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Abstract. Development, validation, and implementation of an ana-
lytical model to extract biologically and diagnostically relevant pa-
rameters from measured cervical tissue reflectance and fluorescence
spectra are presented. Monte Carlo simulations of tissue reflectance
are used to determine the relative contribution of the signal from the
epithelium and stroma. The results indicate that the clinical probe
used collects a majority of its reflectance signal from the stroma;
therefore, a one-layer analytical model of reflectance is used. Two
analytical approaches to calculate reflectance spectra are compared
to Monte Carlo simulations, and a diffusion theory-based model is
implemented. The model is validated by fitting spectra generated from
Monte Carlo simulations and comparing the input and output param-
eters. Median agreement between extracted optical properties and in-
put parameters is 10.6%. The reflectance model is used together with
an analytical model of tissue fluorescence to extract optical properties
and fluorophore concentrations from 748 clinical measurements of
cervical tissue. A diagnostic algorithm based on these extracted pa-
rameters is developed and evaluated using cross-validation. The
sensitivity/specificity of this algorithm relative to the gold standard of
histopathology per measurement are 85/51%; this is comparable to
accuracy reported in other studies of optical technologies for detec-
tion of cervical cancer and its precursors. © 2008 Society of Photo-Optical
Instrumentation Engineers. �DOI: 10.1117/1.3013307�
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diagnosis.
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Introduction

ptical techniques offer the ability to noninvasively detect
pectral alterations associated with morphological and bio-
hemical changes that occur in tissue during neoplastic trans-
ormation and progression. Many groups have shown that dif-
use reflectance and fluorescence spectra can be used to detect
recancer in the cervix and other organ sites.1–10 A recent
aper reviewed 26 studies that reported diagnostic algorithms
ased on diffuse reflectance spectra, fluorescence spectra, or
he combination; approaches that combine reflectance and
uorescence spectra offer the advantage of monitoring mor-
hologic changes using reflectance spectra and biochemical

ddress all correspondence to Rebecca Richards-Kortum, Rice University, De-
artment of Bioengineering, Houston Texas 77005. E-mail: rkortum@rice.edu
ournal of Biomedical Optics 064016-
changes using fluorescence spectra, and generally result in
higher diagnostic accuracy.11

A variety of empirical methods have been used to reduce
the dimensionality of tissue fluorescence and reflectance spec-
tra to develop classification algorithms for detection of
neoplasia.1,6,9,12–16 Physically based models have also been
used to extract tissue spectroscopic parameters for use in clas-
sification algorithms.7,17–20 Although diagnostic performance
is typically similar for physical and empirical methods, physi-
cal models give insight into the changes occurring in the tis-
sue that can be probed spectroscopically. Accurate extraction
of optical properties from the in vivo spectra could perhaps
provide better diagnostic accuracy and can potentially provide

1083-3668/2008/13�6�/064016/10/$25.00 © 2008 SPIE
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nsight into understanding which precancerous lesions will
rogress and which can be left untreated.

The goal of this paper is to develop and evaluate a physi-
ally based model to analyze fluorescence and reflectance
pectra of normal and neoplastic cervical tissue. We have pre-
iously reported an analytical model to extract cervical tissue
ptical properties from fluorescence spectra.22 The develop-
ent of an analytical model to analyze both cervical tissue
uorescence and reflectance offers several important advan-

ages. The combination of both techniques offers the opportu-
ity to improve diagnostic performance. In addition, reflec-
ance spectra can be analyzed to determine tissue absorbance
nd scattering properties, reducing the number of free model
arameters which are subsequently needed to analyze fluores-
ence data.

