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Abstract. Cervical intraepithelial neoplasia �CIN� exhibits certain
morphologic features that can be identified during a colposcopic
exam. Immature metaplastic and dysplastic cervical squamous epithe-
lia turn white after application of acetic acid during the exam. The
whitening process occurs visually over several minutes and subjec-
tively helps to discriminate between dysplastic and normal tissue.
Digital imaging technologies enable us to assist the physician in ana-
lyzing acetowhite �acetic-acid-induced� lesions in a fully automatic
way. We report a study designed to measure multiple parameters of
the acetowhitening process from two images captured with a digital
colposcope. One image is captured before the acetic acid application,
and the other is captured after the acetic acid application. The spatial
change of the acetowhitening is extracted using color and texture
information in the post-acetic-acid image; the temporal change is ex-
tracted from the intensity and color changes between the post-acetic-
acid and pre-acetic-acid images with an automatic alignment. In par-
ticular, we propose an automatic means to calculate an opacity index
that indicates the grades of temporal change. The imaging and data
analysis system is evaluated with a total of 99 human subjects. The
proposed opacity index demonstrates a sensitivity and specificity of
94 and 87%, respectively, for discriminating high-grade dysplasia
�CIN2+� from normal and low-grade subjects, considering histology
as the gold standard. © 2009 Society of Photo-Optical Instrumentation Engineers.
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Introduction
ervical neoplasias exhibit certain morphologic features that
an be identified during a colposcopic examination. These
eatures include distinct epithelial and vascular abnormalities.
cetowhite epithelium is one of the major colposcopic signs
bserved in cervical neoplasia. Although acetowhite epithe-
ium does not universally equate with neoplastic tissue,1 vir-
ually all cervical neoplasias display a variably transient and
paque white color following the application of 3 to 5% acetic
cid. Consequently, colposcopic indices consider acetowhite
pithelium to help predict the severity of cervical lesions.2

Colposcopy is the primary diagnostic tool for identifying
he most atypical sites for biopsy of the cervix, following an
bnormal cytological screening �Pap smear�. However, due to
he subjective nature of the examination, the accuracy of col-
oscopy is highly dependent on colposcopists’ experience and
xpertise. It has been estimated that approximately one third
f high-grade disease is missed by initial colposcopy.3 The
dvent of digitized medical images has led to an increasingly
mportant and evolving role for image processing and

ddress all correspondence to: Wenjing Li, PhD, STI Medical Systems, 733
ishop Street, Honolulu, HI, 96813. Tel: 808-540-4768; Fax: 808-540-4850;
-mail: wli@sti-hawaii.com.
ournal of Biomedical Optics 014020-
computer-aided diagnostic �CAD� systems. An automated im-
age analysis system of uterine cervical images could provide
the means for the identification and analysis of diagnostic
features from cervical images, and ultimately, derive a clinical
diagnosis following an objective and quantifiable process.

Automated detection of acetowhite epithelium depicted on
cervical images has been a challenging task due to light re-
flection, various amounts of illumination, and wide inter- and
intrapatient variation. A small number of automated detection
studies have been conducted. Most of these studies have fo-
cused on the segmentation of acetowhite epithelium. Yang
et al. developed a sophisticated technique for detection of
acetowhite epithelium using K-means clustering and a deter-
ministic annealing technique.4 Gordon and her coworkers de-
veloped an unsupervised segmentation algorithm for three tis-
sue types in cervical imagery using a Gaussian mixture
model.5 In their latest work,6 the acetowhite region was iden-
tified by extracting the highest mean intensity cluster among
the smooth regions. They also noted that due to illumination
effects and large intrapatient variation, acetowhite lesions are
incorrectly detected. Additionally, acetowhite lesions located
in shaded areas of the image are not detected at all. The work

1083-3668/2009/14�1�/014020/10/$25.00 © 2009 SPIE
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ust referenced was based on Cervigram™ images collected
y the National Cancer Institute, and limited to one image per
ubject.

One pioneering study by Pogue et al.7 evaluated different
etrics of the region of interest in cervical images and indi-

ated that computer-based processing of cervical images can
rovide some discrimination of tissue features that could be
seful for clinical evaluation. Specifically, it was mentioned
hat the Euler number could be used as a clinical feature to
iscriminate metaplasia from neoplasia. The study was done
emiautomatically using Adobe Photoshop software and MAT-

AB �The MathWorks Inc., Natick, Massachusetts� using a
mall number of human subjects �nine subjects�.

