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Abstract. Structured illumination microscopy (SIM) has been widely used in live-cell superresolution (SR)
imaging. However, conventional physical model-based SIM SR reconstruction algorithms are prone to artifacts
in handling raw images with low signal-to-noise ratios (SNRs). Deep-learning (DL)-based methods can
address this challenge but may lead to degradation and hallucinations. By combining the physical inversion
model with a total deep variation (TDV) regularization, we propose a hybrid restoration method (TDV-SIM)
that outperforms conventional or DL methods in suppressing artifacts and hallucinations while maintaining
resolutions. We demonstrate the performance superiority of TDV-SIM in restoring actin filaments, endoplasmic
reticulum, and mitochondrial cristae from extremely low SNR raw images. Thus TDV-SIM represents the ideal
method for prolonged live-cell SR imaging with minimal exposure and photodamage. Overall, TDV-SIM proves
the power of integrating model-based reconstruction methods with DL ones, possibly leading to the rapid
exploration of similar strategies in high-fidelity reconstructions of other microscopy methods.
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1 Introduction
Superresolution (SR) fluorescence microscopy provides nano-
scale resolution for studying subcellular structures and biologi-
cal processes.1–7 However, the higher light dose required for SR
imaging than conventional microscopy, phototoxicity, and pho-
tobleaching severely limit their applications in live-cell imag-
ing.8 Structured illumination microscopy (SIM) demonstrates

a higher photon efficiency than other SR microscopy.9–11 In par-
ticular, two-dimensinal (2D)-SIM can achieve a doubling reso-
lution beyond the light diffraction limit using nine sequentially
acquired images, making it useful for live-cell SR imaging.
However, live-cell SR-SIM imaging still suffers from phototox-
icity and photobleaching, and image restoration is an ill-posed
inverse problem.9,10,12–15 Therefore, for raw images of low signal-
to-noise ratio (SNR) caused by short exposure or excessive
photobleaching, the conventional Wiener-based reconstruction
method is prone to artifacts.16–19

Various physical model-based restoration methods have been
developed to suppress SIM artifacts, such as total variation
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regularization,19 notch filtering,16,18 high-fidelity (HiFi)-SIM,20

and joint space and frequency reconstruction-SIM.21 Using
spatiotemporal continuity as the prior knowledge, we have
developed an iterative restoration method based on the Hessian
regularization term (Hessian-SIM) that suppresses artifacts due
to the amplification of random noise.18 However, other artifacts
persist, such as hammer-stroke and honeycomb artifacts due to
the out-of-focus background17,18,20 and artifacts due to illumina-
tion scattering,22 which cannot be suppressed completely by
model-based methods. Deep neural networks can approximate
arbitrary functions with infinitesimal errors to extract high-
dimensional features from low-resolution and low-quality
images.23 Therefore, researchers have proposed end-to-end deep-
learning (DL)-based reconstruction algorithms to suppress differ-
ent artifacts indiscriminately with low SNR raw SIM images.24–26

However, DL-based methods may suffer from hallucinations27

and generally reduced resolution. For example, current DL
methods often incorrectly predict mitochondrial cristae struc-
tures in live cells.

To combine the advantages of both methods, we try to bal-
ance the reconstruction fidelity of traditional methods and the
artifacts suppression of DL methods. However, suppose these
two parts are combined into one objective function to achieve
simultaneous optimization; in that case, the network is required
to calculate the partial differential28 of the input images rather
than the normal network weights. Therefore, we utilized the
total deep variation (TDV) network as a regularizer in the
reconstruction objective function. By combining the physical
SIM reconstruction procedure with the TDV regularizer,28 we
propose a hybrid restoration method (TDV-SIM) to suppress
artifacts and maintain resolution simultaneously. On processing
images of different cellular structures, TDV-SIM retains the
actual signals better than the pure DL methods while removing
artifacts more effectively than the model-based methods.