In this paper, we evaluate several reflectance-based models
ogether with our fluorescence model to analyze clinical spec-
ra of normal and neoplastic cervical tissue. A number of ana-
ytical models have been developed to describe tissue reflec-
ance. Many are based on diffusion theory, despite its known
imitations in tissue at short source-detector separations as
ell as the finite range of optical properties at which it is
alid.18 Sun et al. developed a diffusion-based reflectance
odel that extracts tissue optical properties from normalized

pectra and tested it using data obtained at various source-
etector separations.17 Zonios et al. applied a diffusion-based
eflectance model to analyze reflectance data from human ad-
nomatous colon polyps in vivo.7 In addition to diffusion-
ased models, higher-order approximations have been pro-
osed. Hull and Foster proposed a model using the P3

pproximation to the Boltzmann transport equation as well as
hybrid diffusion-P3 approximation �P3-Hybrid�.18 This ap-

roximation expands the Boltzman transport equation in
erms of Legendre polynomials. The Pk approximation refers
o truncating the expression after the kth polynomial; diffu-
ion theory is formally the P1 approximation. Palmer and Ra-
anujam developed a Monte Carlo–based inverse reflectance
odel and applied it to ex vivo human breast tissue samples.19

eif et al. developed an empirical model for reflectance based
n Monte Carlo �MC� simulations and tissue phantom
xperiments.20

We initially performed MC simulations of cervical tissue
eflectance to determine whether cervical tissue reflectance
ould be described using a one- or two-layer geometry. We
hen compared the results of the P3-Hybrid model proposed
y Hull and Foster18 and the diffusion-based model used by
un et al.17 to the results of MC simulations to determine the

evel of complexity needed to accurately extract optical prop-
rties from diffuse reflectance spectra of cervical tissue. Fi-
ally, we combined the resulting analytical model of tissue
eflectance together with our analytical model of tissue fluo-
escence to create an adjoint model that could be used to
xtract tissue optical properties from measurements of tissue
uorescence and reflectance. This inverse adjoint model was
pplied to in vivo clinical data from 330 patients, and the
iagnostic performance of the algorithm based on the
xtracted parameters is assessed.
ournal of Biomedical Optics 064016-
2 Methods
2.1 Overview
Cervical tissue is comprised of an epithelial layer and an un-
derlying stromal layer. Figure 1 shows the fiber optic probe
geometry used to collect clinical measurements of cervical
tissue. Fluorescence measurements are obtained through a
central channel of the probe, while reflectance measurements
are obtained at several different source-detector separations,
ranging from 250 �m to 3 mm. The fiber optic probe con-
figuration determines the depth of tissue that is interrogated.
We have shown previously that tissue fluorescence collected
with this device samples fluorescence contributions from both
the epithelium and the stroma. Monte Carlo simulations were
performed to determine the fraction of reflectance signal pro-
duced in the epithelium and stroma for this probe geometry.
Next, two different reflectance models were compared to the
results of the MC simulations to determine what level of com-
plexity is needed to describe the data collected clinically. Fi-
nally, the previously developed two-layer fluorescence model
was combined with the reflectance model chosen to extract
optical properties from clinical data.

2.2 Model Input Parameters
Cervical tissue was modeled as a 300-�m-thick epithelial
layer above a semi-infinite stromal layer. Wavelength-
independent scattering anisotropy values of 0.97 and 0.88
were used for the epithelium and stroma, respectively. The
scattering and absorption coefficients for squamous normal
cervical tissue were used as described in Ref. 21, except that
a hemoglobin oxygen saturation value of 85% was assumed.
The scattering and absorption coefficients for high-grade pre-
cancer are based on results in Ref. 22. The scattering in the
epithelium is increased by a factor of three relative to normal
tissue for high-grade precancer, and the scattering in the
stroma is decreased by a factor of 0.75 relative to normal
tissue. The absorption in the epithelium is unchanged from
that in normal tissue for modeling high-grade precancer, but
the absorption in the stroma is increased by a factor of two
relative to that of normal tissue. Figure 2 shows the resulting
wavelength-dependent absorption and scattering coefficients

