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Abstract. Segmentation of optical coherence tomography �OCT� im-
ages provides useful information, especially in medical imaging ap-
plications. Because OCT images are subject to speckle noise, the
identification of structures is complicated. Addressing this issue,
two methods for the automated segmentation of arbitrary structures in
OCT images are proposed. The methods perform a seeded region
growing, applying a model-based analysis of OCT A-scans for the
seed’s acquisition. The segmentation therefore avoids any user-
intervention dependency. The first region-growing algorithm
uses an adaptive neighborhood homogeneity criterion based on a
model of an OCT intensity course in tissue and a model of speckle
noise corruption. It can be applied to an unfiltered OCT image. The
second performs region growing on a filtered OCT image applying the
local median as a measure for homogeneity in the region. Perfor-
mance is compared through the quantitative evaluation of artificial
data, showing the capabilities of both in terms of structures detected
and leakage. The proposed methods were tested on real OCT data
in different scenarios and showed promising results for their applica-
tion in OCT imaging. © 2009 Society of Photo-Optical Instrumentation Engineers.
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Introduction

ptical coherence tomography �OCT� is a powerful imaging
echnique with important applications in several fields. It is,
or instance, used in the analysis of biological samples by
btaining high-resolution cross-sectional backscattering
rofiles.1 OCT has also been used in several medical applica-
ions, mainly ophthalmology, dermatology, and urology.2 In
phthalmology, OCT scanning of the retina aims at the analy-
is of the different morphological layers, which contain im-
ortant structures for the diagnosis of pathological situations.
ecent research activities showed that OCT also possesses a

trong potential for displaying brain morphology.3 In this con-
ext, OCT imaging aims at providing the surgeon with infor-

ation at the microscale level, intraoperatively. Applications
nclude the identification of residual tumor tissue or white

atter fibers that can be integrated into the navigation envi-
onment, such as a microscope, by means of virtual reality.

A crucial role for automated information extraction in
edical imaging, such as OCT, usually involves the segmen-

ation of areas of the image for, e.g., quantification of tissue

ddress all correspondence to Fernando Gasca, Institute for Robotics and Con-
nitive Systems, Ratzeburger Alle 160-Lübeck, 23538 Germany; Tel: 49451317
310; Fax: 494515005202; E-mail: gasca@rob.uni-luebeck.de
ournal of Biomedical Optics 034046-
volumes, diagnosis, and localization of pathologies. Image
segmentation itself is an ongoing issue in medical image-
processing research. Numerous approaches regarding medical
image segmentation have evolved in the past and can be clas-
sified into eight major categories �see Ref. 4�: �i� thresholding,
�ii� region-growing approaches, �iii� classifiers, �iv� clustering
approaches, �v� Markov random field models, �vi� artificial
neural networks, �vii� reformable models, and �viii� atlas-
guided approaches. Their advantages and disadvantages are
discussed in Ref. 4. A common approach to segmentation is
the above-mentioned region-growing approach �RGA�. The
goal is to use image characteristics to map individual pixels in
an input image to sets of pixels called regions, usually with
common properties. Commonly, region growing methods start
at the location of a seed and growing is governed by a homo-
geneity criterion. These criteria can be based on the intensity
information and/or edges in the image.5 General drawbacks of
region growing are its user dependency by manual seed place-
ment, sensitivity to changes in the seed’s location, leakage,
and the difference in the nature of the data to be analyzed.

Segmentation of OCT images has been investigated in lim-
ited fields. Primarily in ophthalmology, several approaches
have been developed for the segmentation and identification

1083-3668/2009/14�3�/034046/21/$25.00 © 2009 SPIE
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f retinal layers.6–8 In other fields, such as dermatology, Hori
nd Yasuno9 developed a method for automatic segmentation
f different structures in the human skin. In Ref. 10, a method
or the segmentation of cartilage images from OCT is pre-
ented. It is important to note that the former examples focus
n images with certain characteristics and do not feature OCT
ata segmentation in a more general sense.

The segmentation of OCT images generally faces two ma-
or problems. First, the intensity course in OCT images results
rom absorption and scattering of light in tissue. Thus, inten-
ity of a homogeneous area decreases with increasing imaging
epth deterministically. This complicates common segmenta-
ion approaches, which are usually based on the assumption
hat intensity variations of homogeneous regions are only due
o noise and not inherent to the imaging modality. The second
roblem is that OCT images are subject to speckle noise,
hich decreases the image quality and complicates the image

nalysis.
The latter problem has been targeted by the development

f many image-processing methods for enhancement by the
eans of speckle-noise reduction �see Ref. 11 for an over-

iew�. Related techniques originate in the synthetic aperture
adar �SAR� community and have been also applied to the
eld of ultrasonic imaging. To date, commonly applied filters
or speckle removal in SAR and ultrasonic images include the
ee,12 the Frost,13 and the Kuan filter.14 The disadvantages of

hese filters are the output dependency on the size and the
hape of the respective filter kernel and the inability to en-
ance edges that could destroy important information. These
rawbacks have led to the development of edge-sensitive or
nhancing filters. Some of these filters are based on the solu-
ion of a diffusion equation derived from the heat equation
nd are also known as partial differential equation �PDE�-
ased anisotropic filters. This approach was first introduced
y Perona and Malik and led to the so-called Perona–Malik
lter.15 Generally, these filters encourage smoothing along,
hile prohibiting smoothing across edges.15,16 In Ref. 17, the
DE-based formulation is extended to a nonlinear complex
iffusion process with a complex valued diffusion coefficient.
n recent work on OCT imaging, these two different filtering
pproaches for OCT images are compared.18

Despite the advantage that edge-sensitive filtering en-
ances the suitability of common RGAs, filtering also alters
he image in a way that important information may not enter
he segmentation step. On the other hand, if segmentation is
erformed on unfiltered data, common homogeneity criteria
end to fail because of speckle-noise corruption.

In this work, we propose two approaches to automated
eeded region growing for the segmentation of OCT images.
utomation of the algorithm is provided by a model-based

eed-detection algorithm, which analyzes the intensity profile
f an A-scan. Thus, the user dependency is reduced signifi-
antly compared to a manual seed selection. In both ap-
roaches, the seed detection is followed by a region-growing
lgorithm. The first approach applies an adaptive neighbor-
ood homogeneity criterion within unfiltered OCT images
hile the other is based on edge-sensitive filtered images. The
ltimate goal of both algorithms is to automatically locate
pecific structures in OCT images in order to facilitate the
sage in diagnosis and/or extraction of morphological infor-
ation. The information could, for instance, be used for medi-
ournal of Biomedical Optics 034046-
cal navigation, where OCT information is acquired from the
probe tip directly and correlated to existing morphological
data �e.g., computer tomography data�.

