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Abstract. Photoacoustic spectra of normal, benign, and malignant ovarian tissues are recorded using 325-nm
pulsed laser excitation in vitro. A total of 102 (34 normal, 38 benign, and 30 malignant) spectra are obtained from
22 samples belonging to normal, benign, and malignant subjects. Applying multi-algorithm approach, comprised
of methods such as, principal component analysis (PCA) based k-nearest neighbor (k-NN) analysis, artificial neural
network (ANN) analysis, and support vector machine (SVM) analysis, classification of the data has been carried out.
For PCA, first the calibration set is formed by pooling 45 spectra, 15 belonging to each of pathologically certified
normal, benign, and malignant samples. PCA is then performed on the data matrix, comprised of the six spectral
features extracted from each of 45 calibration samples, and three principal components (PCs) containing maximum
diagnostic information are selected. The scores of the selected PCs are used to train the k-NN, ANN, and SVM
classifiers. The ANN used is a classical multilayer feed forward network with back propagation algorithm for its
training. For k-NN, the Euclidean distance based algorithm is used and for SVM, one-versus-rest multiclass kernel-
radial basis function is used. The performance evaluation of the classification results are obtained by calculating
statistical parameters like specificity and sensitivity. ANN and k-NN techniques showed identical performance
with specificity and sensitivity values of 100 and 86.76%, whereas SVM had these values at 100 and 80.18%,
respectively. In order to determine the relative diagnostic performance of the techniques, receiver operating
characteristics analysis is also performed. C©2011 Society of Photo-Optical Instrumentation Engineers (SPIE). [DOI: 10.1117/1.3583573]

Keywords: ovarian tissue; photoacoustic spectra; principal component analysis; k-nearest neighbor; artificial neural network; support
vector machine; receiver operating characteristics analysis.

Paper 10359RRR received Jun. 25, 2010; revised manuscript received Mar. 24, 2011; accepted for publication Apr. 6, 2011; published
online Jun. 1, 2011.

1 Introduction
Epithelial ovarian cancer has the highest mortality rate of any of
the gynecology cancers and spreads beyond the ovary in 90% of
the women diagnosed with ovarian cancer. Ovarian cancer goes
undetected in both developed and developing countries because
of inadequate technology to detect pre-invasive or early-stage
disease. There are approximately 25,600 new cases of ovarian
cancer in the United States per year, and there was an estimated
16,000 deaths from ovarian cancer in 2004.1 High prevalence of
late-stage disease and the poor prognosis associated with these
later stages are the major factors that give ovarian cancer patients
such a dismal prognosis.1–3

In recent years, the need for new methods for early detection
at a pre-cancer level has stimulated the rapid development of
a reliable, objective, and minimally invasive optical tools. The
optical (spectroscopic) methods are ideal for this, because in
these techniques, spectral changes can be measured with very
high sensitivity and they can be used to monitor biochemical al-
terations, which are the precursors for many diseases including
cancer.4, 5 Laser-induced spectroscopic techniques4 examine
different types of light-tissue interactions and noninvasively
provide biochemical and morphological information at the
molecular, cellular, and tissue levels. They are extremely
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sensitive and usually cause no discomfort. Laser-induced spec-
troscopy techniques,4–12 such as fluorescence,4–10 Raman,11

and photoacoustic12 (PA), have been widely investigated as
nondestructive optical tools for medical diagnostics.4–13 Pulsed
photoacoustic spectroscopy is one of the blossoming fields
of science and, in recent years, the technique has become
increasingly popular as a tool for biomedical imaging and
detection.13, 14 The technique is based on the detection of an
acoustic signal induced by photons and is different than the
optical techniques detecting optical signals. The propagation of
acoustic signals within biological tissues are less susceptible to
attenuation and scattering compared to the optical signals and
the information contained within them is much less likely to
be lost. Because of this advantage, the photoacoustic technique
projects itself as a robust and attractive modality for imaging
beyond the possible range that exists for all-optical techniques.

The technique of pulsed photoacoustic generation in liquid
is well established.14, 15 Scientific applications of this technique
have been widely reported in a range of areas including semicon-
ductor research,16 physical processes in liquids,14, 15 trace gas
monitoring,17 analyte detection in liquids,15–19 depth-resolved
analysis of tissue models,20 photoacoustic imaging,21–26 and vol-
umetric analysis of protein.18, 19 A broad range of potential ap-
plications have emerged including detection of breast,22 skin,20

and oral cancers27 and vascular applications such as imaging
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Table 1 Sample details.