2 Methods

2.1 Principle and Parameter Selection of TDV-SIM

For SIM imaging, the sample is excited by sinusoidal illumina-
tions with different pattern orientations and phases. The raw im-
ages contain low- and high-frequency information, which need
to be separated and reassembled in SIM reconstruction.16,18,19 We
transformed the SIM reconstruction into an optimization prob-
lem and constructed an objective function [Eq. (1)] composed
of the fidelity term Dðf; gÞ based on the physical model and
the TDV regularization term RðfÞ based on DL (Supplementary
Note 1 in the Supplementary Material),

min
f

Dðf; gÞ þ λRðfÞ; (1)

where f is the target image to be estimated, g is the inverse
Fourier transform of the high- and low-frequency information
separated from the SIM raw data, and λ is the weight parameter
of the regularization term. By optimizing the objective function
with the gradient descent algorithm [Eq. (2)], TDV-SIM can
reconstruct SR-SIM images that preserve the high-frequency
information more faithfully than pure DL-based methods,
and suppress artifacts more effectively than pure model-based
methods,

fkþ1 ¼ fk − η∇Dðfk; gÞ − ηλ∇RðfkÞ; (2)

where η is the step size. The entire reconstruction pipeline is
shown in Fig. 1(a), where f0 is the initial SIM image obtained
by Wiener deconvolution and fT is the final reconstruction
after T iterations. The computation pipeline of ∇RðfÞ is shown
in Fig. 1(b).

Compared to the ground truth (GT) image of actin filaments
[averages of multiple Wiener-processed images, Fig. 1(c)], we
quantized the peak SNR [PSNR; Fig. 1(d), top left] and struc-
tural similarity index measure [SSIM; Fig. 1(d), top right] values
of TDV-SIM reconstructions with different weight parameters λ
and iteration numbers T. The TDV-SIM reconstruction duration
of a single SR image (1024 × 1024) with different iteration
numbers T is also demonstrated [Fig. 1(d), bottom]. Through
human inspection [Fig. 1(e)], artifacts may not be suppressed
entirely if λ (or T) is too small; in contrast, if λ (or T) is too
large with a fixed T of 25 (or a λ of 2.5), genuine signals may
be removed incorrectly. Thus we set the optimal parameters to
be 2.5 and 25 for λ and T, respectively.

2.2 Cell Culture and Labeling

COS-7 cells (ATCC and CRL-1651) were cultured in high-glu-
cose Dulbecco’s modified Eagle’s medium (Gibco, 21063029)
supplemented with 10% fetal bovine serum (Gibco) and 1%
100 mM sodium pyruvate solution (Sigma-Aldrich, S8636) in an
incubator at 37 °C with 5%CO2 until reaching∼75% confluency.

To label mitochondria, COS-7 cells were incubated with
250 nM MitoTracker Green FM (Thermo Fisher Scientific,
M7514) in an hank’s balanced salt solution medium (Thermo
Fisher Scientific, 14025076) containing Ca2þ and Mg2þ at 37 °C
for 15 min, followed by washing 3 times before conducting 2D-
SIM imaging. To label actin, COS-7 cells were transfected with
Lifeact-enhanced green fluorescent protein (EGFP). According
to the manufacturer’s instructions, the transfections were executed
using Lipofectamine 2000 (Thermo Fisher Scientific, 11668019).
After transfection, the cells were plated on precoated coverslips.
Live cells were imaged in a complete cell culture medium
containing no phenol red in a 37 °C live-cell imaging system.
To label endoplasmic reticulum (ER), COS-7 cells were trans-
fected with EGFP-Lys-Asp-Glu-Leu. According to the manu-
facturer’s instructions, the transfections were executed using
Lipofectamine 3000 (Thermo Fisher Scientific, L3000015).
After transfection, the cells were cultured for 20 to 28 h before
the experiments. Live cells were imaged in a complete cell
culture medium containing no phenol red in a 37 °C live-cell
imaging system. The cells were tested for mycoplasma contami-
nation before use.