Fig. 1 Diagram of the fiber optic probe used to measure the in vivo
fluorescence and reflectance spectra. The fluorescence is collected
through the large central region, and the reflectance is collected at six
source-detector separations at distances from the detector 0.25 mm
�1, referred to as SD0�, 0.5 mm �2, referred to as SDa�, 0.75 mm
�3, referred to as SDb�, 1.1 mm �4, referred to as SD1�, 2.1 mm �5,
referred to as SD2�, and 3.0 mm �6, referred to as SD3�.
November/December 2008 � Vol. 13�6�2
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sed to model squamous normal cervical tissue and high-
rade cervical precancer. These values were used as input to
oth analytical models of reflectance and MC simulations.
he input parameters do not take into account the time-
ependent effect of acetic acid application that has been de-
cribed by Balas.23 The changes that can occur to the epithe-
ial scattering coefficient over time due to acetic acid
pplication do not have a substantial effect on the reflectance
pectrum measured by our device because most of the signal
s from the stromal layer.

.3 MC Model
he fixed-weight, multilayered MC code has been previously
escribed and validated by Arifler et al.21 The MC simulations
se typical optical properties of normal and high-grade cervi-
al tissue: absorption coefficient ��a�, scattering coefficient
�s�, and anisotropy �g�. Monte Carlo simulations were car-
ied out for normal tissue and high-grade precancer, modeling
issues both with a two-layer geometry, with a thin epithelial
ayer on top of the underlying stroma, and a one-layer geom-
try consisting of only a stromal layer.

.4 Diffuse Reflectance Models

.4.1 Diffusion theory
he diffusion theory model used the formulation presented in
ef. 17. Figure 3 shows the boundary-mismatched two-
imensional �2-D� semi-infitine homogeneous tissue model
sed in. Ref. 17. The following expression for the detected
eflectance, R �r�, is used for the forward model:

ig. 2 Squamous normal �SqN� and high grade �HG� tissue optical
cattering coefficient
d

ournal of Biomedical Optics 064016-
Rd�r� =
a�

4�
� 1

�t�
��eff +

1

r1
� e−�effr1

r1
2 + � 1

�t�
+ 2zb�

���eff +
1

r2
� e−�effr2

r2
2 � . �1�

The transport albedo is defined as a�=�s� / ��a+�s��, where
�s�=�s�1−g� and g is the anisotropy. The total interaction
coefficient is �t�=�a+�s�. The effective attenuation coeffi-

cient is �eff=�3�a��a+�s��. The distance from the scattering
source to the detector is r1=��z−z0�2+r2, where z is the dis-
tance into the tissue from the surface, and z0 is the depth of

rties used as input for modeling: �a� absorption coefficient and �b�

Fig. 3 Diagram of the tissue model used in Ref. 17.
prope
November/December 2008 � Vol. 13�6�3



t
i
s
=
+
f
=

2
T
m
=
t
fl
d

a

T
f
c
w

a

w

2
T
d
t
a
p
c
d
�
c
t
c
t

2
T
p

Redden Weber et al.: Model-based analysis of reflectance and fluorescence spectra for in vivo detection…

J

he scatterer. The corresponding distance to the image source
s r2=��z+z0−2zb�2+r2. zb is the distance from the tissue
urface to the extrapolated boundary and is defined as zb

2AD, where A= �1−rd� / �1+rd� , rd=−1.44nrel
−2+0.71nrel

−1

0.668+0.0636nrel, and nrel=ninside /noutside, the ratio of re-
ractive indices. The diffusion constant is defined as D
1 /3��a+�s��.