Researchers have also been focusing on using the temporal
volution of the tissue changes for discrimination of cervical
eoplasia. Pogue et al.8 analyzed the time sequence data of
ervical intraepithelial neoplasia of grades 2 and 3 �CIN2/3�
nd normal mature squamous epithelium captured after appli-
ation of acetic acid every 20 s for up to 10 min decay. It was
oncluded that the normalized green to red ratio where the
ata are time averaged over a 100-s interval provided a robust
ethod to distinguish mature squamous epithelium for
IN2/3 in a small data set of six human subjects. Studies by
alas et al.9 and Balas10 indicate that the intensity of the back-

cattered light captured at 550�25 nm during the decay se-
uence can be used to improve the sensitivity and specificity
f the in vivo diagnosis. Kaufman et al.11 at MediSpectra, Inc.,
led a patent on analyzing the intensity changes of the decay
equence and indicated the ratio of mean values of Green/
ed� from two time intervals �100 to 200 s� and

200 to 300 s� can be used to discriminate CIN2/3 lesions
rom normal and CIN1 lesions. The region of interest in these
tudies was manually marked, and image registration was not
ddressed or handled semiautomatically. One recent
ublication12 reveals a performance with sensitivity and speci-
city of 79 and 88% to differentiate high-grade intraepithelial

esions from normal or low-grade intraepithelial lesions using
9 patients. Statistical learning algorithms including
-nearest neighbor �KNN� and support vector machine

SVM� were applied on the white light reflectance images to
apture the acetowhite changes by selecting features such as
ntensities of red, green, and blue channels and ratios of
ntensities.

The purpose of this study is to explore a fully automated
olor imaging system to analyze acetowhite lesions. We
resent the use of a digital colposcope, which acquires polar-
zed and nonpolarized color cervical images during a clinical
xam. A sequence of image-processing algorithms is used to
nalyze the anatomic interests of the cervix, extract the color
nd opacity property of the acetowhite epithelium, and locate
cetowhite lesions. In particular, we present automatic means
o calculate an opacity index, which indicates the grades of
emporal change. The system was evaluated with 99 human
ubjects and demonstrates a good correlation with pathology-
onfirmed lesions. A sensitivity and specificity of 94 and 87%
as achieved for discriminating high-grade �CIN2�� lesions

rom normal and low-grade lesions using automated extracted
pacity index parameters.
ournal of Biomedical Optics 014020-
2 Materials and Methods
2.1 Clinical Examination

Women 22 to 50 years old �with an average age 35�7.8; 28
women were in their twenties, 40 were in their thirties, 30
were in their forties, and one woman was 50� with previously
detected abnormal cervical cytologic abnormalities, a concor-
dant colposcopic diagnosis, and scheduled for an electrosur-
gical loop excision procedure were asked to enroll in the trials
conducted at hospitals in Lima and Cusco in Peru, and in
Augusta, Georgia, USA. All subjects read and signed an
institutional-review-board-approved informed consent docu-
ment. Among the study subjects, 10 were menopausal; the
other subjects were all premenopausal. The study protocol and
the informed consent form for the Peru trial were approved by
the Institutional Review Board �IRB� at the Instituto Especial-
izado de Enfermedades Neoplasicas �Mite Revisor de Proto-
colos de la Oficina Ejecutiva de Apoyo a la Investigacion ye
Docencia Especializado�, and by the hospital Ethics Commit-
tee �Comite de Etica�. The IRB approval for the Augusta
study was conducted through the Clinical Investigation Regu-
latory Office, Department of the Army, Fort Sam Houston.
Subject confidentiality was protected and no identifying sub-
ject information was recorded for the study. Exclusion criteria
included cervical hemorrhage, pregnancy, and unwillingness
to participate. Image data from 99 subjects were used in the
assessment of the automated image analysis system.

Prior to application of 5% acetic acid, polarized and non-
polarized high-resolution digital cervical RGB images were
taken of the ectocervix. The solution of 5% acetic acid was
applied with solution-soaked cotton balls placed in contact
with the surface of the cervix for 1 min. Polarized and non-
polarized cervical pictures were taken 1 min after the acetic
acid application. Thereafter, following Lugol’s iodine solution
application, another set of polarized and nonpolarized images
were acquired. After application of Lugol’s iodine, subcutane-
ous administration of an anesthetic and vasoconstrictive
agent, and electrosurgical loop excision or conization were
performed, as necessary. Proper orientation was maintained
between the ectocervix and specimen. Final post surgical po-
larized and nonpolarized images of the ectocervix and a single
nonpolarized image of the excised specimen were then
obtained.

The specimen was sent to a pathology laboratory �Mlabs,
University of Michigan, Ann Arbor� for histological analysis.
Histopathologic diagnoses were rendered from annotations of
serially sectioned loop excision specimens obtained from the
same subject. For a subset of patients, the bread-loaf-
sectioned loop excision tissue was examined by pathologists
to render a histologic “map” of the loop excision specimen.
The histological map provides detailed diagnostic information
according to normal, low-grade squamous intraepithelial le-
sion �LSIL�, and high-grade squamous intraepithelial lesion
�HSIL� and invasive cancer. The histological map was pre-
sented as projected lines on a colposcopic image to generate a
pathology-based criterion standard. If possible, HSIL were
further classified as CIN2, CIN23, or CIN3 by pathologists. A
sample histological map is presented in Fig. 8�d� in Sec. 3.