Spectrum number Sample type Mean age Histopathology Spectroscopy

1 to 15 Normal standard set 50 ± 5.0 Normal Normal

16 to 30 Malignant standard set 50 ± 20 Ovarian tumor, hemorrhage,
cystic, Papillary cystadenoma

Malignant

31 to 45 Benign standard set 40 ± 8.5 Endometriatic cyst Benign

46 to 64 Normal test set 50 ± 8.5 Normal Normal

65 to 79 Malignant test set 45 ± 10.5 Papillary cystademine Malignant

80 to 102 Benign test set 40 ± 8.5 Benign Normal, malignant,
and benign

superficial blood vessels28, 29 and the characterization of arterial
tissues.29

In pulsed photoacoustic spectroscopy for biological sam-
ples, when a short laser pulse interacts with a tissue, during the
laser pulse duration, some of the inherent biomolecules whose
concentration depends upon the condition of the tissue having
resonance absorption at the excitation absorb the incident pho-
ton energy and get excited. The excited biomolecules are then
relaxed through nonradiative relaxations releasing the absorbed
energy in the form of heat in the absorbing volume of the sam-
ple. Subsequently, the thermal expansion of the instantaneously
heated sample followed by its contraction due to the periodically
applied excitation causes a pressure variation in the irradiated
volume. This pressure variation is nothing but the acoustic waves
that travel outward through the medium and can be detected at
the surface.30 If the tissue is placed in a cuvette forming the PA
cell,13 the acoustic waves propagating outward from the excita-
tion volume get reflected from the cuvette walls and superpose
to form standing waves of different modes depending upon the
tissue structure through which they are originated. A few super-
posed acoustic waves with slight damping will result in complex
and long duration time domain photoacoustic transients.31

The goal of the present work is to explore whether photoa-
coustic spectroscopy could eventually be adapted to improve
early diagnosis of ovarian neoplasia. With this idea, in our
laboratory, we have recorded the photoacoustic spectra of
normal as well as different stages of ovarian cancer tissue
samples in vitro and principal component analysis (PCA)
(Refs. 7–10 and 32) based k-nearest neighbor (k-NN),6, 8, 9

artificial neural network (ANN),7, 10 and support vector
machine (SVM) (Refs. 33 and 34) classification algorithms
are developed. This multi-algorithm approach, comprised of
computational methods such as ANN, k-NN, and SVM, was
used to improve the reliability in classification and hence to
determine their relative diagnostic performance.

2 Materials and Methods
2.1 Sample Collection and Handling
Biopsied or surgically resected ovarian normal, benign, and ma-
lignant tissue samples of nearly 5×5 to 5×6 mm2 size were
obtained from the Department of Obstetrics and Gynecology,
Kasturba Hospital, Manipal University, Manipal, India. Tis-

sues from uninvolved areas from the same subjects are used
as healthy controls. A mirror image of each sample was fixed in
10% neutral buffered formalin and was sent for histopatholog-
ical certification. The samples were kept moist with saline (pH
= 7.4), and spectra were recorded within half an hour of tissue
removal. The sample details are given in Table 1. According
to the histopathology report, samples used in this study were
stratified into three main categories: normal ovary (no structures
except stroma, epithelium, corpus albicans, and corpus luteum),
benign neoplasm (abnormal growth without invasive areas) and
endometriosis (growth of both endometrial glands and stroma on
the ovary), and malignant (invasion of carcinoma into the ovary,
ovarian tumor, hemorrhage, cystic, Papillary cystadenoma).

2.2 Experimental Setup
The block diagram of the experimental set up used to record the
ovarian tissue photoacoustic spectra is shown in Fig. 1. The sam-
ples were excited using 325-nm pulsed laser radiation obtained
from an Nd-YAG/MOPO/FDO source (Spectra Physics, Quanta
Ray, Model: PRO 230 10, MOPO SL) at 10 Hz repetition of 5 ns
pulses with energy 100 to 200 μJ. An indigenously developed PA
cell consisting of the “sample holder” and the “PZT mounting”
was utilized to generate the PA signal.12, 13 The laser light was
focused onto the moist tissue samples kept in a quartz cuvette po-
sitioned in the sample holder of the PA cell. The focusing of the
laser beam was achieved using a 10 cm focal length convex lens

Fig. 1 Block diagram of the experimental setup used to record pulsed
laser induced photoacoustic spectra.
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vertically placed above the cuvette. The acoustic transient signal
generated upon laser excitation of the samples was detected with
a PZT detector (3 mm diameter and 4 mm thickness, PI-ceramic,
Germany) mounted in the photoacoustic cell12–14 held in contact
with the cuvette sidewall. After suitable amplification using a
home-made pre-amplifier, the transient signals were recorded
in time domain with transient digitizer (EG&G Models 9826
and 9846) personnel computer combination. By changing the
incidence position of the laser beam on the sample under study
more than two PA transients were recorded from each tissue
sample. In the present study, 102 PA transients (34 normal, 38
benign, and 30 malignant) were recorded involving ten normal,
13 benign, and nine malignant tissue samples. All of the PA tran-
sients were recorded with maximum care using fixed excitation
geometry, as well as with consistent recording procedures.