The approach is illustrated for the detection and identifica-
tion of white matter fibers, a valuable application for neuro-
surgical navigation, where the integration of a real-time im-
aging modality, such as OCT can provide important
information intraoperatively. We also present the application
and results for the segmentation of low and highly scattering
structures in multiple OCT images, indicating the generality
of the proposed approach.

2 Materials and Methods
Both segmentation approaches consist of two steps. The first
step, which is common to both algorithms, performs an auto-
mated, model-based seed detection. This step forms the basis
for the automatic characteristic of the approach. Changes of
tissue characteristics are detected by analyzing the intensity
profiles that are given by the columns of a B-scan image
�A-scans�. The detected seeds are used for a region-growing
method forming the second step. Two approaches for the re-
gion growing featuring different growing criteria are intro-
duced as follows:

1. An adaptive neighborhood region growing �ARG�.
2. A filtered-image region growing �FRG� approach based

on a edge-sensitive filtered version of the original OCT
image.

Although the first approach derives the homogeneity criterion
based on an adaptive neighborhood filtering approach and an
OCT intensity model, the latter uses statistical measures of the
intensity values for the growing process. Figure 1 shows flow-
charts for both approaches.

2.1 OCT and Speckle-Noise Modeling
OCT is based on the principle of interferometry. The resulting
waveform is the sum of the light waves from reference path
and sample path. Because being used for imaging purposes in
medical applications, analytical models of OCT systems have
been developed in order to extract optical properties of tissue
to support diagnosis. Different approaches have been pro-

Fig. 1 Flowcharts of proposed region growing approaches: �a� adap-
tive neighborhood region growing �ARG� and �b� region growing on
filtered image �FRG�.
May/June 2009 � Vol. 14�3�2
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osed. The most advanced models incorporate the multiple-
cattering contribution to the OCT signal. Two models are
sed for extraction of tissue parameters: the radiative trans-
ort model19 and the extended Huygens–Fresnel model.20

heir analytical expression is divided into three terms, one
erm representing the single-scattering contribution, another
erm representing the contribution of multiple-scattering, and
he last term denoting the cross relation. See Ref. 20 for a
etailed explanation. Turchin et al.21 derive a theoretical
odel of the OCT signal for layered media, which integrates

mall-angle scattering at low depths as well as light diffusion
t large depths. The nonlinear model consists of a set of un-
nown parameters, which are subsequently optimized by a
enetic algorithm to fit a measured A-scan profile. Thus, dif-
erent tissue characteristics can be determined.

In this work, a simplified OCT model based on the single-
cattering effect will only be used. Although it does not ac-
ount for all effects of light propagating through tissue, such
s multiple scattering, the simplified model allows linear
odeling of the OCT intensity signal. Thus, linear filter

heory can be applied and will be done throughout this work.
n Ref. 22, the authors propose a model where the measured
ntensity is proportional to an exponential decay

I�z� = I0 exp�− 2�z� , �1�

here I0 is the initial intensity and � denotes the scattering
oefficient, and z the scanning depth. In brain imaging, the
esults in Ref. 23 show that � differs for various tissue struc-
ures �e.g., cortex, external capsule� allowing a clear distinc-
ion of white and gray matter. This fact motivates the use of
he simplified model for OCT analysis despite its theoretical
hortcomings.

In addition to modeling the intensity, speckle noise cor-
upting OCT images can be modeled statistically. It is usually
ssumed to be a multiplicative random noise. If f denotes the
deal image and g the speckled image, this assumption can be
xpressed as

g = fu , �2�

here u is a signal-independent random variable whose prob-
bility density function �PDF� depends on the image type.12,24

ommonly, the speckle PDF is assumed to follow an expo-
ential distribution described by

pu�x� = �exp�− x� if x � 0,

0 otherwise.
�

n Ref. 24, the speckle mean and standard deviation over a
omogeneous and featureless area are derived as

ḡnom = f̄ ū �3�

nd

�gnom
= f̄�u. �4�

his means that the speckle standard deviation is proportional
o the mean value of the uncorrupted image in a homogeneous
rea. The noise level is thus proportional to the local gray
evel, meaning that a bright area will be more corrupted than
ournal of Biomedical Optics 034046-
a low-intensity area. This important property of speckle noise
complicates the general image-processing approaches.

In the following, two contributions to the local intensity at
a depth z in an OCT image will be considered:

1. Deterministic contribution. The deterministic part at a
depth z+�z evolves from Eq. �1� and can be formulated as

I�z + �z� = I0 exp�− 2�z�exp�− 2��z� = I�z�exp�− 2��z�
�5�

2. Statistical noise contribution. The stochastic noise con-
tribution at depth z will be accounted for according to Eqs. �3�
and �4�. This means that noise corruption is proportional to
the local gray value I�z� at depth z.

2.2 Automated Seed Detection
A basic requirement for region growing methods is the speci-
fication of seeds, which serve as a starting point for an itera-
tive growing process. A fundamental adept of the proposed
method is the automated acquisition of the seeds, derived
from an A-scan analysis. An OCT A-scan is a one-
dimensional intensity profile over the depth of the scanned
sample. The method relies on the simplified model of OCT
intensity stated in Eq. �1� and the statistical nature of speckle
noise. In a first step, the A-scan course is linearized by apply-
ing the natural logarithm operator to Eq. �1�

ln�I�z�� = ln�Io� − 2�z = Ĩo + mz . �6�

In the computational scenario, the intensity course is dis-
cretized. If zk denotes the depth-related pixel, Eq. �6� can be
transformed to

Ĩ�zk + 1� = Ĩ�zk� + m�. �7�

where m� denotes the pixel-related slope resulting from a
scattering coefficient �.

