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Abstract. High-resolution broadband spectroscopy at near-infrared (NIR) wavelengths (950 to 2450 nm) has
been performed using externally dispersed interferometry (EDI) at the Hale telescope at Mt. Palomar, with the
TEDI interferometer mounted within the central hole of the 200-in. primary mirror in series with the comounted
TripleSpec NIR echelle spectrograph. These are the first multidelay EDI demonstrations on starlight. We dem-
onstrated very high (10×) resolution boost and dramatic (20× or more) robustness to point spread function wave-
length drifts in the native spectrograph. Data analysis, results, and instrument noise are described in a
companion paper (part 1). This part 2 describes theoretical photon limited and readout noise limited behaviors,
using simulated spectra and instrument model with noise added at the detector. We show that a single inter-
ferometer delay can be used to reduce the high frequency noise at the original resolution (1× boost case), and
that except for delays much smaller than the native response peak half width, the fringing and nonfringing noises
act uncorrelated and add in quadrature. This is due to the frequency shifting of the noise due to the heterodyning
effect. We find a sum rule for the noise variance for multiple delays. The multiple delay EDI using a Gaussian
distribution of exposure times has noise-to-signal ratio for photon-limited noise similar to a classical spectrograph
with reduced slitwidth and reduced flux, proportional to the square root of resolution boost achieved, but without
the focal spot limitation and pixel spacing Nyquist limitations. At low boost (∼1×) EDI has ∼1.4× smaller noise
than conventional, and at > 10× boost, EDI has ∼1.4× larger noise than conventional. Readout noise is mini-
mized by the use of three or four steps instead of 10 of TEDI. Net noise grows as step phases change from
symmetrical arrangement with wavenumber across the band. For three (or four) steps, we calculate a multipli-
cative bandwidth of 1.8:1 (2.3:1), sufficient to handle the visible band (400 to 700 nm, 1.8:1) and most of
TripleSpec (2.6:1). © 2016 Society of Photo-Optical Instrumentation Engineers (SPIE) [DOI: 10.1117/1.JATIS.2.4.045001]
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1 Introduction
High-resolution broadband spectroscopy at near-infrared (NIR)
wavelengths (950 to 2450 nm) has been performed using exter-
nally dispersed interferometry (EDI) at the Hale telescope at Mt.
Palomar, with the TEDI interferometer mounted within the cen-
tral hole of the 200–in. primary mirror in series with the
comounted TripleSpec1 NIR echelle spectrograph. These are
the first multidelay EDI demonstrations on starlight. We dem-
onstrated very high (10×) resolution boost and dramatic (20× or
more) robustness to point spread function (PSF) wavelength
drifts in the native spectrograph.

A companion paper2 (part 1) describes how to extend single
delay spectroscopy3,4 into multiple delay spectroscopy, empha-
sizing data analysis, results, and instrument noise. EDI theory
for radial velocimetry (RV) has been described,5,6 but not for
multiple delay EDI used for general spectroscopy. (Single
delay EDI has been called dispersed fixed-delay interferometry
by other researchers6 using this technique for RV and used to
discover a new exoplanet HD 102195b.7) This part 2 describes

theoretical photon-limited and readout noise-limited behaviors,
for both single- and multiple-delay spectroscopy, using simu-
lated absorption and emission spectra and instrument model
with noise added at the detector.

The EDI forms Moire patterns by multiplying sinusoidal
comb against the input spectrum S0ðνÞ in a heterodyning effect:

EQ-TARGET;temp:intralink-;e001;326;246BnðνÞ ¼ S0ðνÞ½1þ γ cos 2πðτνþ ϕnÞ� ⊗ PSFðνÞ þ noisen;

(1)

where wavenumber ν has unit cm−1. Then, subsequent blurring
by the native spectrograph PSF0, which removes high frequen-
cies, does not significantly affect the Moire patterns, which are
primarily at low frequencies. Equation (1) describes a single
exposure (Bn) of a set of N phase stepped exposures for a
given delay, where phase ϕn (units of cycles) increments around
the circle. Figure 1(b) shows simulated Moire patterns, where
phase is splayed vertically continuously, whereas Fig. 2 shows
how sinusoidal fitting along columns extracts fringing (W) and
nonfringing (Bord) components. (In TEDI, the phase was varied
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temporally, since transverse detector space was needed to record
several light beams. But it is useful to plot phase vertically
analogous to the earliest EDIs, which splayed phase spatially
across the detector.)

The interferometer visibility γ ranges from 0.85 to 0.95
for TEDI. For simplicity, in the models we assume γ ¼ 1.
Instrumental factors that could reduce γ include intensity imbal-
ance between the arms (e.g., beamsplitter interface reflectivity
changing) and imperfect optical surfaces. (Optics having λ∕20
flatness make this latter factor insignificant.)