2.3 Fast Fourier Transform of PA spectra
Since the PA cell is essentially a resonant cavity, it is most infor-
mative to Fourier transform of the acoustic waves providing the
frequency response of the cell and its resonant frequencies for
the different types of samples. By examining the signal in the
frequency domain one can easily observe the modal frequen-
cies that developed upon excitation of the sample under study.
Thus, the acoustic waves (PA signals) originated from different
pathological samples, such as normal, benign, and malignant,
have slightly different modal frequencies giving rise to slightly
different spectral profiles that are directly related to their patho-
logical states. Each pathological sample, thus, produces its own
characteristic spectral profile slightly different from one another
depending upon the state of the tissue. The spectral features,
if extracted from each type of samples, will thus carry signifi-
cantly different optical properties representing the sample. In the
present study, various spectral features extracted from different
pathological samples are used for discrimination analysis of the
samples. Before extracting spectral features, all of the recorded
time domain PA transients were smoothened and Fourier trans-
formed using MATLAB@R6 (Ref. 35) tools, Medfilt1, and FFT
(fast Fourier transform), respectively, and the frequency region
0 to 4×105 Hz of the corresponding FFT pattern was windowed.
Subsequently using MATLAB@R6 algorithms, six different
features from each of 102 FFT spectra were extracted. These
features were mean, median, spectral residual, energy, standard
deviation, and maximum intensity, and involving them, a feature
space matrix is formed. The process of feature extraction, thus,
transformed the frequency domain spectra into a feature space
matrix, reducing the number of computations needed for further
data analysis. Different spectral features extracted from each of
102 spectra are described below.

A. Mean: For vectors, MEAN(X) is the mean value of the
elements in X. Mean of a spectrum is the average intensity
over the data points considered in the spectrum.

B. Median: For vectors, MEDIAN(X) is the median value
of the elements in X. The median of a spectrum is the
intensity at the middle of a group of intensities over the
data points considered in the spectrum that have been
arranged in order by size.

C. Standard deviation: For vectors, STD(X) returns the stan-
dard deviation. Standard deviation of a spectrum is the

measure of the dispersion of a set of intensity over the
data points considered in the spectrum from their mean.
It is the root mean squared deviation.

D. Energy: Energy of a spectrum is the spectrally integrated
intensity over the data points considered in the spectrum.

E. Spectral residual: A tenth degree polynomial curve is fitted
onto normal, benign, and malignant spectra and residual
values are noted. This was repeated for all spectra. The
norm of residuals is a measure of the goodness of fit,
where a smaller value indicates a better fit. The norm is
the square root of the sum of the squares of the residuals.

F. Maximum intensity: It is the maximum intensity of
the Fourier transformed frequency domain photoacoustic
pattern.

First, the four features, mean, median, standard deviation,
and maximum intensity, were obtained using the inbuilt tool,
“Data Statistics,” the feature Energy using the function ‘SUM
(X), and the spectral residuals using the Basic Fitting tool of
the MATLAB software. Thus, six features extracted from a total
of 102 spectra produced an original data matrix of dimension
(6×102).

2.4 Data Analysis
In many of the earlier studies with fluorescence6, 7, 10 and Raman
spectroscopy,11 when a number of spectra are recorded from
different sites of a tissue sample, the mean of all of the spectra
was taken as representative for that sample. In the present study,
all of the 102 PA transients recorded are treated as independent
data. This, we believe, is a better approach because often a tissue
specimen can have normal and neoplastic regions adjacent to
each other showing variations in the spectra from site to site.10, 36

The analysis of the spectral data for their classification between
different groups has been carried out using PCA based k-NN,
ANN, and SVM algorithms.

2.4.1 Principal component analysis

PCA can be used to reduce the dimensionality of a dataset,
while still retaining as much of the variability of the dataset as
possible.7, 10, 32 It is a classical statistical method that transforms
attributes of a dataset into a new set of uncorrelated attributes
called principal components (PCs). Applying PCA to the feature
space matrix, the original data gets transformed into a set of PC
scores. The contribution of each PC to the total variance of
spectral data is proportional to its eigenvalue. Higher-order PCs
often account for less than 1% of the total variation and represent
mostly noise.7, 10, 32 PCs that have variance more than 1% in the
spectral data are considered as informative PCs.