Automated detection of seeds is exemplary elaborated for
white matter detection in OCT images. A good indication of
white matter areas in A-scans is based on the high optical
contrast of a white matter structure which manifests itself as a
sudden increase �spike� in intensity �see Fig. 2�. The detection
of the spike location can therefore be used as an indicator for
white matter areas. Calculating the first derivative of the
A-scan intensity course and simple thresholding provides the
location of potential white matter regions. A spike at zk is
detected if

Ĩ�zk� − Ĩ�zk − 1� � �1. �8�

The corresponding threshold �1 is based on gray values per
pixel difference. Analyzing the first derivative of the intensity
according to Eq. �8� provides a set of white matter–induced
peak candidates �see Fig. 2�. The signal, however, is also cor-
rupted by speckle noise severely distorting the signal quality.
Similar to changes caused by white matter, speckle noise also
introduces a spiking characteristic to the intensity signal. This
complicates the white matter detection in OCT A-scans, and a
robust classification of white matter has to be designed. To
differentiate white matter peaks from speckle-noise–induced
peaks, two cases can be analyzed. Assume a homogeneous
May/June 2009 � Vol. 14�3�3
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rea with the intensity f . Speckle noise introduces spikes in
wo ways, as follows:

1. Speckle related spikes results in an intensity increase.
Referring to Eq. �2�, this corresponds to the case where
u�1.

2. Speckle results into a sudden decrease of intensity
�u�1�, which is then followed by a sudden increase to
the ideal intensity f , which would subsequently be de-
tected as a peak candidate.

he set of white matter–induced peak candidates is now re-
ned by analyzing the following two criteria:

1. Assume an intensity spike because of u�1 at the loca-
tion zk is introduced by speckle noise. Because speckle
noise features random characteristics, the intensity at
pixels following the spike most probably drop again.
White matter areas, however, will show a slow increase
with a characteristic slope �see Eq. �7��. Therefore,
white matter can be classified if the ratio

Ĩ�zk + n�

Ĩ�zk + n − 1�
� �2 for n = �1 . . . lT� . �9�

Here, �2 denotes a slope-related threshold and lT the
length of the white matter tail.

2. For speckle related spikes according to the second sce-
nario u�1, an additional measure is introduced. It re-
lates the intensity at the detected spike location zk to the
mean of intensities previous to the spike location. A
white matter–related spike is detected if

Fig. 2 �a� Sample B-scan of a coronal section of th
ournal of Biomedical Optics 034046-
Ĩ�zk�

��n=1
N Ĩ�zk − n��/N

� �3. �10�

Here, N denotes the number of pixel locations previous
to the spike, which will be taken into account.

White matter detection is now done by analyzing the A-scan
and its derivate. A set of peak candidate is found according to
the criterion given in Eq. �8�. Subsequently, criteria Eqs. �9�
and �10� are used to find the set of true white matter–induced
peaks. Figure 3 shows results for an exemplary A-scan.

After having identified seed candidates in the OCT A-scan,
a third robustness measure, called a low-consistency check, is
introduced. The location of detected seeds is compared to the
location of detected seeds in the neighboring A-scans. There-
fore, a 5�5 window with its center being the current seed is
analyzed. If this window contains more than four additional
seeds, then the current seed is approved.

Performance of the proposed seed detection scheme is
strongly dependent on the threshold parameters �1, �2, and
�3. Heuristics for the choice of the thresholds and the overall
performance evaluation is based on an extensive analysis of
simulated B-scans �see Sec. 3.2�. The proposed seed-detection
algorithm is now summarized in the following definition.

Definition 1. Let I denote an image. Then,

S = seedDetection�I,�1,�2,�3� �11�

is defined as the set of seed pixels provided by the A-scan
intensity course based white matter detection.

rain and �b� A-scan showing white matter regions.
e rat b
May/June 2009 � Vol. 14�3�4
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.3 Adaptive Neighborhood Region Growing �ARG�

ommon region growing approaches tend to fail in OCT im-
ges because of the exponential decay according to Eq. �1�
nd the speckle-noise corruption. This is because the OCT
ignal properties and the dependency of the noise on the local
ntensity is not reflected by the homogeneity criteria used in
hose methods. Resulting from research in the image-filtering
ommunity, adaptive filters have been developed that estimate
he speckle standard deviation �u based on the local mean.24

he approach has proven to be well suited for filtering of
AR images. For OCT images, however, this approach is not
ptimal as the intensity level follows a deterministic behavior
s shown in Eq. �1�. To perform region growing based on
daptive neighborhood filtering, the approach will be ex-
ended by incorporating the OCT intensity model into the ho-

ogeneity criterion. The approach is based on the following
deas:

1. The homogeneity or growing criterion for OCT images
ill be affected by two parts: a deterministic part incorporat-

ng the modeled behavior as in Eq. �1� and a stochastic part
ased on the local average and standard deviation.

2. The speckle-noise standard deviation �ghom
is not

nown a priori and will be estimated within a local neighbor-
ood according to Eq. �4� �as proposed in Ref. 24�.
n the following, an adaptive homogeneity criterion based on
he evaluation of local statistics and the deterministic model

ig. 3 Seed detection in OCT image of a coronal section of the rat
rain with embedded white fibers: �a� Original A-scan, �b� first deriva-
ive of the A-scan and proposed peaks indicated by gray crosses, and
c� original A-scan with classified white matter peaks indicated by
ray crosses.
ournal of Biomedical Optics 034046-
in Eq. �1� will be developed. The criterion uses the median to
estimate the central tendency locally, as in Ref. 25. The me-
dian is robust in terms of outliers, which in this case, suits the
purpose due to the presence of speckle noise. Additionally, it
is simple to implement. To introduce the approach the follow-
ing definitions are made.

Definition 2. Let s denote a pixel of a speckle noise cor-
rupted image g. Then �n�s� denotes the n�n neighborhood
of s and �n,y�s� denotes the n�1 rowwise neighborhood in
the row y (neighboring pixels in the same row).

Definition 3. Let s denote a pixel of a speckle noise cor-
rupted image g and g�s� the gray value at pixel s. Let q be a
pixel and element of �n�s�. The confidence interval �T1 ,T2�
for q determines the range of valid g�q� values for it to be-
come part of the current region and is given by

T1�q� = gmed�q� − c1
u

ū
gmed�q� ,

T2�q� = gmed�q� + c2
u

ū
gmed�q� . �12�

where c1 and c2 are confidence interval shift parameters and

gmed�q� = �median��n,z�s��exp�− 2��y� if qz � sz,

median��n,y�s�� if qz = sz,

median��n,y�s��exp�2��z� if qz 	 sz
	

where sz and qz denote the z-coordinate of the pixel, which
corresponds to the imaging depth and �z their depth differ-
ence. The adaptive region growing homogeneity criterion is
then defined as

homARG�q,s� = � true if g�q� � �T1,T2�
false otherwise.

