the set within a desired range of

tandard deviation of the chosen parameters. Reject any that
o not match to form the final calibration set. Do this for
very class, where sufficient numbers of clinically/
athologically certified samples are available. It is helpful to
emember that, since usually a maximum of 4 to 6 factors are
uite sufficient to determine more than 95% of the variations
rom the mean for a given class, if a minimum of 10 to 12
hromatograms are available in a class, they are enough to
orm a calibration set. Once calibration sets are prepared for
he different classes of samples, any test sample profile can be

atched against each of the calibration sets. The sample is
iagnosed as belonging to that class with which it matches
est.

In addition to the scores and spectral residual, a statistical
easure known as the Mahalanobis distance is also used for

he match-no match test described above. This is calculated as
he distance of the test sample point as measured from the

ean of all the remaining points in the class. The distance is
caled in units of standard deviation for the range of variation
ournal of Biomedical Optics 054062-
in the class in all dimensions, and then used to assign a prob-
ability weight to the sample in terms of standard deviation.

Any sample that lies outside a desired range of standard
deviation from the mean can be considered to be out of the
group. The range can be decided by the clinician who can
place a cut-off range. In Tables 2 and 3 a sample is considered
“no match” if the Mahalanobis distance M is greater than 2.5.
Since M is in units of standard deviation, a value of �2.5
gives a probability of less than 1% of that sample belonging
to the set with which it is matched. If the clinician wants a
less rigorous cut-off, a higher value �e.g., 3� can be given that
gives a probability of less than 0.1% for that sample to be out.

The Mahalanobis distance matrix equation is

M = �S�S/�n − 1�� ,

where M is an f � f Mahalanobis matrix, S is an n� f matrix
of training sample PCA scores, n is the number of samples,
and f is the number of PCA factors. The Mahalanobis distance
D for a test sample is then given by

D2 = �Sunk�M−1�Sunk��,

where D2 is the square of the Mahalanobis distance in terms
of standard deviations of the set, represented by M.

There is one problem regarding the discrimination purely
based on PCA scores. It is that any “impurities” that are in the
unknown spectra, but were not present in the training
samples, will not appear in the score calculations. To over-
come this problem and get more specific diagnoses, residuals
can be included in the vectors. The purpose of the protein
profiling technique thus is to classify any test sample as be-
longing to only one of the well-defined sets, without or with
limited prior knowledge. For this, standard calibration models
are built from profiles of sets of samples, clinically/
pathologically certified as normal, premalignant, and
malignant-different stages. The parameters defined earlier—
Mahalanobis distance, scores of factors, and squared
residuals—are then used to discriminate between the sample
types. This gives a very sensitive discrimination and shows
how well an unknown test sample matches or does not match
with any given calibration set.

It is quite reasonable to expect �and this has been verified
experimentally� that all normal samples will more or less give
the same profile. On the other hand, it is possible that malig-
nant samples in different stages �stages 2, 3, etc.� may differ
slightly from each other depending on the stage of the disease.
However, it is highly probable that all such samples will be
quite different from normal. Also, it is very likely that they
may have some common features in their profiles because of
conditions common in malignancy. Therefore, if all malignant
samples are clubbed together as a class separate from normal,
it is possible that in PCA some factors will contribute to varia-
tions common to all of them, while a few other factors may
take care of intragroup variations. As mentioned earlier, it is
also to be noted that in a mixed sample lot, the factors will
contribute to common variations with weights corresponding
to number of members in the subgroups. Hence if we have a
sufficiently large number of samples of different stages, the
factors will adjust to represent all members of the set. To test
this hypothesis in the present work, we first formed standard
September/October 2008 � Vol. 13�5�5
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odel calibration sets of normal and malignant groups by
andomly selecting 15 samples respectively from the normal
nd malignant groups, disregarding the stage of malignancy.