In PCA, first the calibration sets for each class of samples are
prepared and an appropriate number of principal components
is selected. In the present study, calibration sets are formed
using 45 spectra, 15 randomly selected from each group
of pathologically certified normal, benign, and malignant
samples. PCA is then performed on the data matrix comprised
of the six spectral features extracted from each of the 45
calibration samples. The calibration sets are then optimized
by cluster analysis removing outliers and an optimum number
of factors (PCs) containing maximum diagnostic information
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is selected.7, 10, 32 Outlier samples usually arise from incorrect
measurements, whether it is in the concentration data (i.e.,
errors in the primary calibration technique) or the spectral data
(i.e., sample handling procedures, environmental control such
as temperature, humidity, etc). The outlier samples, if present in
a calibration set, will tend to “pull” the model in their direction,
causing the predicted concentrations of valid samples to be less
accurate (or even erroneous) than if the sample was completely
eliminated from the training set. The cluster plot for detecting
outliers in the calibration model is generally plotted between the
PC scores of the first two principal components because the first
two principal components represent the plane of best fit through
the data. In the present study, when this graph was plotted with
arbitrarily chosen spectra of three classes, data points of some
spectra were found inconsistent with other samples of the same
class in the calibration model and their scores were far from
their respective classes. Those spectra with inconsistent scores
were then replaced by other spectra of the same class. This
process was repeated for a class until spectra with appropriate
scores have been identified and found consistent with other
scores in the calibration model. Thus, we have optimized the
calibration models by including only those spectra that have
consistent scores with other samples in the same class and an
appropriate number of PCs is identified for each.

After the PCs with diagnostic information are identified, the
scores of the selected PCs are utilized and the k-NN, ANN, and
SVM algorithms are trained. These trained algorithms are then
used to classify unknown spectra. The algorithms for k-NN,
ANN, and SVM classification are constructed using only those
PCs that have significantly different projection scores for the
normal, malignant, and benign spectra.***

2.4.2 Classification algorithm: k-nearest neighbor

Nearest neighbor methods provide an important data classifica-
tion tool for recognizing object classes in the pattern recognition
domain.6, 8, 9 In this method, an unknown sample is classified to
that class having the most “similar” or “nearest” sample point
in the training set of data. In the present study, for classification
of ovarian data, the single nearest neighbor method has been
used. For classification, a prototype sample is computed from
the reference (calibration) set and a given test sample is clas-
sified as belonging to the class of the closest prototype. That
means, when an input pattern is presented to a k-NN classifier,
the classifier computes the k nearest prototypes to it using a
distance (Euclidean distances) measure. Then the classifier as-
signs the class label using a majority vote among the labels of
the k nearest prototypes. This prototype vector is known as the
centroid vector. For any test sample, the three spectral distances
(i.e., Euclidean distances), corresponding to “normal centroid,”
“malignant centroid,” and “benign centroid” are estimated first
and are used in the classification. Details of the k-NN algorithm
and steps involved in the classification analysis are explained
elsewhere.6, 9

2.4.3 Classification algorithm: artificial neural network

In the present study, ANN with back propagation was used
for classification of the ovarian normal, benign, and malignant
samples. The back propagation ANN is a potential method for

finding a relationship between different input variables and bino-
mial output variables.7, 10, 36, 37 The back propagation algorithm
consists of fitting the parameters (weights) of the model by a cri-
terion function, usually mean squared error (MSE) or maximum
likelihood, using a gradient optimization method. In back propa-
gation artificial neural network, the error (the difference between
the predicted outcome and the true outcome) is propagated back
from the output to the connection weights in order to adjust the
weights in the direction of minimum error. The design of ANN
with back propagation algorithm is explained elsewhere.10 In
the classification using ANN, two output neurons are used and
the performance goal was fixed at an accuracy of 0.01. The in-
put passes through two processing elements to reach the output.
Since the activation function is a sigmoid function, the network
(when trained) can represent a nonlinear classifier of any or-
der. The fact that each component of input data reaches each
of the output terminals through several parallel paths provides
the network considerable flexibility in deciding the nonlinear
input-output relationship.37, 38

2.4.4 Support vector machine analysis

SVM is basically a binary classifier.33, 34 It can be a one-class,
two-class, or multiclass SVM.33, 34 In multiclass SVM, it assign
labels to instances by using a support vector machine, where
the labels are drawn from a finite set of several elements. This
approach reduces the single multiclass problem into multiple
binary problems. In the present study, we have used a multiclass
SVM one-versus-rest kernel-radial basis function (rbf) based
classifier.33, 34 A common approach, in case of SVMs, is the use
of recursive feature elimination (RFE) and elimination of the
least important features corresponding to the smallest ranking
criterion and training the classifier with the remaining features.
But, in the present study, we performed MATLAB@R6 based
PCA on the training set data matrix comprising six different
spectral features extracted from each spectrum as mentioned
earlier and an appropriate number of PCs is selected. The scores
of the selected PCs containing maximum diagnostic informa-
tion are then used to train the classifier and the remaining sam-
ples are classified using their respective scores with the trained
network. Details of SVM design and execution is explained
elsewhere.33, 34