2.3 Image Acquisition, Preprocessing, and Training

The same SIM settings in Hessian-SIM18 were used. To obtain
low SNR raw images and the corresponding GT images for
training the neural network, we imaged the specimen with SIM.
We recorded 20 images for each illumination pattern and then
changed the phase and orientation of the pattern. We repeated
the cycle nine times, corresponding to three orientations multi-
plied by three phases, thus obtaining 180 raw images. Then we
divided the raw images into 20 groups, with each group contain-
ing nine illumination patterns of three phases and three orien-
tations. After removing the fluorescent background, we can
obtain 20 SR images with artifacts using Wiener deconvolution.
Finally, we mimicked the artifact-free GT by averaging the
20 SR images.
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Fig. 1 TDV-SIM diagrams and parameter selection. (a) TDV-SIM reconstruction pipeline.
(b) Visualization of TDV and its gradient. Mi is a residual structure micro-block and GM is its gra-
dient. Conv is the convolution layer and T-Conv is its gradient. Act is the activation layer and GAct
is its gradient. (c) Actin filaments SIM SR image. (d) Top, PSNR and SSIM of TDV-SIM recon-
structions with different λ and T ; bottom, TDV-SIM reconstruction durations of single SR image
(1024 × 1024) with different T (n ¼ 5). (e) Magnified views of the boxed regions in panel (c).
Yellow arrowheads highlight artifacts not eliminated with too small λ or T . White arrowheads
indicate incorrectly removed signals with too large λ or T . Scale bars: (c) 1 μm and (e) 0.5 μm.
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We imaged ∼20 cells, and the images were preprocessed to
obtain pairs of raw data and GT images at each time point. Next,
we divided such image pairs into a training set, a validation set,
and a test set; then, we applied random cropping, quarter rotat-
ing, and horizontal/vertical flipping to further enrich the training
data set. We trained the TDV-SIM using an Adam optimizer,
with the learning rate set to 10−4. For actin, we adopted the
mean square error (MSE) loss function,

lMSEðX; YÞ ¼
1

H ×W

XH
i¼1

XW
j¼1

ðXi;j − Yi;jÞ2; (3)

where W and H represent the image width and height, respec-
tively. For mitochondria and ER, a combination of the MSE loss
and the SSIM loss was used,

lcombinationðX; YÞ ¼ lMSEðX; YÞ þ k½1 − SSIMðX; YÞ�; (4)

where k is a scalar weight that balances the relative contributions
of SSIM and MSE losses and is set to 0.1 throughout this paper.

2.4 Calculation of Assessment Metrics

To avoid the influence of different methods on the dynamic
range of the inferred SR images, we first normalize the SR
images,

NormðXÞ ¼ X −minðXÞ
maxðXÞ −minðXÞ : (5)

We used the PSNR, SSIM, and normalized root MSE (NRMSE)
to evaluate the similarity between the reconstructed image and
GT. They were calculated as follows:

PSNRðX; YÞ

¼ 10 × lg

�
MAX2

IP
H
i¼1

P
W
j¼1 ðXi;j − Yi;jÞ2∕ðH ×WÞ

�
; (6)

SSIMðX; YÞ ¼ ð2μXμY þ c1Þð2σXY þ c2Þ
ðμ2X þ μ2Y þ c1Þðσ2X þ σ2Y þ c2Þ

; (7)

NRMSEðX; YÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

H
i¼1

P
W
j¼1ðXi;j − Yi;jÞ2∕ðH ×WÞ

q
maxðYÞ −minðYÞ ; (8)

where W and H represent the image width and height, respec-
tively. X and Y represent the reconstruction result and the GT
image, respectively.MAXI is the maximum possible pixel value
of the image and equals to 2B − 1when the image is represented
with linear pulse-code modulation of B bits (e.g., MAXI
equals 255 for an 8-bit image). μX and μY represent the averages
of X and Y, σX and σY represent the variances of X and Y, and
σXY represents the covariance of X and Y. c1 and c2 are small
positive constants that stabilize each term; c1 ¼ ð0.01LÞ2,
c2 ¼ ð0.03LÞ2, where L is the dynamic range of the pixel
values.

Artifacts often emerged in regions of minor signals, such
as the meshed region within actin filaments. Therefore,

benchmarked against the GT, we selected these regions to
calculate their variances.