PCA was then done first with the normal calibration set.
ll normal and malignant samples were then matched with

his calibration set. The 15 normal samples forming the stan-
ard set were tested for match/no match by rotating them out
ne by one �retrospectively�, and the remaining ten normal
amples were tested against the standard set as unknown
amples �prospectively�. It is seen that all the normal samples
atched with the normal standard set. This corresponds to

pecificity �true negative/�true negative+false positive�� of
00%. When the 33 malignant samples were matched against
he normal standard set, only two malignant samples �29 and
3� showed a match. The result is thus still better than that
een from the score versus sample number plot �Fig. 4�, where
ine malignant samples were in the range of the normal clus-
er. The match/no match test was then performed with the

alignant standard set. It was seen that all normal samples
id not match with the malignant set. Samples 29 and 33,
hich matched with normal, matched here also. Only two
alignant samples, 44 and 53, did not match with the malig-

ant set. The sensitivity �true positive/true positive+false
egative� is thus about 94%. These results are shown in
able 2.

able 2 Discrimination analysis with normal and malignant standard
et.

Discrimination analysis with normal standard set

Sample Match M distance Limit tests
Spec

residual

1 to 25 Yes 0.63 to 2.3 Pass 1.83 to 4.03

26 to 28 No 5.97 to 8.07 Fail 7.70 to 10.26

29 Yes 1.51 Pass 2.98

30 to 32 No 3.96 to 5.34 Fail 6.02 to 7.52

33 Yes 2.12 Pass 3.63

34 to 58 No 2.58 to 14.36 Fail 3.61 to 19.45

Discrimination analysis with malignant standard set

Sample Match M distance Limit tests
Spec

residual

1 to 25 No 2.86 to 11.95 Fail 4.00 to 18.16

26 to 43 Yes 0.62 to 2.27 Pass 0.33 to 5.12

44 No 3.07 Fail 5.89

45 to 52 Yes 0.74 to 1.48 Pass 0.88 to 4.01

53 No 10.82 Fail 17.34

54 to 58 Yes 1.04 to 2.13 Pass 1.12 to 5.12
ournal of Biomedical Optics 054062-
3.1 Difference Chromatograms
As mentioned earlier, to observe the changes from one stage
to another, the difference chromatograms were calculated for
serum samples from different stages. The changes from nor-
mal serum for the different types of samples are shown in Fig.
5. The differences here are given by mean of calibration set of
normal samples—chromatogram of mean of any given class
simulated with the normal calibration set. In Fig. 5�a�, we
have the mean of all normal samples as the test sample and
the differences are practically zero �less than �0.000 000 03�,
as it should be. The difference chromatograms for the differ-
ent stages, on the other hand, show that there are noticeable
differences of fairly large magnitude from the mean normal
for all the malignant samples. The important point to note is
that in addition to the large differences from the mean normal,
the mean profiles for different stages of the disease showed
appreciable differences between them also, as seen from the
peaks marked with their retention time.
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Fig. 5 Difference chromatograms: �a� mean of calibration set of nor-
mal samples—chromatogram of mean of a normal simulated calibra-
tion set; �b� mean of calibration set of normal samples—
chromatogram of mean of stage 1 simulated calibration set; �c� mean
of calibration set of normal samples—chromatogram of mean of stage
2 simulated calibration set; �d� mean of calibration set of normal
samples—chromatogram of mean of stage 3 simulated calibration set;
and �e� mean of calibration set of normal samples—chromatogram of
a stage 4 simulated calibration set.
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.2 Discrimination between the Stages of Samples
o see whether discrimination of different stages of samples is
ossible, we carried out match/no match PCA with calibration
ets of stages 2 and 3 samples for which a reasonable number
13 and 17, respectively� of pathologically certified samples
ere available. PCA analysis was carried out using two

amples of stage 1, 13 of stage 2, 17 of stage 3, and one of
tage 4. With ten samples of stage 2 forming a calibration set,
ll stage 2 samples and also the stage 4 sample showed a
atch. All stage 3 and stage 1 samples showed no match. Out

f 17 stage 3 samples, 12 samples were taken to form a cali-
ration set. It is found that, except for two samples �29 and
3�, all 11 samples from stage 2 did not match with the cali-
ration set. Three samples �42, 44, and 48� from the stage 3
roup were also not matching with the calibration set of stage
. This preliminary study shows that it may be possible to
iscriminate between different stages of the disease by protein
rofile analysis. Table 3 shows the match/no match results.

able 3 Discrimination analysis with stage 2 and stage 3 malignant
tandard set.