SVMmulticlass is an implementation of the multiclass support
vector machine (SVM).33, 34 Given a training set of instance-
label pairs (xi; yi), i = 1, . . . . . . . ,l where xi ∈ Rn and
y∈ {1,−1 } l , the SVMs require the solution of the following
optimization problem:

min
w,b,ξ

1

2
w T w + C

l∑

i=1

ξi

subject to yi (w
T φ(xi ) + b) ≥ 1 − ξi , ξi ≥ 0,

where R is the radius of the ball containing the data, n is the
dimension of the input space, l is the training set size, � (xi)
is the real valued function before taking threshold, ξ is the
slack variable, w is the weight vector, b is the bias, and wT is
transpose of weight vector. The set of slack variables ξ i allow
for the class overlap, controlled by the penalty weight C > 0.
This parameter C, called the regularization parameter, basically
controls the trade-off between the largest margin and lowest
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number of errors. For, C = ∞, no class overlap is allowed. In
the present study, for the optimal value C = 100000, the SVM
classifier was trained with the training set.

The steps followed in SVM:

Step 1: Transform data to the format of SVM software

Step 2: Conduct simple scaling on the data

Step 3: Consider the rbf kernel: K (xi , x j ) = exp(−(xi

− x j )2/σ2)

Step 4: Use cross-validation to find the best parameter C

Step 5: Use the best parameter C and to train the whole
training set

Step 6: Test

2.4.5 Receiver operating characteristics analysis

The performances of the classifiers can be visualized through
receiver operating characteristic (ROC) graphs and a particular
classifier can also be selected with them.39, 40 The ROC graphs
are plotted with the true positive rate (TPR) in the y-axis and
false positive rate (FPR) in the x-axis.39, 40 Each point on the
ROC graph stands for a pair of sensitivity/specificity values cor-
responding to a particular decision threshold. In case of multiple
ROC curves, the area under the curves (AUC) is generally used
to evaluate the performance of the curves. For ROC analysis and
subsequently for determining the AUC, in the present study, Sta-
tistical Package for the Social Sciences (SPSS) 11.0 software41

was used. The AUC is equivalent to Mann-Whitney U-statistic39

(nonparametric test of difference between disease/nondisease
test results).

3 Results and Discussion
Typical smoothened ovarian tissue photoacoustic transients of
normal, malignant, and benign classes (left) and the correspond-
ing FFT pattern (right) are shown in Fig. 2. From Fig. 2,
noticeable differences among normal, benign, and malignant
conditions have been observed. As we know, tissue is basically
inhomogeneous in nature containing different chromophores
(e.g., water, oxy-hemoglobin, deoxy-hemoglobin, lipid, cy-
tochrome oxidase, and melanin) and fluorophores (tryptophan,
collagen, NADH, FAD, etc.) in it at different proportions.42, 43 A
small change in its condition alters its biochemical composition
leading to changes in its spectral profile. These are essentially
the fingerprints that help to determine the condition of the tis-
sue. The PA signal induced by photons depends on the optical
energy deposition at the target tissue, which is the product of
the tissue optical absorption coefficient and the local light flu-
ence. The optical properties including the absorption coefficient,
scattering coefficient, refractive index, and anisotropy factor of
the target tissue and the background medium, are all highly de-
pendent on the excitation wavelength.42 Thus, the complex PA
transients originated from normal, benign, and malignant tissues
carry different spectral information related to their pathological
states.

3.1 Principal Component Analysis
As mentioned in Sec. 2.4, we have six different features ex-
tracted from each of 102 photoacoustic spectra (45 calibration

Fig. 2 Typical time domain photoacoustic spectra (left) and the cor-
responding frequency domain FFT spectra (right) of ovarian tissues.
(a) Normal, (b) benign, and (c) malignant.

plus 57 test) used to form a feature space matrix of dimen-
sion (6×102). On this data matrix, PCA is performed further
reducing data dimensionality. In PCA, first, the calibration sets
for normal, benign, and malignant classes are formed by ran-
domly selecting 15 pathologically certified spectra from each
class. Subsequently, the calibration sets are optimized using
cluster analysis removing outliers and an appropriate number
of factors (PCs) containing maximum diagnostic information
is selected. Figures 3(a) and 3(b) respectively show the eigen-
values for the factors and total percentage variance (i.e., total
percentage contribution to the variation spectra with increas-
ing number of factors) of 45 calibration set spectra (15 normal,
15 malignant, and 15 benign). From Figs. 3(a) and 3(b), it is
clear that only three factors (PCs) are sufficient to explain the
calibration set data. The first PC itself covers over 98.1% of
variance and the first three PCs represent 99.92% of the total
variance. This shows that the feature vector of length six could
be reduced to three components using the PCA technique. As
a result, the feature space matrix of dimension (6×102) was
dramatically reduced to dimension (3×102) making classifi-
cation computationally more efficient. Thus, we have consid-
ered the first three factors for further analysis of the ovarian
data.