�
For the definition of gmed�q�, the OCT intensity exponential
decay model is considered. Where, if an evaluated pixel q is
located at a lower depth than the seed s, then the estimation
will consider a positive exponential; whereas if pixel q is
located at at higher depth that s then the estimation will con-
sider the negative exponential decay. If pixels s and q have
the same depth, then the local statistical situation is consid-
ered through the median. On the basis of the mentioned ob-
servations and definitions above, the following steps are taken
for the ARG:

1. Obtain an initial seed set S by performing the seed de-
tection.

2. Estimate the local average ḡhom as the row-wise median
�n,y�s� within the row of the seed pixel s.

3. For every pixel q in a 3�3 neighborhood of a seed
pixel s, calculate the confidence interval according to
Eq. �12� and evaluate the membership to the region
according to the homogeneity criterion.

4. If membership is given, meaning the homogeneity cri-
terion is fulfilled, include the neighbor pixel q into the
seed set S and the set of detected white matter R.

5. Stop the region growing if the seed set S is empty.
The main advantages of the approach are the adaptivity of the
homogeneity criterion, the integration of the deterministic in-
May/June 2009 � Vol. 14�3�5
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ensity decay, and the integration of speckle-noise corruption
nto the homogeneity criterion. Thus, the region growing is
ble to work on an unfiltered OCT image.

.4 FRG
s stated in Sec. 1, numerous noise-removal techniques have
een developed for the reduction of speckle-noise corruption.
ilters that do not support edge preservation are generally not
uitable for RGA. Edge-sensitive or enhancing filters, how-
ver, try to smooth along edges and not across them, thus
eing good candidate filters for subsequent region growing

ig. 4 Simulated OCT A-scan with one embedded white matter area:
howing the embedded white matter region, �c� corrupted A-scan dat

ig. 5 Simulation of OCT B-scan images of a coronal section of the rat
rain matter and �b� simulated white fibers embedded into gray brain
ournal of Biomedical Optics 034046-
approaches. The review of recent OCT-related literature18

shows that the Perona–Malik and the complex diffusion filter
are suitable approaches for OCT image filtering. Although the
Perona–Malik serves primarily as a edge-preserving denoising
process,15 the complex diffusion filter performs even better
denoising image, also avoiding staircasing,17 which can be an
additional source of artifacts. For the rest of this work, the
following definitions will be used:

Definition 4. Let I denote a gray-valued image. Then,

ĝ = pmFilter�g,N,K� �13�

orrupted A-scan data, �b� linearized uncorrupted A-scan with arrows
�d� linearized corrupted A-scan data.

with embedded white fibers: �a� Real white fibers embedded into gray
r.
�a� Unc
a, and
brain
matte
May/June 2009 � Vol. 14�3�6
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s defined as the edge-sensitive filtered version of g according
o Ref. 15.

In this formulation, N denotes the number of iterations and
denotes the edge threshold parameter. In Ref. 17, the con-

ept is extended to a complex diffusion process.
Definition 5. Let I denote a gray-valued image. Then,

ĝ = cdFilter�g,N,K� �14�

s defined as the complex diffusion filtered version of g ac-
ording to Ref. 17.

Filtering according to both approaches incorporates the
ollowing features:

1. region smoothing
2. edge enhancing

egion growing for the filtered version of the image follows
he same guidelines as the ARG approach except that the ho-

ogeneity criterion is chosen differently. This is because the
ntensity distribution in the image is altered and the effect of

ig. 6 JC index and HD for different parameters m� and c1 for the A
ompromise for the two performance measures is in the interval of c
ournal of Biomedical Optics 034046-
speckle noise is reduced through the filtering process. In fact,
the criterion can now be selected as a simple, intensity-based
criterion employing the median operator.

Definition 6. Let s denote a pixel of a speckle noise cor-
rupted image g and ĝ the filtered version. Let ĝ�s� denote the
gray value at pixel s. Let q��n�s�. Then, the confidence in-
terval �T1 ,T2� at q is given by

T1�q� = c1 · median��̂n�s�� ,

T2�q� = c2 · median��̂n�s�� , �15�

where c1 and c2 are confidence interval shift parameters. The
filtered region growing homogeneity criterion is then defined
as

proach with: �a� PCR=20, �b� PCR=25, and �c� PCR=30. The best
. . .0.97.
RG ap
1=0.93
May/June 2009 � Vol. 14�3�7
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homFRG�q,s� = � true if ĝ�q� � �T1,T2�
false otherwise.

�
Results

.1 Simulated B-Scan
erformance evaluation of both segmentation approaches is
chieved through the simulation of white matter fibers in ar-
ificial B-Scans. Hereby, an artificial B-scan is composed of a
xed number of artificial A-scans, which are generated ac-
ording to the intensity model shown in Eq. �1�. Two tissue
tructures, namely, white and gray brain matter, are incorpo-
ated by using different scattering coefficients �WM and �GM
espectively. Generally, the basic decay with increasing depth
s assumed to be governed by gray-matter scattering. At ran-
om depth locations, white matter areas are introduced by two
eans, as follows:
1. intensity increase

ig. 7 JC index and HD for different parameters N, K, and c1 for the
ompromise for the two performance measures is located at K
4 wi
ournal of Biomedical Optics 034046-
2. change of scattering coefficient �GM→�WM

The intensity increase at a white matter location is given by
the peak contrast ratio �PCR�, which is defined next.

Definition 7. Let g denote a gray-valued image. Let pqz−1
and pqz

denote neighboring pixels in one column and let pqz−1
be an element of a gray matter area and pqz

be an element of
white matter area. Then,

PCR =
g�pqz

�

g�pqz−1
�

�16�

is defined as the PCR of white and gray matter areas.
The size of the white matter region can also be chosen

randomly. After generating the ideal intensity course, signals
were contaminated with artificial multiplicative noise under
the model of

RG approach with �a� PCR=20, �b� PCR=25, �c� PCR=30. The best
0.99 and c2=1.01.
PM-F
th c =
May/June 2009 � Vol. 14�3�8
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g = fu ,

here u�n� is a stationary noise process which has mean 1
nd variance �u

2.
Figure 4 visualizes the concept. To each image, a fixed

umber of fibers was added. Size and location of the fibers
ere randomly chosen. This way, the simulation reproduced

n approximate behavior of the presence of white matter fi-
ers in brain tissue. In Fig. 5, the artificial B-scan and the
mbedded fibers are shown.