A subset of the cervical images acquired was also evalu-
ated by an expert colposcopist. Colposcopic features includ-
ing ectocervix, external os, columnar epithelium, squamous
January/February 2009 � Vol. 14�1�2
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pithelium, and acetowhite epithelium were annotated using a
omputer-based drawing program �Photoshop CS2, Adobe
ystem Inc., San Jose, California�. A sample annotated colpo-
copic image is displayed in Fig. 3�b� in Sec. 2.3.1. The col-
oscopic image annotation served as the ground truth infor-
ation for the colposcopic feature extraction during the

lgorithm development.

.2 Digital Colposcope
s a potential source of high-resolution digital imagery for

olposcopy, Science and Technology International’s �Hono-
ulu, Hawaii� digital colposcope was developed to acquire im-
ges with a resolution sufficient for vessel detection. The digi-
al colposcope, as seen in Fig. 1, utilizes a standard
olposcope �Seiler, Series 935�, two high-resolution
4-Mpixel digital cameras �Kodak, DCS Pro SLR/n�, and a
ber-guided light source assembly �Perkin Elmer, DiX1765
enon lamp�. In addition to high-resolution imaging capabili-
ies, the digital colposcope includes stereoscopic imaging ca-
abilities �which can be used for 3-D image reconstruction�
nd polarized image acquisition �used to reduce glare�. The
mages acquired were stored in Digital Camera Raw �DCR�
ormat with no compression and later converted to tagged
mage file format �TIFF� automatically prior to the application
f image processing algorithms. In our system, 92 pixels rep-
esent 1 mm, a resolution that can enable computer programs
o detect fine and coarse mosaic, punctation, and atypical
lood vessels and assess intercapillary distances. An impor-
ant feature of our digital colposcope is the inclusion of po-
arization, which reduces obscuring glare that may be misin-
erpreted as acetowhite epithelium.

A calibration unit is part of the digital colposcope setup
nd is used to acquire calibration data at the clinic sites. The
alibration is performed daily before subject examinations.
he purpose of calibration is to ensure that images acquired at
ifferent times and with different colposcopes exhibit identi-
al intensity and color values, independent of camera/camera
ettings and the light source used. This can be achieved by
apping the color appearance of the image taken with differ-

nt instruments into a standard color space. The details of the
mage calibration procedure can be found in a previous pub-
ished paper.13

ig. 1 High-resolution digital colposcope with polarized imaging
apability.
ournal of Biomedical Optics 014020-
2.3 Automated Image Analysis
We developed an automated image analysis system to identify
unique cervical features with an initial goal to identify normal
cervical anatomy and acetowhite epithelium. To characterize
both color and opacity property of acetowhite epithelium, im-
ages before and after acetic acid application are required. A
multistep procedure �Fig. 2� using a set of image-processing
algorithms is utilized to analyze the acetowhite epithelium.

In our analysis, the post-acetic-acid image is used as the
reference image. The post-acetic-acid image is first analyzed
with regard to the anatomy of the cervix to identify the cervix,
cervical os, and columnar epithelium. The next step in the
post-acetic-acid image analysis is to extract the color and spa-
tial property of the acetowhite epithelium. To address the
opacity property of acetowhite epithelium, the pre- and post-
acetic-acid images are accurately registered using an elastic
image registration algorithm. By subtracting the registered
pre-acetic-acid image from the post-acetic-acid image and ap-
plying unsupervised clustering algorithms, the opacity prop-
erty of the acetowhite epithelium can be determined. An opac-
ity index is then computed based on the clustering results. The
details of the image analysis are described in the following
subsections.

2.3.1 Anatomical region of interest analysis
The anatomical region of interest analysis is a fully automated
procedure and detects the cervix, cervical os, and columnar
epithelium in the sequential order. To ensure that an image of
the entire cervix is acquired, the magnification level of the
colposcope is selected such that the cervical image also con-
tains the edge of the speculum and the vaginal wall. Prior to
any further image processing, the cervix region must, thus, be
extracted as the region of interest. The main challenge in find-
ing the cervix region is excluding the vaginal wall as its tex-
ture and color mimic that of cervical squamous and mature
metaplastic epithelia. Our implementation of a fully automatic
cervix region detection algorithm uses an unsupervised two-
class clustering technique based on GMM �Gaussian mixture

Fig. 2 Flowchart of automated image analysis.
January/February 2009 � Vol. 14�1�3
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odel�. Unlike previously published work,6 we do not assume
hat the cervix region is preferably located in the center of the
mage.