Heterodyning shifts (beats) high feature frequency (ρ) infor-
mation down to lower frequencies, by the interferometer delay τ
(unit: cm), where it is detected. It is later restored to its original
high frequency mathematically. Figure 3 shows heterodyning
for a single delay creating a new EDI sensitivity peak (red,
psfedi) that is a copy of the native spectrograph sensitivity
peak (green, psf0 or psfconv):

EQ-TARGET;temp:intralink-;e002;63;186psfconv ¼ psf0ðρÞ; (2)

EQ-TARGET;temp:intralink-;e003;63;156psfedi ¼
1

2
γpsf0ðρ − τÞ; (3)

but shifted to higher frequency ρ by delay τ and having half the
amplitude. (Feature frequency space ρ has units of features
per cm−1, i.e., cm, i.e., same units as delay space.) Lower case
denotes ρ space or Fourier transform versions of upper case
functions in pixel or ν space.

Under a Doppler shift, the phase of the entire Moire pattern
shifts. Thus, EDI can sensitively measure Doppler radial veloc-
ity, even when the spectrograph has a very low resolution oth-
erwise insufficient for this task. This was the motivation for
inventing EDI. The primary reason for the TEDI project was
to demonstrate this in the NIR. It uses the TripleSpec1 spectro-
graph, which bolts to the Cassegrain output of the Hale tele-
scope (and hence, suffers changing gravimetric drifts). Its
resolution of ∼2700 is otherwise insufficient for precision RV
measurements. But with the TEDI interferometer, it was able to
make precision RV measurements8 of M-stars.

An equally useful application of EDI became apparent,
which is wide bandwidth (BW) high-resolution spectroscopy.
The same Moire pattern produced by the instrument for
Doppler velocimetry is studied for its shape rather than its over-
all phase. The goal is to go backward through the heterodyning
process to discover what high-resolution spectra would produce
the measured Moire patterns. This is a method of measuring
much higher effective resolutions than allowed by the native
spectrograph, if the interferometer delay is larger than the
width of the native response peak psf0ðρÞ.

Since EDI spectroscopy starts with the same Moire data as
Doppler measurements, the secondary purpose of the TEDI
project was to explore using EDI to make wide BW high-
resolution stellar measurements. Single-delay EDI spectroscopy
had already been performed,3 and multiple delays promised even
greater resolution boost but had been performed only on labora-
tory sources.4 The TEDI project presented the opportunity to test

Fig. 1 Numerically simulated Moire patterns using a test absorption spectrum of two pairs of black lines
[black curve in (e)]. (a) Without blur, sinusoidal combmultiplies input spectrum, comb pitch proportional to
delay τ. Only three delays (0.75, 1.25, 2 cm) of eight shown. (b) With blur, the comb unresolved but Moire
pattern remains. (c) Complex expression of Moire (whirl or W) from Fig. 2, red (real), blue (imaginary).
(d) Whirls upshifted in frequency; real part taken to form wavelets. (e) Sum of wavelets forms recon-
structed output (red curve). An EQ step weights the wavelets to eliminate ringing. Native spectrum
(dashed green) has insufficient resolution (2 cm−1) to resolve test pair. Graphs are ∼10 cm−1 across
average wavenumber of 7450 cm−1.
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this concept on stellar measurements. (However, the set of delay
values was not ideal for spectroscopy–some were not evenly
spaced over the delay range, having been selected for the
RV purpose for targets having various rotational broadening.)

We discovered that, indeed, wide BW high-resolution spec-
troscopy is quite practical. Part 1 (Ref. 2) shows the data analy-
sis methods and results of many example high-resolution
spectra, having resolution boosts up to 10× (using delays up
to 3 cm). Proportionately higher boosts could be achieved by
purchasing several more glass etalons to allow a delay range
up to 5 cm without gaps.

We learned that an important advantage of EDI is not only
the resolution boost but that the output spectrum is impressively
insensitive to the native spectrograph instrumental distortions
(that distort the shape and wavenumber position of the native
PSF). Sections 9 and 10 of Ref. 2 describe how we observed
a 20× reduction to PSF drift insult using original lineshapes
and a 350× reduction with optimized lineshapes.

The TEDI data were dominated by severe instrument noise,
which was chiefly an irregular and large wavenumber PSF shift,
rather than photon-limited or readout-limited noise, and this was
the subject of part 1.