.4.2 P3-hybrid approximation
he reflectance expression used for the P3-Hybrid forward
odel, derived in Ref. 18, is Rd�r ;z0�
�C��GEBC,asymptotic

�r ;z0�+CjjzEBC
�r ;z0�	�Adetector�. The de-

ected reflectance is modeled as the sum of the fluence and
ux with appropriate coefficients multiplied by the area of the
etector used where

�GEBC,asymptotic
=

1

4�D
� e−�eff

�z0
2+r2

�z0
2 + r2

−
e−�eff

��z0 + 2zb�2+r2

��z0 + 2zb�2 + r2�
nd

jz =
1

4�
�z0� 1

�z0
2 + r2

+ �eff�� e−�eff
�z0

2+r2

�z0
2 + r2

� + �z0 + 2zb�

�� 1
��z0 + 2zb�2 + r2

+ �eff�� e−�eff
��z0 + 2zb�2+r2

��z0 + 2zb�2 + r2 �� .

he variables are all defined in the same way as for the dif-
usion theory except for A, the internal reflectance dependent
onstant. In the P3-Hybrid model, A= �1+Reff� / �1−Reff�,
here

Reff =
R� + Rj

2 − R� + Rj
, R� =


0

�/2

2 sin � cos �RFresnel���d� ,

nd

Rj =

0

�/2

3 sin � cos2 �RFresnel���d�

here RFresnel��� is the Fresnel reflection coefficient.

.4.3 Fluorescence model
he fluorescence model used has been previously described in
etail in Ref. 22. Fluorescence spectra measured at four exci-
ation wavelengths, 340, 350, 360, and 370 nm, are fit to an
nalytic expression for tissue fluorescence to extract optical
roperties of the tissue. The extracted parameters include the
oncentration of fluorophores reduced nicotinamide adenine
inucleotide �NADH�, keratin, flavin adenine dinucleotide
FAD�, and three types of collagen crosslinks, the scattering
oefficient of the epithelium, the stromal hemoglobin and pro-
ein concentrations, the intensity and slope of the scattering
oefficient of the stroma, and the hemoglobin oxygen satura-
ion.

.4.4 Adjoint inverse model
he adjoint inverse model allows for extraction of optical
roperties from the collected reflectance and fluorescence
ournal of Biomedical Optics 064016-
spectra. Tissue reflectance spectra are first fit to an analytical
expression to obtain �a and �s of the stromal layer. Tissue
fluorescence spectra are then fit to the analytical expression
for fluorescence using the optical properties detected from
reflectance spectra and allowing the epithelial scattering and
fluorophores concentrations to vary.

3 Instrumentation
A fiber optic point probe was used to measure the reflectance
and fluorescence spectra of normal and precancerous regions
in 330 patients. Measurements were made of squamous nor-
mal tissue, columnar normal tissue, and tissue at the
squamous-columnar junction, which may contain both squa-
mous and columnar tissue. The details of the instrumentation
used can be found in Ref. 24. Briefly, an arc lamp and filter
wheels act as the illumination source and the diffuse reflec-
tance and fluorescence spectra are collected through a fiber
probe coupled to a spectrograph and CCD camera. Fluores-
cence spectra were collected at excitation wavelengths be-
tween 300 and 530 nm in 10 nm increments. Reflectance
spectra were collected at six different source-detector separa-
tions ranging from 0.25 mm to 3.1 mm over a wavelength
range of 350–650 nm every 1 nm. The reflectance signal was
referenced to a measurement made with the probe placed in
the input port of an integrating sphere. Data processing of the
raw signal is necessary to ensure that the absolute signal in-
tensity and spectral shape of the reflectance spectrum are ac-
curate. The steps involved include: �i� background subtrac-
tion, �ii� exposure time normalization, �iii� wavelength
calibration, �iv� data smoothing, and �v� system response cali-
bration and illumination power normalization.25