The details of the cervix region detection algorithm are as
ollows. First, a Gaussian smoothing function14 is applied to
he RGB image of the cervix to reduce the amount of noise.
econd, the Karhunen-Loeve �K-L� transformation is applied

o transform the image from RGB color space into K-L space.
he K-L space has proved to be a very effective color space

or color-texture characterization in the analysis of skin
esions15 and in colon tumor detection.16 Third, the expecta-
ion maximization �EM� algorithm17,18 is used to cluster the

1 channel �the eigenvector corresponding to the largest ei-
envalue during eigendecomposition� as foreground and
ackground. The EM algorithm is used for cervix region de-
ection because it has been shown to provide a robust segmen-
ation result for a two-class image segmentation problem and
ecause it does not require any parameters. Fourth, within the
oreground region, the vaginal folds are first detected using
olor and gradient information, and then polynomial curves
re fitted using the detected data points to extend the vaginal
olds to the foreground boundary. The vaginal regions are
efined as the cutout areas from the foreground region using
he fitted curves.19

The cervical os defines the portion of the cervical canal
hat is covered by the columnar epithelium. If visible, the
ervical os is usually a small-area region located in the center
f the cervix with low intensity, surrounded by the columnar
pithelium and the transformation zone �TZ�. The os region
etection algorithm is based on mean shift clustering,20,21

iven the assumption that the os region is probably located in
he center portion of the detected cervical region with the
owest intensity, not the simple image center. The mean shift
lgorithm is a nonparametric clustering technique that does
ot require prior knowledge of the number of clusters, and
oes not constrain the shape of the clusters. It is based on
ernel density gradient estimation theory and is guaranteed to
onverge to a point where the gradient of the density function
s zero. As already indicated, the reasons for applying the

ean shift clustering algorithm for os detection are that �1� it
oes not require a preset the number of clusters and �2� the
egmentation is not very sensitive to the choice of resolution
arameters.21

The os detection algorithm is applied to the cervix region
nly and starts by computing a distance transform22,23 to cre-
te a distance image. The distances are calculated based on a
uclidean metric. The purpose of the distance image is to

ocate the center portion of the cervical region. In the second
tep, mean shift clustering is applied on the preselected search
ange of the K1 channel of the image. The cervical os region
s then obtained by selecting the cluster with lowest intensity,
ollowed by morphological operations to remove small noisy
egions. To improve the robustness of the os detection, the os
etection algorithm is applied three times with three different
earch range parameters defined as 1

4 , 1
2 , and 3

4 of the cervix
egion area. The final os region is the os region with maximal
rea value.

The columnar region appears reddish even after applica-
ion of acetic acid. This color information is crucial in seg-

enting the columnar region. The columnar detection algo-
ournal of Biomedical Optics 014020-
rithm applies the mean shift algorithm to segment the
columnar region.

An example of the anatomic region of interest detection
result can be found in Fig. 3�a�. For comparison, the corre-
sponding doctor’s annotation can be found in Fig. 3�b�. In
these figures, the cervix region is outlined by a white contour,
the cervical os region is indicated by a green contour, and the
columnar epithelium is outlined by blue contours.

2.3.2 Acetowhite texture and color analysis
Given one post-acetic-acid image, acetowhite epithelium can
be assessed by its visual characteristics with respect to texture
and color. The following steps are applied in the analysis of
the texture and color properties of acetowhite lesions.

Step 1: Texture region extraction. Given the normal
anatomy regions in a cervical image, excluding the os region
and columnar epithelium region from the cervix region, a re-
gion containing squamous epithelium, metaplastic, and dys-
plastic tissue is obtained. In this first step, the focus is on
extracting regions exhibiting a high degree of texture indepen-
dent of the color information. Here, the texture analysis is a
way to quantify properties described in terms of rough,
smooth, silky, or bumpy as a function of the spatial intensity
variations in an image. In a sense, the roughness or bumpiness
refers to the variations in intensity values, or gray levels. For
the cervix, this texture is an important visual cue in identify-
ing the vasculature and gland openings from the surrounding
homogeneous squamous tissue. The texture region is served
as one important region of interest for the acetowhite region
detection. When acetowhite region is accompanied with a
large area of vascular patterns, segmenting by color property
only does not yield ideal results. A combination of texture and
color analysis is preferred to segment the acetowhite regions.