However, naturally, we are also interested in how EDI
responds to low flux environments, where shot noise and read-
out noise dominate. This is the subject of part 2, which is to
study how adding simulated noisen in Eq. (1) at the detector
affects the final high-resolution spectrum. A detector noise, such
as readout noise, has a constant magnitude (standard deviation),
while photon (shot) noise is simulated by scaling noisen by the
square root of the noise-free version of Bn. Both absorption and
emission spectra have been studied.

2 Phase Stepping and Bandwidth

2.1 Sine Fitting Along a Column

The process of fitting a sinusoid to a column of data (intensity
versus phase at a given ν) is called phase stepping arithmetic,
and the particular case of four steps is called pushpull arithmetic.
Its purpose is to separately extract fringing (W) and nonfringing
(Bord) components from the set of phase stepped data BnðνÞ,
where the exposure number index n is also along the phase axis.

Consider it to be a sine fit along the column at a particular ν.
Then, the sine amplitude is assigned to the imaginary part ofW,
and the cosine amplitude is assigned to the real part of W. The
average value of the sinusoid is assigned ordinary spectrum’s
value, or Bord, at that wavenumber.

2.2 Generic Expression for N Ideal Steps

The generic expressions for many (N) regular steps that evenly
fit around a circle (ϕn ¼ n∕N, in units of cycles) are

EQ-TARGET;temp:intralink-;e004;326;191WðνÞ ¼ 1

N

X
Bne−i2πϕn ; (4)

EQ-TARGET;temp:intralink-;e005;326;151BordðνÞ ¼
1

N

X
Bn; (5)

whereW is called a “whirl” and manifests the fringing informa-
tion we seek. Note the similarity of Eq. (4) to a discrete Fourier
transform, which evaluates the sine and cosine amplitudes.

Fig. 2 How to convert a row along Moire pattern to complex data.
Vertical lineout (a) across multiphase stack for a given wavenumber
produces an intensity versus phase plot (b), which is fitted to a sinus-
oid (black curve). (c) The sine and cosine amplitudes (red and blue
curves) are the whirl’s (W) imaginary and real complex values, for a
given wavenumber. The vertical offset of the fit is the ordinary spec-
trum (green, Bord) at that wavenumber.

Fig. 3 Heterodyning shifts the native spectrograph sensitivity peak
from zero to a higher frequency, where science frequencies typically
reside, by the interferometer delay τ, and to 50% amplitude.
Frequency in units of features per wavenumber (cm−1) conveniently
has units of delay (cm).
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2.3 Healing Method of TEDI Handles Many
Irregular Steps

The TEDI project used 10 steps that were irregularly spaced
around the circle. They were irregular because their value is pro-
portional to the wavenumber, which changes across the band as
Δϕ ¼ νΔτ. The change in delay τ is the physical constant
related to mirror displacement (and glass dispersion causes a
small ν dependence that is corrected for). Hence, the phases
may be in an ideal configuration at one particular ν and then
slowly move into an irregular arrangement, including wrapping
around the phase circle, as ν changes across the wide band.

To handle this irregularity, a “healing” algorithm was used,
which adjusts the weights of each Bn so that effectively one is
mixing fractions of other phase steps into a given phase step, to
alter its angle and length to bring it into the nearest ideal con-
figuration. Then, Eq. (4) can be applied.

2.4 Low Readout Noise Motivates Use of Three or
Four Steps

Since readout noise combines in quadrature, the total readout
noise grows as the square root of N. Hence, in this part 2,
when discussing minimizing noise for low flux observations,
we are motivated to use the minimum number of step 3 to define
a sinusoidal fit. Four steps produce more elegant equations and a
slightly wider BW as we will demonstrate.

For four exposures, every 90 deg:

EQ-TARGET;temp:intralink-;e006;63;451WðνÞ ¼ 1

4
½ðB0 − B180Þ þ iðB90 − B270Þ�; (6)

EQ-TARGET;temp:intralink-;e007;63;414BordðνÞ ¼
1

4
ðB0 þ B180 þ B90 þ B270Þ: (7)

For three phase steps, symmetrically positioned (trigonal
symmetry):

EQ-TARGET;temp:intralink-;e008;63;357BordðνÞ ¼
1

3
ðB0 þ B120 þ B240Þ; (8)

EQ-TARGET;temp:intralink-;e009;63;319WðνÞ ¼ 1

3
½ei2π0B0 þ ei2πð1∕3ÞB120 þ ei2πð2∕3ÞB240�; (9)

EQ-TARGET;temp:intralink-;e010;63;284

WðνÞ ¼ 1

3
½B0 − 0.5B120 − 0.5B240Þ�

þ i
1

3
½0.866B120 − 0.866B240�: (10)

2.5 How Wide is the Bandwidth for Three or Four
Steps?

As the ν varies across the band, the phase step will change, gradu-
ally bringing it out of ideal configuration into irregularity. An
irregular configuration will tend to increase the noise since the
weights applied to each phase step to cancel out the nonfringing
component, leaving the fringing component behind, tend to
increase. The increased weights produce increased net noise
(sum in quadrature of all the weights). We therefore have studied
(Fig. 4) how theweights and hence net noise varies across the band,
for three or four steps, in order to find the useful bandwidth BW.