.2 Seed Detection
he seed detection algorithm presented in Sec. 2.2 was evalu-
ted in order to find the optimal set of parameters �1, �2, and

3 for different PCR of structures in the image. Therefore,
rtificial B-scans as described in Sec. 3.1 were created and a
easure for the seed-detection performance was evaluated for

ifferent parameters �1, �2, and �3. Performance evaluation
s based on the following two measures:

1. Percentage of detected white matter structures. The per-
entage of detected white matter structures can be understood
s the sensitivity of the seed-detection process. It indicates
ow many structures �not pixels� are identified by at least one
eed and will therefore enter the region-growing process.

2. Number of false positive seeds. The seed detection re-
ated false positive ratio gives the percentage of false positive
eeds against the total number of detected seeds.
valuation of the parameters was performed on the averaged

esults of n=100 artificial B-scans. Results were obtanied in
erms of a modified receiver operating curve �ROC�. The

able 1 Averaged seed-detection performance for varying PCR for
=100 of simulated B-scans.

CR
% of detected

white matter structures
% of false

positive detected seeds

0 0.91 0.07

5 0.95 0.04

0 0.98 0.02

0 0.98 0.007

0 0.98 0.001

able 2 Averaged results for region growing approaches for n=100 s
nd time consumption for a contrast ratio of PCR=20 of the simulated
C index is in the same range.

JC index

Mean Maximum Minimum Mean

ARG 0.4887 0.5442 0.4168 19.05

PM-FRG 0.2869 0.3486 0.2273 22.30

CD-FRG 0.3025 0.4549 0.1925 25.91
ournal of Biomedical Optics 034046-
modified ROC plots the percentage of detected white matter
structures �equivalent to the sensitivity� against the false posi-
tive rate of the seed detection. The following effects of the
parameter choice on the seed-detection performance can be
deduced from the ROC analysis:

1. The choice of �2=1.25 outperforms other parameter
settings in terms of the false positive and the percentage of
detected structures.

2. The choice of �1=40 yields the best results. This pa-
rameter choice is also supported for other PCR scenarios
�PCR=20 and PCR=30�.

3. The choice of �3 can be seen as a trade-off between the
percentage of detected structure and the false-positive rate. A
choice of �3=0.5 yields a better sensitivity for white matter
structure detection but a higher false-positive rate. The higher
�3, the lower the sensitivity and the false positive detected
seeds. This leads to a choice of �3= �0.5. . .0.7�.
Based on the findings, the following parameters are chosen to
obtain numerical results of the seed detection: �1=40, �2
=1.25, and �3=0.5. Table 1 provides the numerical results of
the seed detection performance. All simulations were consid-
ering parameter values N=4 and lT=3. The choice of these
parameters takes into account the capacity to detect very
small regions. If these parameters were set to higher values,
then they would reach a point in which they could mistake
two adjacent regions.

3.3 Segmentation Performance Measures

The performance measures for both RGAs �ARG, FRG� were
chosen as follows:

1. The Jaccard �JC� index.26 It is given as

JC ª

�X � Y�
�X � Y�

, �17�

where X is a set of segmented pixels in the image to be evalu-
ated and Y is the set of segmented pixels in the reference
image �desired segmentation�. The operator � stands for the
number of elements. This similarity measure is equal to 1 if X
and Y are the same region and zero if they are disjoint re-
gions.

2. The Hausdorff distance �HD�.27 The HD defines the
largest difference between two contours and is a well-
accepted measure for leakage.

d B-scans. Shown are the mean, maximal, and minimal JC index, HD
s. Parameters of the respective filters were chosen such that the mean

HD Time �s�

aximum Minimum Mean Maximum Minimum

31.95 13.60 1.57 2.15 0.93

36.72 12.73 0.53 0.75 0.41

47.38 13.60 0.89 1.15 0.75
imulate
B-scan

M
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ig. 8 JC index and HD for different parameters N, K, c1 for the CD-FRG approach with: �a� PCR=20 and �b� PCR=25, �c� PCR=30. The best
ompromise for the two performance measures is located at K
4 with c1=0.99 and c2=1.01.
ig. 9 ARG and FRG performance in terms of averaged �a� JC index and �b� HD of white matter segmentation for different PCR in simulated OCT
-scans for the ARG and FRG.
ournal of Biomedical Optics May/June 2009 � Vol. 14�3�034046-10
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3. Time. All results were obtained on a PC with 2.4-GHz
rocessing unit and 2 GB of RAM.

.4 Simulation Results
utomated white matter detection was evaluated on n=100

est images with 400�512 pixels. Twenty white matter re-
ions with random location and random size were simulated

ig. 10 Comparison of three region growing approaches for segmen
20�: �a� Exemplary simulated OCT B-scan showing white matter s
D-FRG. For each evaluated method, the segmentation map shows th

n the places where they overlap, darker gray is noted.
ournal of Biomedical Optics 034046-1
in the test images. The images were subsequently corrupted
by speckle noise following an exponential PDF, as shown in
Eq. �3�. The standard deviation of the noise was chosen to be
�u=1. Different peak contrast ratios were analyzed.

Segmentation results of both, ARG and FRG approaches
with edge-sensitive filtering, are dependent on certain param-
eters. To derive an adequate choice of parameters, different

of a white matter fibers in simulated B-scans of brain matter �PCR
es with manual segmentation results, �b�ARG, �c� PM-FRG, and �d�
ence �manual segmentation� in black and the methods results in gray.
tation
tructur
e refer
May/June 2009 � Vol. 14�3�1
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arameter settings were analyzed with respect to the JC index
nd the HD.