4 Study Protocol
The study protocol was reviewed and approved by the Insti-
tutional Review Boards at the University of Texas M. D.
Anderson Cancer Center, Rice University, the British Colum-
bia Cancer Agency, and the University of Texas at Austin.
Details of the clinical study are provided in. Ref. 22. Written
consent was obtained from all subjects. There are 748 fluo-
rescence and reflectance spectral measurements used in this
analysis, and they account for 615 unique sites in 330 pa-
tients. This data set is a subset of the data collected in a
multicenter phase II clinical trial; our analysis only includes
the data measured with one generation of the device used in
the trial. The diagnostic categories used for analysis were
Normal �normal epithelium, inflammation, metaplasia�, LG
�low-grade, including atypia, HPV-associated change, grade 1
cervical intraepithelial neoplasia�, CIN2 �grade 2 cervical in-
traepithelial neoplasia�, and CIN3+ �grade 3 cervical intraepi-
thelial neoplasia and cancer�. Table 1 shows the diagnosis and
tissue type statistics for the data analyzed in this study. The
classification was performed to discriminate Normal and LG
from CIN2 and CIN3+.

5 Statistical Analysis
The training set was split into five groups to perform fivefold
cross-validation to estimate the diagnostic performance of the
algorithm based on the extracted parameters. Principle com-
ponents of the measured spectra were also used as features in
November/December 2008 � Vol. 13�6�4
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he algorithm to compare the performance of the physical pa-
ameters to empirical parameters. Ten principle components
ere obtained from the SD1 reflectance spectrum, 10 from the
D3 reflectance spectrum, and 10 from 4 concatenated fluo-
escence spectra �excitation from 340–370 nm�; over 99.9%
ariance was accounted for in each case. Forward stepwise
eature selection based on the highest area under the receiver
perating characteristic curve was used to determine the fea-
ure set used in the algorithm. Linear discriminant analysis
as used for classification.

Table 1 Statistical breakdown of the data by tis

Number of measurements Normal

Tissue type Squamous 302

Mixed 93

Columnar 46

All 441

ig. 4 Diffusion-based forward model, P3-Hybrid forward model, 1- a
qNMC1lyr is the one-layer MC simulation for the squamous normal
nput parameters, SqNDT is the diffusion theory model for SqN inpu
arameters. The legend entries for the high grade dysplasia �HG� inp
D0 for both squamous normal and high grade. Neither diffusion the
s sufficient to model the data.
ournal of Biomedical Optics 064016-
6 Results

In order to determine whether a one-layer model was ad-
equate to describe the reflectance spectra, both two-layer and
one-layer MC simulations were performed for each source-
detector separation. The two-layer simulations were per-
formed at emission wavelengths from 350 to 650 nm in
10-nm increments. The one-layer simulations were performed
in 1-nm increments from 350 to 650 nm. All the simulations
included 108 photons, and three simulations were averaged

e and diagnosis.

Diagnosis

LG CIN2 CIN3+ All

56 13 12 383

98 53 64 308

9 2 0 57

163 68 76 748

yer MC simulations are compared for all source-detector separations.
nput parameters, SqNMC2lyr is the two layer MC simulation for SqN
eters, and SqNP3 is the P3-Hybrid forward model for the SqN input

meters are defined similarly. The differences are very small except at
P3-Hybrid is expected to be valid at SD0. A one-layer stroma model
sue typ
nd 2-la
�SqN� i
t param
ut para
ory nor
November/December 2008 � Vol. 13�6�5
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or each wavelength. The standard deviation of the three
imulations was orders of magnitude lower than the average.
s the results in Fig. 4 indicate, at the source-detector �SD�

eparation values measured here, the epithelium makes mini-
al contribution to the detected signal. All further reflectance
odeling was done assuming tissue could be described as a

ingle layer with optical properties of stroma.
Figure 4 compares the results of the MC models to the two

nalytical models of reflectance at each source-detector sepa-
ation. The diffusion theory forward model is used to set the
cale; normalization occurs at 500 nm. A scale factor is de-
ermined for the normal and high-grade cases separately and
he average of the two is used to scale the MC and P3-Hybrid
pectra. All four models are in good agreement for all SD
eparations, except for SD0. This is expected because for
D0, the transport albedo is low and the SD separation is only
.25 mm. Because both forward models adequately describe
he shape of the MC simulations with good agreement, the
impler diffusion-based model was chosen for further analy-
is.