The results are shown in Fig. 4, which supposes that the
ideal configuration is at ν ¼ 10000 cm−1, and that for other

wavenumbers, the phase steps are proportionately different.
The minima of these curves, i.e., the value of the noise (relative
to a single readout) at the ideal ν is

ffiffiffi
3

p
and

ffiffiffi
4

p
for the case of

readout noise, panel (a). For the case of photon-limited noise (b),
there is no dependence on the number of steps since only the
total number of detected photons matters; hence, the minima
of the curves in (a) merge together in (b).

The circular wheel-like diagrams show the configurations at
several places across the band. Interestingly, note how the
four-step configuration at 13000 cm−1 appears approximately
as a three-step configuration, because step 3 overtakes step 0.
In this region, we average steps 3 and 0 together and use the three-
step formula [Eqs. (9) or (10)]. Then, for larger ν, step 3 passes
counter-clockwise away enough from step 0 that once again
a four-step formula [Eq. (6)] produces a smaller noise.
(However, note that for the use of the formula, we would relabel
the steps so that they increase in index counter-clockwise. We do
not relabel them in the figure, so that the reader can track the
movement of the steps.)

2.5.1 Bandwidth of three steps is usefully wide, 1.8:1

We define the practical BWas where the noise does not increase
more than 20% over the minimum four-step value (of

ffiffiffi
4

p
). We

observe that the multiplicative BW for four steps is 2.3:1, and
for three steps using the same absolute noise threshold is 1.8:1.
This is comfortably large, sufficient to handle the visible band
(400 to 700 nm, 1.8:1) and most of TripleSpec1 BW (950 to
2450 nm) of 2.6:1.

2.6 Details on How Irregular Weights Were
Calculated

Lets us describe how we discovered the weights (that multiply
each exposure) for the three or four steps configuration, as it
becomes irregular. When the phase angles deviate from ideal,
the weights deviate from unity. The net noise is the sum in quad-
rature of these weights.

A simple method for discovering these weights is to treat the
four data as pair differences, and this style of analysis is called
“pushpull,” and it has been used extensively by the first author in
analyzing other interferometric data (e.g., Secs. A and B of
Ref. 9). Code already developed for pushpull analysis was
used. The four steps are divided into pair differences:

EQ-TARGET;temp:intralink-;e011;326;275Horiz ¼ 0.5ðB0 − B180Þ; Vert ¼ 0.5ðB90 − B270Þ; (11)

which are assigned to represent the real and imaginary parts of
W, as shown in Fig. 5. Then, Vert versus Horiz is plotted to form
a Lissajous, which is elliptical generally since the weights are
inappropriate for the phase step angles. We desire it to be cir-
cular of unity radius to indicate the weights are now correct. (For
elegance, we temporarily use a factor of 1/2 instead of 1/4 in
Eq. (6), so that the radius can be unity, and then apply another
factor of 1/2 later in the processing.)

Rather than adjusting individual weights for the four Bn, we
adjust other gains that we have created that manipulate the dif-
ference horiz and vert, and another gain to apply a linear trans-
formation that corrects for the so-called obliquity of the data.
These gains were adjusted until a circular Lissajous was
obtained from the data, when test data were used that created
a helical W. That is,
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EQ-TARGET;temp:intralink-;e012;63;305

B0 ¼ 1þ cos 2πτν; B90 ¼ 1þ sin 2πτν;

B180 ¼ 1 − cos 2πτν; B270 ¼ 1 − sin 2πτν (12)

over a small test range of τν, where the helical data make a sin-
gle revolution. When the correct weights are found, the
Lissajous will be a circle of radius unity. Initially, when unity
weights are used for the irregular condition, an elliptical
Lissajous is produced, as shown in Fig. 5 having obliquity.

The idea is to temporarily replace the actual data with the
helical data, find the appropriate gains or weights that make
a circular Lissajous, and then apply these gains on actual data.

The more irregular the phase configuration, the larger the
obliquity. As “Vert” deviates from orthogonality of “Horiz,”
the obliquity grows. Also, as the magnitudes of Vert and Horiz
decrease, as illustrated by panel (c), where the phase steps are
dramatically far from ideal, the size of the Lissajous propor-
tional decreases. Then, the overall gain must be increased to
restore Lissajous radius to unity. This increases all the weights,
which increase the net noise. The obliquity is related to how far
from orthogonality is the Vert compared to Horiz.