Discrimination with stage 2 malignant standard set

Sample M distance Limit tests Spec residual

26 to 37 0.72 to 1.11 Pass 0.02 to 1.03

38 to 54 3.87 to 37.91 Fail 1.76 to 13.56

55 1.08 Pass 0.25

56, 57 8.80 to 14.61 Fail 4.0 to 5.9

58 0.89 Pass 0.51

Discrimination with stage 3 malignant standard set

Sample M distance Limit tests Spec residual

26 to 28 2.95 to 16.34 Fail 3.98 to 17.22

29 1.56 Pass 4.61

30 to 32 2.96 to 4.21 Fail 1.74 to 5.10

33 0.79 Pass 5.34

34 to 37 2.92 to 10.61 Fail 0.67 to 11.67

38 to 41 0.79 to 1.17 Pass 0.62 to 10.50

42 9.49 Fail 1.27

43 0.79 Pass 3.91

44 2.29 Fail 1.52

45 to 47 0.83 to 1.18 Pass 0.61 to 5.81

48 4.46 Fail 1.93

49 to 54 0.75 to 1.65 Pass 1.07 to 19.06

55 to 58 2.77 to 10.61 Fail 3.97 to 11.67
ournal of Biomedical Optics 054062-
Figure 6 shows the spectral residual versus M-distance plot in
this case. It can be seen that even with two parameters, the
residual and Mahalanobis distance, there is a clear separation
of stage 2 and stage 3 samples when either of these calibration
sets is used to classify samples. The samples of the calibration
set all cluster together, while samples from the other stages
are widely separated from the calibration set.

3.3 Curve Resolution Studies
To see whether additional information can be obtained on the
different stages of cervical cancer serum, we carried out curve
resolution studies of the regions involved. The peaks were
resolved using the Gaussian function. The two unresolved
peaks from 1300 to 1800 regions were resolved by this
method. In stage 4 samples, additional peaks were observed.
These curve fit results are shown in Fig. 7�a� for the normal
sample, and the results for the samples in different stages are
given in Table 4. The data in Table 4 illustrate the very good
reproducibility in the different chromatograms for similar
peaks, as indicated by the peak positions, intensities �heights�,
and half widths for many of the peaks. It may be noted that as
a result of the calibration procedure, the variation in peak
positions from run to run is minimized. For example, for the
2440-s region peaks, the peak positions for the four different
types of samples vary only about �1 s, less than 0.04%. The
area under the curve corresponding to the third peak has
decreased continuously in going from normal to stage 4
�Table 4�.

Similar curve fit results for the other regions
�2300 to 2600 s� are shown in Fig. 7�b� for the normal
sample, and the results for the different stages are given in
Table 4. These peaks also showed noticeable differences be-
tween the different stages. From Table 4, for the peaks 5, 6
and 7, it is clearly seen that the half-width and peak intensities
change for many component proteins, even when their reten-
tion times are relatively unchanged. These variations provide
the basis for discrimination in PCA. In our method, we are
doing the decision making based on principal component
analysis �PCA� and match/no match of the parameters derived
from PCA. The elution time, peak height, and width are built
into the factors derived from the PCA. The parameters used
include scores of factors, and residuals= �observed
chromatogram-chromatogram simulated using PCA factors
and scores�.2 The elution time, peak height, and width auto-
matically come into the scores of factors and simulated chro-
matograms. It is obvious that all these data are thus used in
the analysis and decision making.