The technique presented in Refs. 24–26 is used to extract
the texture features in the image. The texture features used
describe both the underlying texture parameters and the ad-
equate texture scale. The width of a Gaussian window defines
the scale of the texture features. The second-moment matrix
for the gradient vectors within this window, computed for
each pixel in the image, can be approximated using

Fig. 3 Example of extracting anatomical features of interests in cervi-
cal images: white outline, cervix region; green; cervical os region; and
blue; columnar epithelium. �a� Algorithm results, and �b� annotation
by expert colposcopist.
January/February 2009 � Vol. 14�1�4
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M��x,y� = G��x,y�*��I�*��I�T �1�

here G� is a separable binomial approximation to a Gauss-
an smoothing kernel with variance �2, and ��I� is the gradi-
nt of the image intensity. At each pixel location, M��x ,y� is
2�2 symmetric positive semidefinite matrix. The trace of

he matrix yields the total energy of the image function at
x ,y�, the edge busyness, which can be used for measuring
he homogeneity of segment-type features. We refer the trace
f the second-moment matrix as texture contrast, which can
e computed according to

contrast = ��1 + �2�1/2, �2�

here �1 and �2 are the eigenvalues of M�.
The texture region is then obtained by applying the two-

lass EM clustering algorithm in the texture feature space.
he texture region detected for the cervical image in Fig. 3�a�

s shown as white regions in the binary image of Fig. 5�a� in
he discussion of step 3.

Step 2: Color region extraction. Color is the major image
roperty used to distinguish acetowhite lesions from normal
ature squamous epithelium, which appears as pinkish color

n cervical images. In this second step of the texture and color
nalysis, we focus on color information only, and the region
f interest is the cervix region excluding the os region, colum-
ar epithelium region, and texture region determined in the
rst step.

The rationale for excluding the texture region from the
olor analysis is that when abnormal vasculature is overlaid
n the acetowhite region, the acetowhite color information is
oing to be “degraded” or “less white” due to the larger
mount of red blood vessels. We have found that excluding
he texture regions from the acetowhite color analysis and
ombining the color and texture regions later will yield a
ore consistent result over the entire data set when compar-

ng to the colposcopic annotations.
The region of interest in this step exhibits a near homog-

nous surface and usually consists of normal mature squa-
ous epithelium and/or an acetowhite region. The intent of

his step is to extract the acetowhite lesions from the squa-
ous epithelium. A method previously described by Li et al.27

s utilized. This method uses the number of dominant peaks in
he RGB G channel histogram to deduce the information
bout the size of the acetowhite region and what method
hould be used in the subsequent segmentation step. A one-
eak histogram is indicative of a small acetowhite region,
hereas a two-peak histogram indicates a large homogeneous

cetowhite region. Segmentation of the region of interest is
ccomplished by the mean shift clustering algorithm for a
ne-peak histogram and by the EM algorithm for a two-peak
istogram. For the subject shown in Fig. 3, a two-peak histo-
ram is obtained for the homogenous cervical tissue region.
his two-peak histogram is shown in Fig. 4�a� and the corre-
ponding segmentation according to mature squamous tissue
white� and acetowhite tissue �gray� using the EM algorithm
s displayed in Fig. 4�b�.

Step 3: Combining color and texture. By combining the
olor and texture information obtained in steps 1 and 2, a
andidate acetowhite epithelium region, as illustrated in Fig.
�b�, is obtained. This entire color and texture region is fur-
ournal of Biomedical Optics 014020-
ther analyzed based on its color properties using the CIE-Lab
color space due to its perceptual uniformity. The three param-
eters in the CIE-Lab color space represents the luminance of
the color �L�, its position between red and green �a�, and its
position between yellow and blue �b�. The nonlinear relations
for L, a, and b are intended to mimic the logarithms response
of the human eye.28

To match the colposcopic annotations with the terms of
“opaque white,” “intermediate opaque white,” and “translu-
cent white,” a three-class K-means algorithm29 is applied to
classify the candidate region into three levels of whitish re-
gions. These regions are sorted according to their color scores
computed according to

score�i� = ��ai − asq�2 + �bi − bsq�2, if ai � asq

− ��ai − asq�2 + �bi − bsq�2� , if ai � asq
� ,

�3�

where ai and bi indicate the average values of the a and b
channels, respectively, for the corresponding whitish region i
�=1,2 3�, and asq is the mean a channel value of the mature
squamous epithelium region in the image. The mature squa-
mous epithelium region is obtained by excluding the os, co-
lumnar epithelium, and the combined texture and color region
from the cervix region.

Fig. 4 Acetowhite color region extraction: �a� two-peak intensity his-
togram of homogenous cervical tissue, and �b� the homogenous tissue
are segmented as acetowhite region �gray� and mature squamous re-
gion �white� using color information. The dark region within the cer-
vix region corresponds to the cervical os, columnar epithelium, and
the texture region.

Fig. 5 Acetowhite color analysis: �a� binary map of the texture region,
�b� binary map of the combined texture and acetowhite color regions,
�c� automatic three-level clustering using color information.
January/February 2009 � Vol. 14�1�5
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In our analysis, the higher the color score, the whiter the
egion appears. The result of the three-class clustering is
hown in Fig. 5�c� with the light blue color indicating the
ighest color score, the dark red the middle color score, and
ellow the lowest color score. The yellow region is consid-
red metaplastic region instead of acetowhite lesion due to its
ow-color score.