The gains of the differences and the gain of the obliquity
operation are adjusted to produce a circular Lissajous. Then,

the equivalent values of the weights (assigned to each Bn)
are calculated and summed in quadrature to yield by what factor
the noise increased.

As the phase increases from the ideal configuration, the
Lissajous deviates from a circle to an ellipse having obliquity
different from unity. We define obliquity as the ratio of the
major and minor axis of the ellipse, and they align along the y ¼
x and y ¼ −x axes when the phases are nonideal. We created an
obliquity operation that temporarily transforms the data into two
new axes along y ¼ x and y ¼ −x, applies a gain g that dimin-
ishes the length along the y ¼ x axis, and then restores the data
to the original axes y and x. This linear operation has the effect
of mixing phase step components:

EQ-TARGET;temp:intralink-;e013;326;162

RW 0 ¼ RWðgþ 1Þ∕2þ IWðg − 1Þ∕2;
IW 0 ¼ RWðg − 1Þ∕2þ IWðgþ 1Þ∕2: (13)

Hence, it is related to the Healing method, which also mixes
components. The g ¼ 1 is the nominal situation not requiring
a change in obliquity. One could redefine obliquity to change
the minor instead of major axis, by substituting g → 1∕g in

Fig. 4 Change in relative noise of fringing component W due to irregular spacing of the phase steps as
they grow across the band, for cases of 4 and 3 steps, and (a) for readout noise and (b) photon dominated
noise. For a constant physical delay change as the interferometer mirror is stepped, Δτ, the correspond-
ing phase change varies with wavenumber as Δϕ ¼ νΔτ. We define the ideal regular phase configura-
tions (four at 90 deg, three at 120 deg) to occur at ν of 10;000 cm−1. When the phases deviate severely
from their ideal uniform configuration and cluster in two groups on opposite sides of the phase circle, then
the obliquity of a Lissajous plot of W increases dramatically, increasing the weights needed on data to
achieve circularity, increasing the net noise. (a) Vertical axis is readout noise relative to a single readout.
An arbitrary definition of practical BW is the noise increasing 20% over 90 deg configuration. Relative
BWs of 2.3:1 and 1.8:1 are produced for 4 and 3 exposure cases, respectively. These are sufficiently
wide for most kinds of spectroscopy (visible band 400 to 700 nm is 1.75:1).
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the equation. Since the obliquity operation changes the radius of
the circular Lissajous that is achieved, the final step is to apply
an overall gain adjustment that affects all the individual weights
the same to bring the circle radius to the desired value of unity.
Then, from these operations, we calculate their equivalent effect
on the individual weights, and sum these in quadrature to yield
the ratio of increase in noise over the ideal value.

For configurations that had three inputs, we used Eqs. (8) and
(10) to create W and B. These, of course, produce an elliptical
Lissajous for irregular phase steps. To correct this by conven-
iently using the existing code written for four steps, we map
the three steps to four ersatz steps through
EQ-TARGET;temp:intralink-;e014;63;112

B0 ¼ Bord þRW;B180 ¼ Bord −RW;

B90 ¼ Bord þ IW;B270 ¼ Bord − IW; (14)

and adjust the gains to make a circular Lissajous of unity radius.

3 Single Delay Noise Behavior

3.1 Overview

We will first discuss a single delay behavior, because multiple
delays is a simple extension.

3.1.1 Concrete case of noise reduction for 1× boosting
evaluated

For a concrete example, we will examine the 1× boosting case,
where the new information (fringing information) is used to
reduce high frequency noise rather than increase the resolution.
The motivation is to provide a demonstration and detailed analy-
sis for the leftmost data point of a later graph [Fig. 15(a)] that
claims the 1× boosted photon-limited noise for an EDI spectro-
graph is ∼

ffiffiffi
2

p
times less than a conventional spectrograph,

which some readers may find surprising.
Examining this case also illustrates the relative contributions

to a ∼2× boosting case, since the amount of boost is merely a
matter of a different choice in the equalization (EQ) multiplier,
which is the final step, and the EQ does not change the signal-to-
noise ratio (SNR) curve since both signals and noises are multi-
plied by the same factor.

3.1.2 Numerical simulator used to study noise
propagation

To study the propagation of noise, we use a numerical simulator,
which uses similar algorithms for processing the data as the
actual TEDI code, after the process of phase stepping or sine
fitting. Here, the phase stepping process uses four constant
steps at 90 deg because the issues of phase step irregularity
and its ν dependence have been separately studied in Sec. 2.
The numerical simulator has been used to study various types
of noises (shot, detector) under various spectra types (absorp-
tion, emission), using various processing choices (bell weight-
ing yes/no, various types of EQ). The simulator equations are in
Appendix A.