3 Results

3.1 TDV-SIM Excels in Restoring Regular Structures
Imaged with a Low SNR

We compared TDV-SIM with other reconstruction methods,
including physical-model-based (Wiener deconvolution,11 HiFi-
SIM, and Hessian-SIM) and pure DL-based methods [skip-layer
connecting U-Nets (scU-Net)24 and deep Fourier channel atten-
tion network (DFCAN)25] using synthetic images with known
GT (Fig. S1 in the Supplementary Material). TDV-SIM confers
balanced performance in generating SR images of high SSIM,
low NRMSE, and low artifacts among all reconstruction meth-
ods. Next, we examined dynamic actin filaments and ER in live
cells observed with short exposures [actin: 1 ms, Fig. 2(a); 2.7 ms,
Fig. S2a in the Supplementary Material; and ER: 0.789 ms,
Fig. 2(d)]. Despite the improved reconstructions compared to
the Wiener deconvolution, HiFi-SIM and Hessian-SIM still pro-
duced artifacts due to noise amplification in background regions
with low SNR. TDV-SIM produced more continuous actin
filaments (Fig. S2e in the Supplementary Material) with fewer
artifacts but comparable SSIM values and resolutions to the con-
ventional reconstruction methods [Figs. 2(b), 2(e), and 2(f)–2(j)
and Fig. S2d in the Supplementary Material]. In contrast, pure
DL-based methods led to reconstruction with fewer artifacts at the
price of reduced resolution and decreased SSIM values. In addi-
tion, we often observed inaccurate inferences at the intersections
of actin filaments and ER [yellow arrows in Figs. 2(c) and 2(e)
and Fig. S2c in the Supplementary Material]. Together with the
incorrectly inferred actin filaments at regions with extremely
low fluorescence intensity (Fig. S3 in the Supplementary
Material), these resembled the “hallucination effects” of pure
DL methods,27 which was abolished by the TDV-SIM method.
Furthermore, we compared TDV-SIM with rationalized DL
(rDL) SIM29 on microtubule image from the BioSR25 data set
(Fig. S4 in the Supplementary Material). By incorporating prior
knowledge of illumination patterns into the DL network, rDL
SIM aimed to denoise raw images rationally. Still, it produced
punctated artifacts in background regions, which may be sup-
pressed with a notch filter (NF) (white boxed region in Figs.
S4(a) and S4(c) in the Supplementary Material). Moreover,
we often observed microtubules within densely labeled regions
absent from notch-filtered rDL SIM reconstructions (NF-rDL
SIM; yellow arrows in Fig. S4b in the Supplementary Material),
which was confirmed by the missing spikes in corresponding
fluorescence profiles in the bottom. In comparison, TDV-SIM
can avoid the missing signal problem of NF-rDL SIM and pro-
duce higher-fidelity reconstructions with fewer artifacts and
higher SSIM [Figs. S4(b)–S4(d) in the Supplementary Material].

3.2 TDV-SIM Enables Better Reconstruction of Intricate
Structures Prone to Photobleaching

Photobleaching constitutes a major problem of fluorescence SR
imaging, continuously reducing image SNR, and compromising
the quality of reconstructed images, especially upon resolving
nonstereotypical structures such as mitochondrial cristae.30