In PCA, the calibration sets are optimized using cluster anal-
ysis removing outliers.15–17 Figure 4 shows the cluster/scatter
plot between the scores of the first two principal components of
45 calibration samples. It is clearly seen from the plot that all
of the samples diagnosed as normal, malignant, and benign by
pathological examination in the calibration set are clustered in
three distinct regions without any overlap, indicating that there
are no outliers in these sets. The calibration sets are thus opti-
mized and three informative PCs representing these samples are
selected. The scores of these first three factors (PCs) of the 45
(15 normal, 15 malignant, and 15 benign) calibration samples
are then used as input feature space for training of k-NN,
ANN, and SVM algorithms and the remaining 57 (19 normal,
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Fig. 3 Plots of calculated eigenvalues. (a) Total% variance against (b) factors for a PCA decomposition of 45 calibration spectra (15 normal,
15 malignant, and 15 benign).

15 malignant, and 23 benign) samples are tested against them
using their respective scores.

3.2 k-Nearest Neighbor Analysis
For predicting unknown new samples using k-NN, first the k-NN
based programs are executed and then the classification of the
unknown samples is carried out as per the algorithm protocol
as mentioned in Ref. 6. This technique when used for the 45
calibration samples, all samples are classified to their respective
classes. When the 57 test samples (19 normal, 15 malignant,
and 23 benign) are tested against the trained algorithm, all nor-
mal are classified as normal; two out of 15 malignant are not
classified as malignant but as normal; and out of 23 benign,
16 are classified as benign, two are classified as normal, and five
are classified as malignant. The two malignant test samples that
are classified as normal are the sample numbers 71 and 72 and
the two benign test samples which are also classified as normal
are the samples 89 and 90. The five benign test samples that
are classified as malignant are the samples 95, 96, 97, 98, and
99, respectively. The specificity, sensitivity, and accuracy of this
analysis are found to be 100, 86.76, and 91.17%, respectively.
The classification results for the calibration and the test samples
are shown in Table 2.

Figure 5 shows the plot of Euclidean distance against sample
number for the 102 samples (15 + 19 normal, 15 + 15 malig-
nant, and 15 + 23 benign). In Fig. 5, the Euclidean distances for

Fig. 4 A cluster/scatter plot in log mode between the scores of the first
two principal components of the calibration sets spectra. (NC, normal
calibration; MC, malignant calibration; BC, benign calibration.)

all of the samples are plotted considering normal centroid as the
reference point. The calibration set samples (normal, benign,
and malignant) are clustered into three distinct groups without
any overlap. The test normal and malignant samples are also
clustered along with the corresponding calibration set samples,
showing 100% discrimination for these samples. Two of the
benign test samples are overlapped with the normal calibration
set cluster and five are overlapped with the malignant cluster,
showing their tendency toward the normal and malignant. To
sum up, only a very small number of malignant/benign samples
(two malignant + seven benign) fall outside the general range
of malignant/benign species, indicating the probability of ma-
lignant/benign samples being in the respective cluster of about
93.33%/81.57% and finding them out of the cluster of about
6.67%/18.43%. The discrimination between different classes of
samples is clearly visible in the plot.

3.3 Artificial Neural Network Analysis
As mentioned in Sec. 2.4, the ANN algorithm was trained
with the input feature vectors formed with the scores of three
factors for 15 normal, 15 malignant, and 15 benign sam-
ples. Using these feature vectors (15×3 matrix for each case),
MATLAB-based ANN programs are executed to train the net-
work and subsequently to predict any new data. The perfor-
mance goal for the training of ANN was met at 0.001 as shown
in Fig. 6 and the convergence was achieved with 11 epochs.
The network was given the instruction to show binary digit
1 1 for normal, 1 − 1 benign, and − 1 − 1 for malignant
conditions.

When this classification analysis was used on the calibration
samples, all 45 samples (15 normal, 15 malignant, and 15 be-
nign) are classified to their respective groups. In this analysis,
all of the 19 normal test spectra are classified as normal, two
out of 15 malignant test spectra are not classified as malignant
but as normal, and 16 out of 23 benign test spectra were classi-
fied as benign. Out of the seven remaining benign test spectra,
two are classified as normal and five are classified as malignant.
The classification results for the calibration and test samples
are shown in Table 3. Similar to the k-NN analysis, in this case
also, the same two malignant test samples 71 and 72 are classi-
fied as normal, the same two benign test samples 89 and 90 are
classified as normal, and the same five test benign samples 95,
96, 97, 98, and 99 are classified as malignant. This shows that
the ANN classification results are exactly the same type as that
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Table 2 Fifteen calibration/test normal/malignant/benign samples tested against normal/malignant/benign calibration/test set.