3.1.3 Externally dispersed interferometry calculator
produces smooth theory curves quickly

A second useful tool is the “EDI calculator,” which is a set of
equations that can be quickly evaluated that lack the stochastic
variations of the simulation and do not require a specific input
spectrum. We have confirmed that these replicate the numerical
simulator. The calculator displays the responses of the various
components, signals and noises and their ratio, versus feature
frequency ρ. The calculator equations in Appendix B are
based on theory, except for the case of the smooth change
between uncorrelated and partially correlated behavior found
empirically by the numerical simulation. In that case, the
EDI calculator uses a best fit [Fig. 8(b)] modeling that observed
behavior, since we have not yet developed a complete analytical
explanation for it.

3.2 Simulator Results for 1× Boosting and Emission
Spectroscopy

Figure 6 shows a portion of the hypothetical emission spectrum
made by spikes of random heights (a) prior to blurring and
(b) after blurring to resolution 3725 at 7450 cm−1 and adding
simulated shot noise (nonfringing component is shown). (The

Fig. 5 How nonideal phase steps can still measure the whirl W, but
with magnified noise. (a) Four ideal 90-deg phases, and intensities Bn
associated with the vector positions of steps Sn . Real and imaginary
parts are formed from intensity differences W ¼ 0.5ðB0 − B2Þ þ
i0.5ðB1 − B3Þ associated with vector differences ðS0 − S2Þ and
ðS1 − S3Þ. For discovering proper weights, “helical” data are used,
Bn ¼ cos i2πðντ þ ϕnÞ, which normally creates a circular Lissajous,
imaginary part versus real part (red circle). (b) Nonideal phase
steps, and ðS0 − S2Þ is no longer orthogonal to ðS1 − S3Þ, and
Lissajous has obliquity. After weights are adjusted, circularity is
achieved. But sum in quadrature of weights has increased, increasing
noise. (c) Extremely poor phase step configuration producing very
oblique ellipse. Increase of dot product between ðS0 − S2Þ and
ðS1 − S3Þ, and decrease of their lengths, increase the noise.
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actual TEDI native resolution was closer to 2700, but we are not
trying to strictly reproduce TEDI, but use calculationally or
graphically convenient parameters.) When simulating absorp-
tion spectroscopy, we used a hypothetical spectrum having a
continuum. We simulated photon noise by scaling the noise
magnitude as square root of local intensity and detector noise
by having fixed standard deviation.

The sinusoidal interferometer transmission comb was multi-
plied against the input spectrum S0 [Eq. (1)] to form four signals
in 90-deg phase relation and blurred. The blur and interferom-
eter delays were adjustable. Figure 1(b) shows the appearance of
similar signals, but for an absorption spectrum and displaying
continuous phase along Y-axis that produces a smoother appear-
ance. The nonfringing signal was produced by summing the four
signals [Eq. (7)] to cancel fringes. The fringing component was
obtained using Eq. (6), which subtracted exposure pairs and
assigned them to real and imaginary parts of W.

The computational grid had a spacing of 0.05 cm−1, a suffi-
ciently small spacing to hold high-resolution signals boosted 10
times the native resolution. The boundaries of the Fourier space
(Nyquist frequency) were 0.5ð1∕0.05Þ ¼ 10 cm, which is many
times greater than the 0.22-cm half width at half max (HWHM)
of the native response peak psf0ðρÞ. This comfortably accom-
modates delays at least up to 5 cm.

Figure 7(a) shows the simulation results after the fringing
component was shifted in frequency by the delay τ [via
Eq. (22)], to restore the high frequency information to its origi-
nal high frequencies. This creates a wavelet appearance to the
fringing result in red.

The source spectrum had a small section 7420 to 7436 cm−1

that was a pure sinusoid of frequency 0.22 cm. This made it easy
to visually confirm that the relative component magnitudes from
the simulation output agreed with the EDI calculator at a specific
ρ of 0.22 in (c), indicated by heights of the colored dots.

The difference between the results having added noise at the
detector and no added noise was subtracted to produce residuals
(b). Note that the EDI 1× result (purple) has less high frequency
noise than the conventional result (black dashes), which confirms
our claim that adding an interferometer to the spectrograph can
reduce high frequency noise, for the same detected flux. We

calculate noises on the components “bass” (nonfringing) and “tre-
ble” (fringing), and their combination “net.” Fourier transform of
the noises shows how residual noises vary with frequency.