.4.1 ARG parameters
n the ARG scenario, the parameters to be varied are the scat-
ering coefficient m� and the confidence interval shift param-
ters c1 and c2. In Fig. 6, the JC index and HD are shown for
ifferent PCRs and parameter sets. The following observa-
ions can be made: generally, the higher the JC index is, the
igher the HD is, which requires the user to find a trade-off
etween segmentation quality and leakage. For all PCR sce-
arios, the following effect of the confidence shift parameter
an be observed: a low shift parameter �e.g., c1=0.90� leads
o a small JC index and a low HD. A high shift parameter
e.g., c1=0.99� also leads to a small JC index but a higher
D. The optimum value of the shift parameter is therefore in

he range c1=0.93. . .0.97.
Observing the simulated segmented images and the

hanges induced by different values of shift paramenter c1, it
as noted that the ratio of correctly identified white matter
ixels over the number of existing white matter pixels, as well
s the ratio of falsely identified white matter pixels over the
umber of existing white matter pixels, decreased as the c1
arameter increased. This indicates that a lower interval shift
arameter imposes less constraints on the growing process
nd therefore identifies more structures of interest but results
n a higher false positive rate. For a high interval shift param-
ter c1=0.99, the ARG identifies only a small subpart of the
hite matter structures which leads to the low JC index. In-

erestingly, the HD is still high. This is due to the fact that the
argest difference between the two contours is not due to leak-
ge but due to the difference of the true contour to the much
tricter segmented version. Extensive simulations have shown
hat the parameter c2 does not influence the results in the
hite matter–detection scenario significantly. This is because

Table 3 Real OC

Scenario Region of interest

wm1 White matter fibers
in coronal rat brain section

wm2 White matter fibers
in coronal rat brain section

Onion Onion cell walls

Urothel Vessels embedded into urothel

Intestine Vessels embedded into intestine wal

Egg Vessel embedded inner skin of egg
ournal of Biomedical Optics 034046-1
seeds are already located in high-intensity areas. Leakage
mostly occurs if the lower bound of the confidence interval is
chosen to be low, which leads to the integration of neighbor-
ing gray matter.

The scattering coefficient m� is actually a characteristic
property of distinct tissue structures. The exact numerical
value, however, is not necessarily known before the segmen-
tation. Therefore, the choice of different m� has also been
examined. According to Fig. 6, an increasing scattering coef-
ficient m�, which also influences the growing process �see Eq.
�12��, leads to an increase of the JC index and the HD. A good
trade-off between JC index and HD is therefore achieved if
c1=0.93, c2=1, and m�=4.

3.4.2 FRG
For the FRG parameters, the two scenarios PM-FRG and CD-
FRG have been evaluated. In both cases, the following param-
eters can be varied: the edge threshold parameter K, the num-
ber of iterations N, and, as for the ARG case, the choice of
confidence interval shift parameters c1 and c2 �see Eq. �15��.
The results for the PM-FRG scenario are shown in Fig. 7 for
different PCRs. The following observations can be made: with
increasing number of iterations, the JC index increases and
the HD decreases. For decreasing values of the confidence
interval shift parameter c1, the same observation holds. With
increasing the edge threshold parameter K, the HD increases
almost linearily while the JC index features a local optimum
at threshold parameters K=4. . .10. For K=11. . .20, the JC
index decreases. The performance of the CD-FRG �see Fig. 8�
almost features the same characteristics although at
PCR=20, the local optimum of the JC index is not distinct. A
good trade-off between JC index and HD is therefore
achieved for low values of K �e.g., K=3. . .5�. The number of
iterations and the confidence interval parameter c1 should be
chosen according the desired leakage performance.

ing scenarios.

ure Imaging source

1 Swept Source Microscope System
�Thorlabs, Inc., Newton USA�

2 Spectral radar OCT imaging system
�Thorlabs HL GmbH, Luebeck, Germany�

center wavelength at 930 nm

3 Spectral radar OCT imaging system
�Thorlabs HL GmbH, Luebeck, Germany�

center wavelength of 830 nm

4 Time domain OCT imaging system
�4optics GmbH, Heidelberg, Germany�

center wavelength of 1310 nm

5 Spectral radar OCT imaging system
�Thorlabs HL GmbH, Luebeck, Germany�

center wavelength of 830 nm

6 Spectral radar OCT imaging system
�Thorlabs HL GmbH, Luebeck, Germany�

center wavelength of 940 nm
T imag

Fig
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The major difference between the ARG and the FRG ap-
roaches can already be observed. For all parameter settings,
he FRG approaches perform worse in terms of JC index and
D distance. For an equal HD performance, the JC index of

he FRG approaches is much lower than for the ARG ap-
roach and there is no parameter choice for the FRG ap-
roaches, which would provide the same performance. For
urther comparison of both, ARG and FRG, the parameters N,

ig. 11 Scenario wm1: Comparison of three region growing approac
howing brain matter with embedded white matter fibers and manua
ethod the segmentation map shows the reference �manual segment
ournal of Biomedical Optics 034046-1
K, and c1 were chosen as N=40, K=4, c1=0.99, and
c2=1.01.

In order to further elaborate the different characteristics of
ARG and FRG approaches, Table 2 shows averaged quantita-
tive results for n=100 simulated B-scans at a PCR of 20.
Figure 9 visualizes the performance for different contrast ra-
tios based on an evaluation of n=100 simulated B-scans. Fig-

r segmentation of a white matter fibers brain tissue: �a� OCT B-scan
entation. �b�ARG, �c� PM-FRG, and �d� CD-FRG. For each evaluated
n black and the methods results in gray.
hes fo
l segm
ation� i
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re 10 shows an exemplary segmentation result for a PCR of
0. In all cases, the parameters were chosen as discussed
bove.

.5 Real Results
o show the performance of the three approaches for the seg-
entation of real OCT images of biological tissue, two image

ypes with different segmentation criteria were tested.

ig. 12 Scenario wm2: Comparison of three region growing approach
howing brain matter with embedded white matter fibers and manua
ethod, the segmentation map shows the reference �manual segmen
ournal of Biomedical Optics 034046-1
3.5.1 Segmentation of highly scattering structures
such as white matter

Possible applications of white matter segmentation include
the integration of OCT into neurosurgical settings �e.g., into
an operating microscope�. This would provide the surgeon
with detailed tissue information during the operation, which
would benefit especially within delicate surgeries. Three test
images were acquired from the brain of a freshly decapitated

segmentation of a white matter fibers in brain tissue: �a� OCT B-scan
ntation, �b� ARG, �c� PM-FRG, and �d� CD-FRG. For each evaluated
in black and the methods results in gray.
es for
l segme
tation�
May/June 2009 � Vol. 14�3�4
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at. The brain was dissected and scanned along a coronal sec-
ion crossing the striatum, which contains white matter fibers.