.3.3 Elastic image registration

n colposcopy, acetowhite epithelium refers to epithelium that
ransiently changes color from pink or red to white after the
pplication acetic acid. One limitation of the texture and color
nalysis of the post-acetic-acid image only is that we can only
ssess the property of acetowhite epithelium spatially. To de-
ermine how much the color and intensity changes by the
cetic acid application, we should also analyze the image of
he cervix acquired before applying acetic acid.

An important step prior to the opacity analysis is to align,
r register, the pre- and post-acetic-acid images. For the acetic
cid application method applied in our clinical trials in Peru
nd the United States, it usually takes 1 to 2 min for the ace-
ic acid to take effect. During this time, relatively large move-

ents of the patient, device, and tissue can occur. Registration
ethods based on geometric features30 usually show poor per-

ormance for this case due to lack of robust features in the
issue images. To account for these movements, we developed

robust and fully automated elastic registration algorithm to
egister the pre- and post-acetic-acid images. The method is
ormulated as an optimization over a set of continuous defor-
ation vector fields:31,32

h* = argminh�J�f ,g,h�� , �4�

J�f ,g,h� = JD�f ,g,h� + �JR�h� , �5�

here h* is the optimal solution, f and g are the images to be
egistered, JD is a cost function measuring the dissimilarity
etween the images, JR is a regularization term, and � is a
roportionality constant determining how much regularization
s used.

The similarity is based on the normalized sum of the
quared differences between the acetic acid image g and the
re-acetic-acid image f , deformed by h:

JD�h, f ,g� = �
i,j

�f�h�i, j� + �i, j�� − g�i, j�	2. �6�

he regularization criterion JR penalizes unsmooth deforma-
ions. We choose JR so that its gradient coincides with the
inearized 2-D elastic operator describing equilibrium in an
lastic material.

�JR�h� = 	
h + �1 − 	� � �� · h� . �7�

he 	 is a constant in the range of �0, 1�. By adding the
egularization criterion to the global cost function, we model
he image as an elastic sheet that tries to retain its form in the
resence of an external force. The JR can be expressed in the
ollowing discrete form
ournal of Biomedical Optics 014020-
JR�h� = �
i,j

�	�
1hi,j
1 �2 + �1 − 	���
1hi,j

1 �2 + �
2hi,j
1 �2�	

+ �	�
2hi,j
2 �2 + �1 − 	���
2hi,j

2 �2 + �
1hi,j
2 �2�	 , �8�

where


1hi,j
k = hi,j

k − hi−1,j
k , 
2hi,j

k = hi,j
k − hi,j−1

k . �9�

The initial transformation is assumed to be translation only.
The translation vectors are calculated using the normalized
2-D cross-correlation. The method of gradient descent with
adaptive step size is used for optimization. To speed up
the transformation process, the multiresolution scheme is
employed.

In our application, texture and color analysis is performed
on the post-acetic-acid image. Our registration process is,
thus, designed to deform the pre-acetic-acid image to fit the
post-acetic-acid image. Figure 6 shows an example of regis-
tering a pre-acetic-acid image with a post-acetic-acid image.
Figure 6�a� is the image of cervix before the acetic acid ap-
plication, and Fig. 6�b� is the image after the acetic acid ap-
plication. Figure 6�c� is the registered/aligned pre-acetic-acid
image, and Fig. 6�d� is a display of the displacement of the
vector fields after the translation, which demonstrates the lo-
cal deformation of the tissue.

Fig. 6 Elastic image registration �a� pre-acetic-acid image, �b� post-
acetic-acid image, �c� registered pre-acetic-acid-image, and �d� the
display of soft tissue movement after translation.
January/February 2009 � Vol. 14�1�6
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.3.4 Acetowhite opacity analysis
fter image alignment, the acetic-acid-induced changes can
e captured by subtracting the registered pre-acetic-acid im-
ge from the post-acetic-acid image. Figure 7�a� shows the
ifference of the two images in the G channel in RGB space
nd Fig. 7�b� shows the differences of the two images in the a
hannel in CIE-Lab space.

Immature metaplasia and columnar epithelium tissue also
urns transiently white after acetic acid application. These epi-
helia do not exhibit dysplastic tissue changes and should be
xcluded from the acetowhite region of interest. Due to the
act that these tissue regions usually exhibit a minor opacity
hange, we apply a two-step mean shift clustering algorithm
n the color difference feature space. The first step segments
he dominant opacity change and removes minor opacity
hange. The second step segments the most opaque change
rom the foreground region obtained in the first step. An opac-
ty index is computed as the mean color difference of the most
paque region. Here, the most opaque region is defined as the
egion with the largest mean color difference. The definition
f the opacity index is as follows:

OpacityIndex =
1

�2n − 1����
i,j

�f
k
*�i, j� − gk�i, j��p � r�i, j��1/p

,

�10�

here n is the number of bits of the image; f
k
* is the registered

re-acetic-acid image; and gk is the selected post acetic acid
mage, both at the k color channel of the image �k=1,2 ,3�; r
s the most opaque region extracted from the mean shift clus-
ering algorithm in binary form; � is the number of fore-
round pixels in the opaque region r. The p norm metric
an be used but for simplicity, p is set to 1 in the current
mplementation.