Euclidean distances measured from

Sample number Normal centroid Malignant centroid Benign centroid k-NN classification

1 to 15 0.0139 to 0.0687 0.16 to 0.2566 0.7827 to 0.8753 Normal

16 to 30 0.1475 to 0.2743 0.0011 to 0.0812 0.4427 to 0.7037 Malignant

31 to 45 0.5867 to 2.082 0.358 to 1.8533 0.0291 to 1.2306 Benign

46 to 64 0.0139 to 0.0677 0.161 to 0.2566 0.7853 to 0.8793 Normal

65 to 70 0.1157 to 0.2318 0.0031 to 0.0811 0.6196 to 0.7357 Malignant

71 0.0918 0.1369 0.7596 Normal

72 0.032 0.1967 0.8194 Normal

73 to 79 0.1145 to 0.2264 0.0023 to 0.2293 0.3934 to 0.7369 Malignant

80 to 88 0.334 to 3.1324 0.1311 to 2.9037 0.0758 to 2.281 Benign

89 0.0523 0.1764 0.7991 Normal

90 0.0976 0.1311 0.7531 Normal

91 to 94 0.5897 to 2.082 0.361 to 1.8533 0.1426 to 1.2306 Benign

95 to 99 0.1578 to 0.984 0.0169 to 0.1638 0.6824 to 0.8051 Malignant

100 to 102 1.9223 to 2.652 1.6936 to 2.4233 1.0709 to 1.9006 Benign

of the k-NN results. The specificity, sensitivity, and accuracy
of this analysis are also found to be 100, 86.76, and 91.17%,
respectively.

3.4 Support Vector Machine Analysis
After constructing the feature space matrix (15×3) for
all three calibration sets comprising their PC scores, a

Fig. 5 Plot of Euclidean distance versus sample number for the 102
ovarian tissue photoacoustic spectra (15 + 19 normal, 15 + 15 malig-
nant, and 15 + 23 benign). (NC, normal calibration; NT, normal test;
MC, malignant calibration; MT, malignant test; BC, benign calibration;
BT, benign test.)

MATLAB-based program was executed and an SVM clas-
sifier was trained to predict any new data. The classifier
was trained with one-versus-rest (SVM kernel rbf = 10 C
= 100,000), where C is the regularization parameter that
trades off margin size and training error. The classifier was
given the instruction to show binary digit 1 − 1 − 1 for nor-
mal, − 1 1 − 1 for malignant, and − 1 − 1 1 for benign
conditions.

Fig. 6 Training of ANN and its convergence.
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Table 3 Calibration/test set of normal/malignant/benign (45 + 57 spectra) tested against the trained neural network and results.