Therefore, we benchmarked the performance of TDV-SIM in re-
solving mitochondrial cristae dynamics for a prolonged time in
live cells [Fig. 3(a)]. During the 20 s recording, the fluorescence
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Fig. 2 TDV-SIM outperforms other reconstruction algorithms in suppressing artifacts and halluci-
nations while maintaining resolution. (a) Actin filaments under the SR-SIM. (b) Magnified views of
the larger boxed region in panel (a) reconstructed by Wiener deconvolution, HiFi-SIM, Hessian-
SIM, and TDV-SIM. The GT image is shown as the reference. Profiles along the yellow line are
on the bottom. (c) Magnified views of the smaller boxed regions in panel (a) reconstructed by
Wiener deconvolution, scU-Net, DFCAN, and TDV-SIM. The GT images are shown as references.
(d) Time series imaging of ER under the SR-SIM (Video 1, MP4, 45 MB [URL: https://doi.org/10
.1117/1.APN.2.1.016012.s1]). (e) Magnified views of the boxed regions in panel (d) reconstructed
by Wiener deconvolution, HiFi-SIM, Hessian-SIM, scU-Net, DFCAN, and TDV-SIM. The GT im-
ages are shown as references. Artifact variances of actin filaments (f) or ER tubules (g) from back-
ground regions in different reconstructions (n ¼ 15 from three cells for each sample). Yellow
arrowheads in panels (c) and (e) indicate the inaccurate reconstructions of pure DL-based meth-
ods. Red arrowheads in panel (e) highlight the artifacts of physical-model-based methods. SSIM of
actin filaments (h) and ER tubules (i) in different reconstructions (n ¼ 150 and 15, respectively).
(j) Resolutions of different reconstructions of actin filaments in panels (a)–(c) (n ¼ 14 from three
cells). Scale bars: (a) and (d) 1 μm; (b) top, (c) and (e) 0.5 μm. (b) Bottom, axial: 0.2 arbitrary units
(a.u.); lateral: 0.1 μm. Data are shown as mean ± SEM. �p < 0.05, ��p < 0.01, ���p < 0.001, ns: not
significant (one-way ANOVA).
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Fig. 3 TDV-SIM enables accurate reconstruction of intricate and dynamic mitochondrial cristae
structures in live cells after prolonged bleaching. (a) Mitochondria under the SR-SIM. (b) Time-
dependent bleaching in fluorescence intensities of mitochondria. (c) Magnified views of the larger
boxed region in panel (a) reconstructed by scU-Net, DFCAN, and TDV-SIM and the corresponding
GT image at 0 s. Profiles along the blue line are on the right. (d) Magnified views of the smaller
boxed region in panel (a) reconstructed by Wiener deconvolution, HiFi-SIM, Hessian-SIM, and
TDV-SIM and the corresponding GT images at 0, 15, and 20 s. (e) The SSIMs of regions enclosed
mitochondria from different reconstructions compared to GT images at 0, 15, and 20 s (n ¼ 15).
(f) Artifact variances of the background regions in different reconstructions at 0, 15, and 20 s
(n ¼ 15). Scale bars: (a) 1 μm; (c) and (d) 0.5 μm. Data are shown as mean ± SEM. �p < 0.05,
��p < 0.01, ���p < 0.001, ns: not significant (one-way ANOVA).
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intensity of MitoTracker decreased by ∼30% due to photo-
bleaching [Fig. 3(b)]. In the beginning, model-based methods
could reconstruct high-quality intricate mitochondrial cristae,
which were gradually corrupted with artifacts gradually due to
photobleaching [Figs. 3(d)–3(f)]. In contrast, although pure DL-
based methods consistently generated fewer artifacts during the

imaging period, they could not predict most cristae structures
in the first place [Figs. 3(c), 3(e), and 3(f)]. Outperforming
all other methods, TDV-SIM obtained sharp mitochondrial
cristae structures with fewer artifacts and high SSIM with the
GT, which persisted even under photobleaching conditions
[Figs. 3(c)–3(f)].

Fig. 4 TDV-SIM enables better reconstruction of actin filaments under NL-SIM. (a) Actin filaments
under the NL-SIM. (b), (c) Magnified views of the white boxed regions in panel (a) reconstructed
by Wiener deconvolution, Hessian-SIM, DFCAN, and TDV-NL-SIM. The GT image is shown as
the reference. Profiles along the yellow line are on the bottom. (d) Magnified views of the yellow
boxed regions in panel (a) reconstructed by Wiener deconvolution, Hessian-SIM, DFCAN, and
TDV-NL-SIM. The GT image is shown as the reference. Yellow arrowheads indicate the in-
accurate reconstructions of pure DL-based methods. (e) Artifact variances of actin filaments from
background regions in different reconstructions (n ¼ 20). (f) Signal variance along the actin fila-
ments in different reconstructions (n ¼ 20). (g) SSIM of actin filaments in different reconstructions
(n ¼ 20). Scale bars: (a) 1 μm; (b), (c) top and (d) 0.5 μm. (b), (c) Bottom, axial: 0.2 arbitrary units
(a.u.); lateral: 0.1 μm. Data are shown as mean ± SEM. ��p < 0.01, ���p < 0.001, ns: not significant
(one-way ANOVA).
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3.3 TDV-SIM Enables Better Reconstruction of Actin
Filaments under Nonlinear SIM