Generally speaking, the opacity index determination can
e applied to images in any color space. However, in the
urrent implementation the a channel of the perceptually uni-
orm CIE-Lab color space is utilized. Unlike the L channel, or
ed, green, and blue in RGB color space, the a channel is not
ffected by the light distribution and intensity of the light

ig. 7 Opacity analysis: �a� difference in G channel of RGB color
pace, and �b� difference in a channel of CIE-Lab color space.
ournal of Biomedical Optics 014020-
source. Also since the color of cervical tissue usually changes
from pink/red to white after acetic acid wash, the a channel is
chosen instead of the b channel to better capture the color
changes of cervical tissue. The corresponding experimental
results are described in the following section.

The final acetowhite epithelium is obtained by grouping
the acetowhite color regions with similar opacity values. The
postprocessing step is used to obtain more accurate lesion
boundary using the spatial information from the texture and
color analysis.

3 Results
Figure 8 illustrates the acetowhite epithelium analysis results
from one subject with HSIL. Figure 8�a� is the results overlay
of the opacity analysis and regions with blue contours indicate
the most opaque white lesions and regions with green con-
tours are indicative of intermediate opaque white lesions. Fig-
ure 8�b� is the result of final acetowhite epithelium detection,
which combines the texture and color analysis with the opac-
ity analysis. The blue contours indicate the first level of ac-
etowhite regions and the green contours outline the second
level of acetowhite regions. By combining texture, color, and
opacity, the different acetowhite regions now correlate well
with the colposcopic annotations, as illustrated in Fig. 8�c�. In
Fig. 8�c� the colposcopic annotations of opaque white and
intermediate-opaque white are indicated by blue and green
outlines, respectively. Figure 8�d� is the histological map on

Fig. 8 �a� Acetowhite opacity analysis, blue-opaque, green-
intermediate opaque; �b� final acetowhite epithelium detection, blue-
first level of white, green-second level of white; �c� colposcopic an-
notations, blue-opaque white, green-intermediate opaque white, and
�d� Histopathology results: white−normal; black−no epithelium/
burned epithelium; blue−LSIL; red−HSIL.
January/February 2009 � Vol. 14�1�7
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he cervical image. The white outline indicates the contour of
he mapped excised specimen; the white straight line seg-

ents are normal epithelium �squamous or immature metapla-
ia�; black lines indicate no epithelium or burned epithelium;
ed lines are HSIL and blue lines are LSIL.

The location of acetowhite epithelium and the anatomical
ites detected by the image analysis system has been evalu-
ted using one colposcopist’s annotation as the criterion stan-
ard. The true positive and true negative results are computed
ased on pixel-to-pixel match �number of overlapping pixels�
etween the result of the automated image analysis system
nd the colposcopic annotations. A positive percent agreement
PPA� and a negative percent agreement �NPA� can, thus, be
omputed for each patient to evaluate the agreement between
omputer detected results with the colposcopic annotation:

PPA =
NTruePositive

NTruePositive + NFalseNegative
, �11�

NPA =
NTrueNegative

NTrueNegative + NFalsePositive
. �12�

or a subset of the patients with colposcopic annotations �53
ubjects�, average PPA and NPA were computed for the cervix
egion, cervical os region, columnar epithelium, and ac-
towhite epithelium �Table 1�. The highest PPA is noted for
dentification of the cervix and the lowest for identifying the
ervical os. All NPA results were 90% or greater.

Figure 9 indicates the correlation between disease and the
pacity indices extracted from cervical images using 99 hu-
an subjects. Ninety-two patients were given a final study

iagnosis based on the most severe histology results. Seven
ubjects had no tissue specimen taken and for these subjects,
he colposcopic diagnoses were used as criterion standard. In
ig. 9, “�” indicates normal or low-grade lesions including
ED �no evidence of disease�, HPV subclinical change, and
IN1, CIN12 lesions; “�” indicates high-grade lesions in-
luding CIN2, CIN23, and CIN3 lesions; and “�” indicates
icroinvasive or invasive cancer. The “�” sign in the figure

ndicate false positives of opacity index introduced by a
hite-yellowish secretion called mucus. The appearance of
ucus mimics the appearance of the acetowhite epithelium

nd causes high opacity values. The study protocol specified
he removal of the mucus prior to acquiring an image but for
few subjects the mucus was not removed or additional mu-

us was being secreted during exam. Except the false posi-

able 1 Performance of image analysis systems compared with col-
oscopic annotations.

ervical Features PPA �%� NPA �%�

ervix 86.2 95.7

ervical os 46.0 99.2

olumnar epithelium 68.1 96.8

cetowhite epithelium 65.0 90.1
ournal of Biomedical Optics 014020-
tives introduced by mucus, from Fig. 9, we can see that nor-
mal and low-grade lesions have much lower opacity ��5% �
than high-grade lesions and cancer cases.