3.2.1 Fringing versus nonfringing noises, correlated or
uncorrelated?

Figure 8 shows how repeated instances of the numerical simu-
lation with photon noise were used to study how the type of
noise varied between the two extremes of correlated (sum lin-
early, open circles), or uncorrelated (sum in quadrature, open
squares), depending on the delay value. We discovered that
the behavior has a peak, which is well fitted by the native
response peak psf0ðρÞ. However, the peak does not reach the
perfectly correlated level when the delay approaches zero.
Instead, it is 0.7 of this distance. Since this was only recently
discovered, we have not yet found an analytical source for
the 0.7 factor but suspect that it is

ffiffiffiffiffiffiffi
0.5

p
.

When the type of noise was switched from photon to detec-
tor, the peak disappeared and the noise acted uncorrelated for all
delays. This result can also be argued analytically. A correlation
between nonfringing ∼ðB0 þ B180Þ and fringing-like signals
∼ðB0 − B180Þ involves integrals over products like ðN0 þ N180Þ
ðN0 − N180Þ ¼ ðN2

0 − N2
180Þ ≈ 0, where N represents the noise

apart from the signal. Hence for the detector case the correlation
is approximately zero, because the detector noise variance N2 is
nominally the same between the exposures. This argument does
not require the heterodyning which involves the delay.

For the photon limited case the noise depends on flux, so N2
0

could differ from N2
180. This produces some correlation, con-

firmed by the peak at small delays in Fig. 4(b). The heterodyn-
ing contributes the delay dependence by providing another
mechanism for noncorrelation at large delays.

3.3 1× Boost Simulation Result in Frequency Space

Figure 9 shows stages in the calculation of the SNR curves (ver-
sus ρ) for a delay of 0.4 cm, which is on the wing of the native
response peak and a typical placement of the peak. The EQ step
is omitted to better show high frequency behavior. Figure 10 is
the same as Fig. 9 but with EQ applied, to achieve the same final
resolution for the net EDI as in the conventional result, i.e.,
achieving 1× boost. A different EQ could have produced a
boosted resolution of ∼2. The EQ step does not change the
SNR curve shape since it multiplies both signal and noise.

3.3.1 Photon-limited noise case

The simulation output in Figs. 9 and 10 is the photon-limited
noise case. The SNR for the net EDI is plotted as a thick purple
curve in (d) showing a hump at 0.4 cm, where the fringing peak
(red curve) contributes. This hump exceeds the conventional
SNR (black dotted Gaussian curve) significantly for frequencies
above the midpoint of the conventional response, say 0.3 cm and
higher. Figure 11 evaluates the root mean square (RMS) average
noise in more detail.

3.3.2 Readout noise-limited case

The simulation uses four steps, whereas a conventional meas-
urement only a single readout (unless the conventional is dith-
ering by two exposures to reduce fixed pattern noise, something
that EDI fringing signal is immune to since it already dithers).
Then, for the readout noise-limited case, we divide the SNR

Fig. 6 (a) Small portion (50 out of 450 cm−1) of emission source spec-
trum S0 for numerical simulation for studying photon noise, consisting
of spikes having no continuum background, using calculational pixels
of 0.05 cm−1. (b) Blurred version with added simulated shot noise
(native resolution ∼3725 at average 7450 cm−1). For modeling
absorption spectroscopy, a spectrum having a continuum was used.
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output by
ffiffiffi
4

p
or

ffiffiffi
3

p
to simulate the readout noise-limited case

for four (thin purple) or three (long dash thin purple) reads
[Fig. 9(d)]. Similarly, in Fig. 10(a), we divide the dotted
black photon-limited curve by

ffiffiffi
4

p
to represent the single readout

noise dominated case (black long dashes).
Also, a recent paper10 proposes using a readout noise-free elec-

tron multiplying charge coupled detector (EMCCD), with fast
scanning of interferometer phase to improve Doppler precision.

3.3.3 Fixed pattern noise rejection

In the presence of significant fixed pattern (FP) noise, it is fair to
assume the conventional technique will dither at least two expo-
sures (such as shifting to an adjacent row of pixels) to cancel
this artifact. Since EDI automatically rejects FP noise by its
uses of differences between exposures, then for three exposures
EDI readout noise would be only

ffiffiffiffiffiffiffiffi
3∕2

p
∼ 1.22 higher than

conventional.

3.3.4 Effective flux increase

We saw in Fig. 10(a) that the EDI (purple) suppresses high fre-
quency noise relative to the conventional (dotted) photon noise.
Figure 11 shows RMS averages evaluating noise fraction rela-
tive to the conventional photon-limited noise, for various

regions of integration related to the number of pixels per reso-
lution element in ν space. The latter sets the Nyquist frequency,
which is the right-hand limit. (These plots are similar to
Fig. 10(a) but using the EDI calculator curves.)