Figure 5 compares the results of the one-layer MC simu-
ation, the diffusion theory forward model, and the average
linical data for both squamous normal and high-grade pre-
ancer. For clarity, the standard deviation of the average clini-
al data is not shown in Fig. 5, but for reference, the standard
eviation for the squamous normal clinical data at 500 nm for
D1 is 0.0134. Again, except for SD0 �SD separation 0�, the
odels and clinical data are in good agreement and show

ig. 5 Validation of one-layer MC and diffusion-based models agains
pectra are normalized at emission wavelength of 500 nm to an avera
GCD is the HG clinical data.
ournal of Biomedical Optics 064016-
separation between spectra of normal tissue and high-grade
precancer.

In order to validate that reflectance spectra could be fit to
this analytical expression to accurately extract tissue optical
properties, spectra generated using MC simulations were fit to
this expression. The parameters extracted from the inverse
model fit to the MC simulation were compared to the input
parameters of the MC simulation. Figure 6 shows the fits to
the MC simulations for SDa, SDb, SD1, SD2, and SD3 for
squamous normal as well as high-grade input parameters. The
extracted parameters are plotted in Fig. 7. The median value
of the percent difference between input and output spectra for
all the extracted parameters is 10.6%; parameters extracted
from the inverse model capture the expected differences be-
tween squamous normal tissue and high-grade precancer.

The inverse reflectance model was used to fit 748 clinical
measurements of tissue reflectance. The fit parameters were
the volume fraction of blood �vf�blood�	, the hemoglobin
oxygen saturation �O2Sat	, the concentration of structural
protein ��protein	�, and two constants describing the strength
�A� and shape �b� of the scattering in the stroma. Using these
parameters as input, the fluorescence model was applied to
extract the remaining fluorescence parameters. Box plots of
selected extracted parameters are shown in Fig. 8. The clinical
data are separated into five groups based on the type of tissue
and stage of disease for the measurement: squamous normal,
mixed squamous and columnar normal, columnar normal, all
tissue types with CIN2, and all tissue types with CIN3 or

o clinical measurements for both squamous normal and high grade.
e SqN and HG forward models. SqNCD is the SqN clinical data and
t in viv
ge of th
November/December 2008 � Vol. 13�6�6
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ancer. Figure 8�a� shows the median epithelial scattering co-
fficient; this parameter increases from squamous normal to
igh-grade disease, but is also increased in columnar tissue.
igure 8�b� shows the concentration of protein in the stroma;
quamous normal tissue has lower concentrations of protein,
hereas both columnar tissue as well as high grade precancer
ave higher stromal protein concentrations. Figure 8�c� shows
he concentration of keratin in the epithelium; it is higher in
quamous normal than in columnar tissue and precancer. Fig-
re 8�d� shows the concentration of NADH in the epithelium;
he concentration is higher in columnar tissue than in squa-

ous normal and precancer.

ig. 6 Results of applying the inverse model to the MC-generated spe
etector separations greater than SD0. The fit is extremely good in al

ig. 7 Comparison of extracted optical properties after fitting the Mon
aptures the increase in absorption with disease, both with increase in
y a decrease in A as well as a decrease in O Sat. The trends are co
2

ournal of Biomedical Optics 064016-
Using fivefold cross-validation, a simple linear discrimi-
nant classification algorithm was developed and used to clas-
sify the measurements based on the extracted inverse adjoint
model parameters as features. The resulting receiver operating
characteristic �ROC� curve is shown in Fig. 9. An ROC curve
was also generated for a per-patient classification. These
curves were generated using the worst diagnosis based on
pathology as the gold standard and the highest posterior prob-
ability from the classification algorithm as the prediction. To
compare the diagnostic performance of the adjoint model pa-
rameters to empirical parameters, the ROC curve achieved
using principal components �PCs� of the spectra is also

r both squamous normal and high-grade input parameters at source-

lo generated spectra with known input optical properties. The model
d� and increase in �protein�. The decrease in scattering is also evident
for all five source-detector separations evaluated.
ctra fo
l cases.
te Car
Vf�bloo
nsistent
November/December 2008 � Vol. 13�6�7
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hown. Also plotted in Fig. 9 are the sensitivity and specifici-
ies for selected spectroscopy and imaging studies reported in
ef. 11.