Sample number Desired output Classifier output ANN classification

1 to 15 1 1 0.9887 to 1.0000 0.9614 to 1.0000 Normal

16 to 30 − 1 − 1 − 0.9355 to − 0.9968 − 0.9645 to − 0.9999 Malignant

31 to 45 1 − 1 0.9584 to 1.0000 − 0.9955 to − 1.0000 Benign

46 to 64 1 1 0.8575 to 1.0000 0.8859 to 1.0000 Normal

65 to 70 − 1 − 1 − 0.9356 to − 1.0000 − 0.9583 to − 0.9992 Malignant

71 − 1 − 1 0.0799 0.0928 Normal

72 − 1 − 1 0.9546 0.9975 Normal

73 to 79 − 1 − 1 − 0.5675 to − 0.9959 − 0.06315 to − 1.0000 Malignant

80 to 88 1 − 1 0.9584 to 1.0000 − 0.9802 to − 1.0000 Benign

89 1 − 1 0.9998 0.9975 Normal

90 1 − 1 0.9932 0.5466 Normal

91 to 94 1 − 1 0.9840 to 0.9998 − 0.9198 to − 0.9998 Benign

95 1 − 1 − 0.9860 − 0.9872 Malignant

96 1 − 1 − 0.9736 − 0.9891 Malignant

97 1 − 1 − 0.9195 − 0.9943 Malignant

98 1 − 1 − 1.0000 − 0.9522 Malignant

99 1 − 1 − 0.9736 − 0.9802 Malignant

100 to 102 1 − 1 0.4632 to 0.9810 − 0.9934 to − 0.9961 Benign

When this classification technique was used on calibration
set samples, all 45 samples (15 normal, 15 malignant, and 15 be-
nign) are classified into their respective groups. In this case, all of
the 19 normal test spectra are classified as normal, four out of 15
malignant test spectra are not classified as malignant but as nor-
mal, and 14 out of 23 benign test spectra are classified as benign.
Out of the nine remaining benign test spectra, six are classified
as normal and three are classified as malignant. The calibration
and test sample results are given in Table 4. Similar to the k-
NN/ANN analysis, in this case also, the same two malignant
test spectra 71 and 72 are classified as normal and the same two
benign test spectra 89 and 90 are classified as normal. Also, the
same three benign test spectra 97, 98, and 99 that are classified as
malignant by k-NN/ANN analysis are classified as malignant by
SVM. But, the two benign test spectra 95, 96 that are classified
as malignant in k-NN/ANN analysis are classified as normal in
SVM analysis. In addition to this, two more benign test spectra,
86 and 87 that are classified as benign by the other two classi-
fiers, are classified as normal by SVM. This shows that the SVM
classification results are not exactly the same type as that of the
k-NN/ANN results. The specificity, sensitivity, and accuracy
of the SVM analysis are found to be 100, 80.18, and 90.09%,
respectively.

3.5 Receiver Operating Characteristic Analysis
After plotting the ROC (Refs. 39 and 40) curves for k-NN/ANN
and SVM classifiers, their relative diagnostic performance was
determined by measuring the AUC for each curve. The ROC
curves plotted with FPR versus TPR for the two classifiers is
shown in Fig. 7. The curves are drawn by showing each and
every sensitivity/specificity pair resulting from the continuously

Fig. 7 ROC graph showing relative diagnostic performance of the three
discrete classifiers, k-NN, ANN, and SVM analyses.
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Table 4 Calibration/test set of normal/malignant/benign (45 + 57 spectra) tested against the trained SVM classifier and results.

Sample number Desired output Classifier output SVM classification

1 to 15 1 − 1 − 1 1 − 1 − 1 Normal

16 to 30 − 1 1 − 1 − 1 1 − 1 Malignant

31 to 45 − 1 − 1 1 − 1 − 1 1 Benign

46 to 64 1 − 1 − 1 1 − 1 − 1 Normal

65 to 70 − 1 1 − 1 − 1 1 − 1 Malignant

71 − 1 1 − 1 1 − 1 − 1 Normal

72 − 1 1 − 1 1 − 1 − 1 Normal

73 − 1 1 − 1 − 1 1 − 1 Malignant

74 − 1 1 − 1 1 − 1 − 1 Normal

75 − 1 1 − 1 1 − 1 − 1 Normal

76 to 79 − 1 1 − 1 − 1 1 − 1 Malignant

80 to 85 − 1 − 1 1 − 1 − 1 1 Benign

86, 87 − 1 − 1 1 1 − 1 − 1 Normal

88 − 1 − 1 1 − 1 − 1 1 Benign

89, 90 − 1 − 1 1 1 − 1 − 1 Normal

91 to 94 − 1 − 1 1 − 1 − 1 1 Benign

95 to 99 − 1 − 1 1 − 1 1 − 1 Malignant

100 to 102 − 1 − 1 1 − 1 − 1 1 Benign

varying decision threshold over the entire range of results
observed in all three analyses. The calculated values of the
AUCs for k-NN/ANN and SVM are found to be 0.86 and 0.82,
respectively.

4 Conclusion
The pulsed laser induced photoacoustic spectroscopy study
conducted on ovarian tissues and the subsequent statistical
analysis using PCA-based kNN/ANN/SVM algorithms was
motivated by the idea of developing an objective and sensitive
photoacoustic-based technique for optical pathology. As a
preliminary investigation, the current study reports the discrim-
ination of a limited number of normal, benign, and malignant
ovarian tissues in vitro. The photoacoustic spectroscopy in
combination with PCA-based k-NN/ANN/SVM algorithms has
properly and efficiently classified the ovarian tissues suggesting
its possible potential application in the field as an alternative
or complementary technique to the existing other conventional
methods of disease diagnosis. The small time needed to acquire
and analyze the photoacoustic spectra together with the high
rates of success proves that the technique is very attractive for
real time applications. Although, the technique in its current
form may not be suitable for such applications, however, with
proper instrumentation using a fiber optic probe and a thin film

PZT detector coupled to an endoscope, the technique may be
suitable. Of course, for clinical validation of the methodology,
further studies with a sufficient number of subjects belonging
to normal, benign, and malignant classes as well as on blind
samples are extremely essential. Overall, our results indicate
that a PCA-based multi-algorithm approach has great promise
to classify high dimensional ovarian tissue photoacoustic data
and appears to be highly capable to detect ovarian carcinoma,
which would be a big improvement in guiding biopsies and
diagnosing tissues in different pathological conditions.
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