.5.2 Segmentation of low scattering structures such
as blood vessels

ere, the seed detection and the region growing is performed
n the inverted gray-scale image. Thus, dark areas of low
cattering structures �e.g., vessel� are assigned a high intensity

ig. 13 Scenario onion: Comparison of three region growing approac
howing cell structures of an onion and manual segmentation, �b� AR
ation map shows the reference �manual segmentation� in black and
ournal of Biomedical Optics 034046-1
while areas of high scattering �e.g., tissue� are featuring low
intensities. Thus, the seed detection and the region-growing
algorithms can be applied as described.

Table 3 gives the details of all tested segmentation sce-
narios. For the evaluation of the segmentation performance
for real images, a manual segmentation was performed by an
OCT expert with 10 years of experience in OCT imaging.
Visual results are presented in Figs. 11–16. Numerical results

segmentation of cell walls of onion tissue structure: �a� OCT B-scan
PM-FRG, and �d� CD-FRG. For each evaluated method, the segmen-
thods results in gray.
hes for
G, �c�
the me
May/June 2009 � Vol. 14�3�5
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rovide the JC index and HD with regard to the manual seg-
entation results and are listed in Tables 4 and 5.

Discussion
.1 Seed Detection
umerical results shown in Table 1 indicate that the method
escribed in Sec. 2.2 provides a robust way to locate seed

ig. 14 Scenario urothel: Comparison of three region growing approac
a� OCT B-scan showing the urothel with an embedded vessel and
valuated method, the segmentation map shows the reference �manu
ournal of Biomedical Optics 034046-1
points for a subsequent region growing. Performance of the
seed detection, however, is naturally dependent on the PCR.
The higher the difference of the scattering properties of dif-
ferent structures is, the easier these structures can be discrimi-
nated. That is due to the stepwise approach of seed detection:
the determination of the seed candidates is based on an analy-
sis of the first derivative of the intensity course. A low PCR

segmentation of vessels embedded into the urothel in an OCT image:
al segmentation, �b� ARG, �c� PM-FRG, and �d� CD-FRG. For each
entation� in black and the methods results in gray.
hes for
manu

al segm
May/June 2009 � Vol. 14�3�6
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ill not lead to a significant change in the intensity, and peaks
annot be differentiated leading to a small set of peak candi-
ates. Evaluation of extensive testing led to the heuristics
ased on ROC analysis for the choice of the threshold param-
ters depending on the PCR. Results show that for different
CR, the optimal parameters � , � , and � are almost con-

ig. 15 Scenario intestine: Comparison of three region growing appro
-scan showing vessels embedded into the intestine wall and manua
ethod, the segmentation map shows the reference �manual segmen
1 2 3

ournal of Biomedical Optics 034046-1
stant and can thus be used for detection without previous de-
termination of the PCR. This property enables the automatic
nature of the process.

Also for the real OCT images, the presented results indi-
cate an adequate performance of the seed detection. This es-
pecially applies to the task of detecting seeds in low scattering

or segmentation of vessels embedded into the intestine wall: �a� OCT
ntation, �b� ARG, �c� PM-FRG, and �d� CD-FRG. For each evaluated
in black and the methods results in gray.
aches f
l segme
tation�
May/June 2009 � Vol. 14�3�7
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tructures, such as blood vessels, as the PCR of these struc-
ures in the inverted gray-scale images is relatively high. For
he white matter identification in real OCT images, the PCR is
ound to be PCR
20. . .25. Transfering the results shown in
able 1, the seed detection would provide identification of
ver 90 percent of the structures in the real images.

ig. 16 Scenario egg: Comparison of three region growing approaches
-scan showing vessels embedded into the inner skin of an egg and the
or each evaluated method the segmentation map shows the referenc
ournal of Biomedical Optics 034046-1
4.2 Region Growing

Both, the ARG and FRG approaches are dependent on certain
parameters, which have already been discussed in Sec. 3.4.
Parameters for the simulation scenarios were chosen as speci-
fied in Sec. 3.4. In all test scenarios, the ARG and both of the

mentation of vessels embedded into the inner skin of an egg: �a� OCT
s of the manual segmentation, �b� ARG, �c� PM-FRG, and �d� CD-FRG.
ual segmentation� in black and the method’s results in gray.
for seg
result

e �man
May/June 2009 � Vol. 14�3�8
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RG have been applied with equal settings of the seed detec-
ion. Observing the simulation results in Table 2 and in Fig. 9,
he following statements can be made: For all PCRs, the ARG
pproach provides a higher JC index while featuring a lower
D. This indicates less leakage while a better similarity be-

ween segmented and original regions is provided. This espe-
ially holds at a PCR of 20, which corresponds to the contrast
atio in real OCT images of brain matter.

It can be seen that for increasing PCR, the increase of the
C index of the PM-FRG is more substantial: The PM-FRG
C index increases by 46% for PCR increase from 20 to 30
hile the ARG JC index increases only by 31% �see Fig. 9�.
his indicates that the higher the PCR is, the better the edge-
ensitive filtering applies to the OCT images. Results of the
RG approach in Fig. 9 show that the adaptive homogeneity

riterion applies well to the problem because the white matter
tructures are well segmented and only minor leakage can be
bserved. The results of the FRG in Fig. 10, however, show
hat substantial leakage occurs. This is indicates the major
hortcoming of the FRG approaches in comparison to the
RG approach: the edge-sensitive filtering does alter the im-

ge. If the edge threshold parameter K is chosen too high then
he edges will be blurred and the region growing will lead to
eakage. This especially holds for the lower edges of the white

atter structures because these feature a less distinct intensity
ifference to the neighboring regions than the higher edges. If
he parameter K, however, is chosen too low, speckle-noise
orruption will not be compensated and the subsequent region
rowing will lead to a lower JC index because no homog-
nous regions are provided after filtering.