The pathology disease spectra with corresponding opacity
indices were used to populate a statistical model for classifi-
cation of patients into categories of high-grade disease or non-
high-grade disease. A multivariate discriminate analysis33 was
employed. Two training and testing strategies were used. One
strategy was the leave-one-out method in which each subject
is removed sequentially from the data set; the classifier is
trained on all the remaining subjects, and the extracted subject
is then predicted and compared with the pathologic findings.
This procedure is repeated for all subjects. In the second strat-
egy, the data set was randomly partitioned into five disjoint
subsets �5-Folds�. Four subsets were used for training, and the
last subset was used for evaluation. This process was repeated
five times, leaving a different subset for evaluation each time.
The process for both methods was repeated 500 times respec-
tively and the corresponding best-fit receiver operating char-
acteristic �ROC� curves were determined, as illustrated in Fig.
10. In our application, the leave-one-out strategy produced
better performance than 5-Fold according to their areas under
the ROC curves �AUC�. The AUC for leave-one-out was 0.94
and the AUC for 5-Fold was 0.89. The best algorithm perfor-
mance in leave-one-out was 94% sensitivity and 87% speci-
ficity. Figures 9 and 10 indicate that a continuous, quantified
opacity index has a high-correlation in discriminating high-
grade lesions from low-grade lesions and can serve as one
major diagnostic feature in a CAD system.

4 Discussion and Conclusions
Visual appraisal of the lower genital tract is a complex task.
The visualization process first involves identification of the
normal anatomy, when present, including epithelial and vas-
cular features. Then, a colposcopist must differentiate normal
from abnormal findings. To further entangle matters, each ap-
praisal is unique due to substantial intrapatient variability. It is
even more challenging when the evaluation is made on a
static, 2-D image with varied illumination, solitary magnifica-

Fig. 9 Correlation between opacity index and disease spectrum of 99
human subjects.
January/February 2009 � Vol. 14�1�8
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ion, fixed acetic acid response, and obscuring artifacts. The
nterobserver agreement in the visual evaluation of cervical
mages among colposcopist is, thus, low.34,35

The major accomplishment of this study is the potential
sage of the proposed opacity index for discriminating cervi-
al intraepithelial neoplasia and the fully automated ac-
towhite epithelium analysis system using two cervical im-
ges per exam. One image is taken before the acetic acid
pplication, and the other is taken after the acetic acid appli-
ation. The image analysis system first identifies the normal
natomy, including cervix, os, and columnar epithelium. Sec-
nd, a texture and color analysis of the acetowhite epithelium
s done using the post-acetic-acid image. Third, the pre-acetic-
cid image and post acetic acid image are automatically
ligned using an elastic image registration algorithm. Then,
he opacity region can be extracted by subtracting the aligned
re-acetic-acid image from post-acetic-acid image and the
pacity index is then computed.

Preliminary results on 99 human subjects demonstrate a
igh correlation of disease severity with the acetowhite opac-
ty index. In the future, a set of algorithms can be combined
ith automated analyses of other cervical features such as

bnormal blood vessels36 and lesion margin characteristics37

o derive a clinical diagnosis. We are currently scheduling
arge-scale clinical trials to acquire more human subject data
o further evaluate and expand our system. Furthermore, the
lgorithms could be embedded to a screening device that can
e operated by nonmedical personnel. Such a device with
iagnostic capability has the potential to screen women living
n locations where routine Pap testing is not possible and un-
erserved women in developing countries where access to
killed colposcopists is limited.

There were several limitations of our study. First, the dense
ucus retained on the tissue will affect the opacity index

xtraction and it must be excluded in advance. We are cur-
ently investigating using the motion information to detect a
ucus areas through a low-resolution decay video stream.
econd, the disease prevalence in our data is relative high and
e require more normal and low-grade subjects to further
alidate our findings. However, the automated acetowhite epi-

ig. 10 ROC curves for discriminating high-grade �CIN2 and above�
esions from normal and low-grade lesions using opacity indices.
ournal of Biomedical Optics 014020-
thelium analysis supports additional work, adding other cer-
vical features-such as mosaic and punctation vessels. A com-
plete system could be a valuable resource and adjunct to help
reduce the morbidity and mortality associated with cervical
neoplasia.
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