In view of such differences between normal and different
classes of serum, it may be tempting to use the corresponding
proteins as tumor markers for diagnosis, prognosis, and fol-
low up in therapy. However, it is well recognized4,35 that
many tumor markers are useful only as indicators, and do not
provide unambiguous diagnosis because of the possibility that
they may also be present under other conditions, like preg-
nancy. On the other hand, the present method, which makes
use of the entire protein profile, will be much more reliable
since it uses all observed variations in the sample.

The minor discrepancies observed between the pathologi-
cal and HPLC-LIF protein profiling results can arise from
several factors. These include: �1� experimental variations
September/October 2008 � Vol. 13�5�7
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errors� in pathology and HPLC-LIF, �2� data processing er-
ors, and �3� inherent variations from sample to sample.

The experimental variations in pathology can come from
ampling errors like “past pointing” in colposcopy,36 fatigue
actor in examining large numbers of slides, or the inexperi-
nce of pathologist. But in the present work, both calibration
tandards and test samples of malignant conditions consist of
amples diagnosed by biopsy and pathology. Since the pathol-
gy results are based on morphological changes, when they
re diagnosed as malignant, it is highly unlikely they can be in
rror. Variations in HPLC-LIF can come from blood collec-
ion and serum preparation procedures, storage effects, con-
amination, or errors in HPLC runs. However, the fact that all
he normal samples matched with one another very well, even
hough the samples were collected and run over a period of

ore than a year, and different samples were stored for peri-
ds ranging from a few hours to weeks, suggest that experi-
ental variations in HPLC-LIF may not be responsible for

ny discrepancies.
In many developing countries, where advanced medical

acilities are restricted to major towns/hospitals, what is re-
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Fig. 6 Discriminate analysis with �a� standard calibration

ig. 7 Curve fitting for the protein profile of the serum samples: �a�
egion 1300 to 1800 s and �b� region 2300 to 2600 s. Original chro-
atogram �in red� and fitted curve �in green�. �Color online only�
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quired is a system usable as a screening method for suscep-
tible populations. The system should be able to perform as a
diagnostic tool for suspect cases, using readily available
samples, the quality of which will not depend on the personal
experience of the examining physician. It should also be able
to do follow-up without the need for repeated biopsy and
pathology. The system has to be fairly rugged, relatively fast
�reasonable number of samples per day�, usable by a clinical
technician �to be used in a single clinician/surgeon’s office or
in a small hospital in a village�, and should have specificity
and sensitivity comparable to currently available techniques.

We feel that the present technique meets all these require-
ments and can be used in a routine manner in small clinics
and hospitals without the need for qualified pathologists to
examine cytological smear and biopsy tissue samples. Also
the technique, highly objective and operator-independent, will
serve as a very good complimentary method for conventional
screening techniques, reducing errors due to “fatigue factor,”
sampling errors, any lack of experience of the pathologist, and
consequent subjective diagnosis. The protein profile study of
the cervical and normal serum samples contains much infor-
mation on the structural or conformational changes occurring
within the proteins. We have seen that significant changes
occur between the protein profiles of normal and malignant
samples. These changes may be due to changes in either struc-
ture or conformation produced during the process of carcino-
genesis. The analysis of 58 normal and malignant samples
using PCA was found to give very good results, with 100%
specificity and 94% sensitivity.

4 Conclusions
Analysis of protein profiles of serum by the HPLC-LIF tech-
nique provides a method for screening for early detection of
cancer. The method is minimally invasive �only routine blood
sample required�, relatively fast ��1 h/sample�, highly objec-
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tive �no visual observation or personal judgment�, and can be
used even by a technician in a small clinic/hospital. It can be
used for initial screening, follow-up in therapy, and early de-
tection of any recurrence, and can be applied repeatedly, since
no biopsy is involved.
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