In comparison to conventional linear SIM, nonlinear (NL) SIM
achieves higher lateral resolution up to ∼60 nm,9 whereas NL-
SIM suffers from the reconstruction artifacts, especially with
low SNR raw data. By combining the NL-SIM physical model
with the TDV regularization term, we proposed the TDV-NL-
SIM. We benchmarked the performance of TDV-NL-SIM with
Wiener deconvolution, Hessian-NL-SIM, and DFCAN on actin
filaments within the BioSR data set25 [Fig. 4(a)]. Similar to the
linear SIM circumstances, Hessian-NL-SIM provided improved
reconstructions than Wiener deconvolution but still produced
significant artifacts in background regions. In contrast, TDV-
NL-SIM produced more continuous actin filaments [Figs. 4(c)
and 4(f)] with fewer artifacts but comparable SSIM values to
Hessian-NL-SIM [Figs. 4(b), 4(e), and 4(g)]. DFCAN led to re-
construction with comparable continuity but decreased SSIM
values to TDV-NL-SIM [Figs. 4(f) and 4(g)]. And the inaccurate
inferences of DFCAN at the actin filaments intersections can be
avoided by the TDV-NL-SIM [yellow arrows in Fig. 4(d)].

4 Discussion
For traditional reconstruction methods such as Hessian-SIM, the
denoising effect is limited to images with a low SNR. In con-
trast, the pure DL method directly fits the SR image through raw
images, in which the fitting process is a black box. Therefore,
reconstruction fidelity entirely depends on the network fitting
ability and its comparativeness with the sample. For the pro-
posed TDV-SIM, the SR information is extracted from raw im-
ages by the conventional frequency-extracting process and then
integrated into the TDV network for artifact suppression. By
combining the advantages of conventional physical model-
based algorithms with DL-based algorithms, TDV-SIM outper-
forms existing reconstruction methods in removing artifacts
associated with regions of low SNR while retaining sharp-
contrast intricate structures. For example, the reconstructed ac-
tin filaments and ER of TDV-SIM have an 80.1% decrease in
the background artifacts compared with Hessian-SIM and a
24.3% increase in signal fidelity compared with DFCAN.
Indeed, all current DL-based reconstruction methods generate
blurred mitochondrial cristae structures,24,25 highlighting the dif-
ficulty of pure data-driven methods in predicting irregular and
complicated structures in constant changes. Under such circum-
stances, incorporating physical constraints about the image for-
mation process becomes critical, as we show here. Therefore,
TDV-SIM has significant advantages over pure DL methods
in the face of samples with intricate and dynamic structures.

However, the current TDV-SIM has limitations. On the one
hand, inherited from conventional restoration algorithms, better
reconstruction results depend on choosing ideal parameters.
Through comparative experiments, we set the optimal hyper-
parameters to be 2.5 and 25 for λ and T respectively, which
are applicable in most cases. However, we may need to intro-
duce adaptive mechanisms to achieve an optimized adjustment
step in the future. On the other hand, we cannot apply the cur-
rent neural network regularization term to different specimens
and imaging modalities. Future exploration of other regulariza-
tion terms more generally applicable to different samples may
further improve the adaptability and robustness of our method.
Besides, TDV-SIM aims to recover the real signal from the

noisy raw images. In the second-order spectrum of NL-SIM,
excess noise renders signals in the reconstructed SR image to
be discontinued, even with the TDV-SIM. However, it will
not produces hallucinative signals such as the pure DL method.

Starting from a hybrid angle, TDV-SIM presents a novel
solution for high-resolution and HiFi SR-SIM reconstruction
from low SNR images. Endorsed with reduced photon dosage
and associated phototoxicity, improved imaging speed, and
extended imaging duration, TDV-SIM will be crucial for SR
imaging subcellular structure dynamics in live cells.
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