Segmentation results performed on real images show the
apability of the algorithms. Segmentation of different tissue
ypes is demonstrated as two types of structures: one being
right and one being a dark region. Visual inspection indicates

able 4 Results of ARG, PM-FRG, and CD-FRG for segmentation of

JC index

Scenario ARG PM-PRG CD-FRG ARG

wm1 0.3347 0.3232 0.3316 44.55

wm2 0.2371 0.077 0.1446 61.07

onion 0.3013 0.2564 0.2687 129.71

able 5 Results of ARG, PM-FRG, and CD-FRG for segmentation of

JC index

Scenario ARG PM-PRG CD-FRG ARG

urothel 0.2101 0.1352 0.0974 54.64

intestine 0.3139 0.3018 0.1250 39.05

egg 0.6443 0.4330 0.3610 52.08
ournal of Biomedical Optics 034046-1
that the ARG approach is a better candidate for automated
segmentation for the analyzed structures. Mainly ARG results
show that white brain matter from real OCT B-scans and on-
ion cell walls can be identified with a moderate presence of
leakage �see Table 4 and Figs. 11–13�. The numerical com-
parison to the manual segmentation of an OCT expert in Table
4 shows two tendencies: �i� For a comparable JC index �e.g.,
wm1�, the HD of the ARG approach is smaller than for the
results of the FRG approaches. �ii� If a comparable HD is
achieved �e.g., wm2�, the JC index of the ARG is higher than
for the results of the FRG approaches. For the identification of
low scattering structures, this tendency also holds �see Table
5�. Visual inspection of the results also supports the conclu-
sion that incorporation of OCT modeling into the segmenta-
tion approach provides a better structure identification. In the
Egg scenario �see Fig. 16�, ARG’s segmentation results show
an undesired oversegmentation, which is attributed to having
the same homogeneity criterion parameters in all real images.
This is a case in which the parameters should be tuned to
provide a laxer region growing.

Interestingly, the time-consumption characteristics differ
for both scenarios. While for identification of high scattering
structures, the PM-FRG approach outperforms the ARG, the
opposite behaviour can be observed for the identification of
low scattering structures. In general, one would expect the
FRG approach to be computationally more expensive than the
ARG approach as an additional filtering step is required.
Note, however, that time consumption also incorporates the
process of region growing. A higher JC index at a comparable
HD means that the region-growing process took longer as
more structures of interest are segmented. Thus, time con-
sumption does not directly allow a qualitative comparison of
the approaches.

scattering tissue in comparison to expert manual segmentation.

HD Time �s�

M-FRG CD-FRG ARG PM-FRG CD-FRG

63.28 44.45 1.7 0.9 2.8

59.21 63.02 2.2 1.6 3.3

39.17 112.29 2.4 1.4 2.8

attering tissue in comparison to expert manual segmentation.

D Time �s�

FRG CD-FRG ARG PM-FRG CD-FRG

.07 59.07 0.3 0.7 0.26

.64 38.47 0.4 1.3 1.0

.23 56.24 4.3 2.7 2.3
highly

P
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Considering the parameter sensitivity for both RGAs, heu-
istics can be drawn from extensive simulations �see Sec. 3.4�.
s stated in Sec. 3.4, results from simulated images indicate a
referable choice of parameters. For the ARG approach, this
eads to a choice of c1=0.93. . .0.97, c2=1, and m�=4. For
he FRG approaches, a well-performing set of parameters is
iven by N=40, K=4, and c1=0.99 and c2=1.01.

Both seed detection and ARG are inherently dependent on
he speckle size. While for the illustrated theoretical approach,
he speckle size is assumed to equal 1 pixel in the image, this
oes not necessarily correspond to a real measurement sce-
ario. There, the speckle size is related to the point-spread
unction of the measurement system. Therefore, speckle size
ight include more than 1 pixel. In that case, the outlined

pproach would have to be adapted, namely, by the extension
f the pixel-related criteria based on an estimation of speckle
ize. For the seed detection, for instance, the ratio in Eq. �9�
ould compare the intensity at Ĩ�zk+n� with the intensity

�zk+n−sz�, where sz would be the axial number of pixels
ccupied by a speckle. Equally important, the pixel neighbor-
ood size would have to be adapted to the speckle size �the
arger the speckle size, the larger the neighborhood�.

The proposed region growing approach is presented for the
dentification of two distinct tissue structures. If tissue struc-
ures with more homogeneities are subject to segmentation
e.g., the retinal structure, which is a layered composite�, the
pproach would have to be adapted. In this case, adaption
ould mostly affect the seed-detection intelligence, which
ould have to robustly identify at least one seed in each layer.
s the growing criterion relies on a general OCT model, it

hould apply in its present form. Parameters, however, may
ave to be adapted to the respective task.

Conclusion
ummarizing this work, two approaches for the automated
egmentation of tissue structures in OCT data have been de-
eloped. A two-step approach is taken: In a first step, auto-
ated seed detection for a subsequent region-growing algo-

ithm is done. On the basis of the seeds, two alternatives for
he homogeneity criterion within the region growing are pro-
osed. The first region growing relies on an adaptive-
eighborhood criterion and works on the original OCT data
ARG approach�. The homogeneity criterion reflects the de-
erministic intensity course of OCT imaging in tissue and the
peckle-noise corruption. The second approach uses an edge-
ensitive filtered version of the image and applies a median-
ased homogeneity criterion �FRG approach�.

Generally, the ARG approach provides a better segmenta-
ion for all contrast ratios of different tissue structures. Test
esults on white matter detection in brain imaging show the
apabilities of the approaches. As a general tendency, results
how that the ARG approach is more suitable for segmenta-
ion of structures in OCT images. Thus, it can be concluded
hat incorporation of an OCT model �deterministic intensity
ecay and speckle noise� does apply better to this image-
rocessing task than filtering, which alters image information.

Further work to optimize the method’s performance still
emains, mainly to raise sensitivity in real scenarios and re-
uce leakage. However, the ARG approach shows strong po-
ential to become a helpful tool in navigation and diagnosis.
ournal of Biomedical Optics 034046-2
Other types of filtration for the FRG approach with a strict
denoise-alteration compromise may also yield to better re-
sults. Because OCT has not yet been widely applied to neu-
rosurgery, automated image processing opens the door to
novel applications to be developed. The study in Ref. 3 shows
evidence that the gray-white matter junction is a structure
OCT can detect with high optical contrast and that it could
serve as a landmark for guiding procedures such as deep brain
stimulation. This application could benefit from the work pre-
sented in this paper. Segmentation of vessel structures, which
was also shown to be feasible, could be used in other medical
applications. Because the proposed algorithm is based on a
general formulation of the OCT intensity model, it may be
adapted for other segmentation tasks as well.
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