Discussion and Conclusions
he adjoint reflectance and fluorescence model presented here
rovides a means to interpret the detected spectroscopic
hanges associated with neoplastic progression. The model
ccurately extracts twelve parameters; five from the reflec-
ance spectra and seven from the fluorescence spectra. The
eflectance parameters are the volume fraction of blood, the
emoglobin oxygen saturation, the concentration of structural
rotein, and two constants describing the strength and shape
f the scattering in the stroma. The fluorescence parameters
nclude the scattering coefficient of the epithelium and six
uorophores concentrations: NADH, FAD, keratin, and three

ypes of collagen. By extracting these parameters from in vivo
linical data, an understanding of the biochemical changes
ccurring with neoplastic progression can be realized.

In addition, the optical properties extracted with the adjoint
odel can be used for classification of lesions. In order to

valuate the use of the adjoint model parameters as classifi-
ation features the performance of the classification algorithm

ig. 8 Example boxplots of optical properties extracted from in vivo c
re squamous normal �SqN�, mixed squamous and columnar normal
CIN2�, and grade 3 cervical intraepithelial neoplasia and cancer �CIN
Protein� from the stroma extracted from the reflectance spectra, �c� �
rom the fluorescence spectra.
ournal of Biomedical Optics 064016-
using the adjoint model parameters was compared to the per-
formance if principle components were used as features in-
stead. The per measurement classification performance was
better for the adjoint model parameters than for principle
components for our data set �Fig. 9�. This implies that the
model extracts parameters that are biologically significant
without giving up diagnostic potential available by empirical
means of data reduction. Physically based models that are
valid for shorter SD separations, including SD0, are needed to
fully capitalize on the data available from this study. The sig-
nal from the shorter SD separations might also lead to better
discrimination of normal and abnormal tissues.

Reported results of five other studies of optical spectros-
copy in the cervix are plotted in Fig. 9 for comparison to our
results.4,26–29 Chang et al. reported a sensitivity and specificity
of 83 /80% per patient in an analysis of subsets of data from
a phase II trial; the analysis results were based on 161 patients
using combined reflectance and fluorescence spectroscopy.26

Georgakoudi et al. reported a sensitivity and specificity of
92 /71% per site in a combined reflectance and fluorescence
spectroscopy pilot study involving 44 patients.4 Ferris et al.
reported a sensitivity and specificity of 97 /70% per patient in
a multispectral phase I trial.27 DeSantis et al. reported a sen-

data. Scale chosen may exclude some outliers. The categories shown
�, columnar normal �ColN�, grade 2 cervical intraepithelial neoplasia
� �s from the epithelium extracted from the fluorescence spectra, �b�

� extracted from the fluorescence spectra, and �d� �NADH� extracted
linical
�MixN
3+�: �a

keratin
November/December 2008 � Vol. 13�6�8
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itivity and specificity of 95 /55% per patient in a phase II
rial where 572 patients were evaluated.28 Huh et al. reported

sensitivity and specificity of 92 /50% per patient in a 604
atient phase II trial using wide-field multispectral imaging.29

n general, diagnostic performance decreases as the study
ample size increases. In our study, the sensitivity and speci-
city achieved relative to a per measurement gold standard of
istopathology are 85 /51%; this is increased slightly to
5 /53% for a per patient diagnosis. These classification re-
ults compare favorably to other studies of optical technolo-
ies for detection of cervical cancer and its precursors.
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