Figures 11(a) and 11(b) show that the net EDI has less noise
than the conventional, 60% (or 73%) of noise, for 3 (or 2) pixels
per resolution elements.

Figures 11(c) and 11(d) show that noise fractions are even
smaller (34% and 46% for 3 or 2 pixels) when only high
frequencies above 0.22 cm (HWHM the native response) are
considered. This is justified since science signals typically
require the highest resolution of an instrument (e.g., detecting
and locating presence of smaller neighboring peaks).

This amount of noise reduction is conventionally accom-
plished by increasing flux by a factor 1∕0.342 ¼ 8.6 times.
Hence, this an effective flux benefit.

In the readout noise-limited case, the conventional noise is
either

ffiffiffi
4

p
or

ffiffiffi
3

p
times smaller. Assuming four reads for EDI,

then the 0.34 fraction becomes 0.68. This means it still has
less noise than the conventional, when considering just the
higher frequencies that typically manifest the science.

This virtual flux benefit of EDI must be weighed against the
decrease in flux due to insertion of the interferometer from para-
sitic reflections. The topic of how to best construct an ultralow

(a)

(b)

(c)

Fig. 7 (a) Components of the numerical simulation plotted versus ν, using simulated shot noise at the
detector, delay τ ¼ 0.4 cm, and EQ designed to achieve 1× boost, i.e., same resolution as conventional.
Outputs include “Bass” (nonfringing, green), “Treble” (fringing, red), “Net EDI” (purple), and conventional
(black dashed). Unblurred input emission spectrum (gray) has a portion of 7420 to 7436 cm−1 as sinusoid
with a frequency of 0.22 cm, making convenient linkage of amplitudes to height of dots in Fourier
response plot (c). (b) Residuals of conventional (black dashes) and net EDI (purple) when in photon-
limited regime. EDI has less noise at high frequency. Treble peak in (c) does not appear centered at
delay ¼ 0.4 cm due to EQ multiplication, which diminishes high frequencies (both signal and noise).
[Fig. 9(c) shows same curves as (c) but with no EQ.]
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Fig. 8 (a) Example instance of numerical simulation (purple curve) versus frequency with photon noise
probes whether the noise type is correlated (sums linearly, dotted black) or uncorrelated (sums in quad-
rature, dashed black). Fringing (treble, red) and nonfringing (bass, green) components. (b) For photon
noise, repeated instances (purple dots) while changing delay fits a peak (gray curve) having same shape
as the native psf0ðρÞ or “bass” peak, but with relative height 70% between perfectly correlated (open dots)
and uncorrelated (open squares). Detector noise produces uncorrelated behavior independent of delay.
(c) Instrument lineshapes in frequency space, small (0.05 cm) delay (left) producing partial correlation,
and large (0.6 cm) delay (right) producing noncorrelation. (d) Same instrument lineshapes in wavenum-
ber space. The small delay has similar lineshape components for fringing (red) and nonfringing (black
dash). Large delay produces orthogonal lineshapes because of oscillation under peak envelope.
Dimensionless delay horizontal axis is normalized by 0.44 cm FWHM of native PSF0ðνÞ. Dashed red
curve in (c) is wing of conjugate treble peak on the negative frequency branch (only significant for
small delays).
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insertion loss interferometer is interesting and saved for a future
paper. We speculate that the monolithic prism interferometer,
similar to Refs. 11 and 12, is a fruitful avenue.

3.3.5 Conclusions on single delay case

We show that a single interferometer delay can be used to reduce
the high frequency noise at the original resolution (“1× boost”
case), and that except for delays much smaller than the native
response peak half width, the fringing and nonfringing noises
act uncorrelated and add in quadrature. This is due to the fre-
quency shifting of the noise due to the heterodyning effect.

4 Multiple Delay Noise Behavior

4.1 Uniform Exposure Schedule

Having explored the single delay case, we can extend our under-
standing on multiple delays. The total input flux will be subdi-
vided into M delays (Fig. 12). We will show below that the
peaks add in quadrature to a fixed total sum. Thus, for the
case of uniform exposure times for all delays, the height 0.5
of the single fringing peak is subdivided to a height of 0.5∕

ffiffiffiffiffi
M

p
.

Note how the higher delay peaks extend above a hypothetical
conventional spectrograph (cross hatching above blue dashed

Fig. 9 (a) and (b) Noise, (c) signal, and (d) SNR curves versus feature frequency, ρ, for readout domi-
nated noise and photon dominated noise cases, for a delay of 0.4 cm. (a) The average of 10 simulations
(black dotted) with noise confirms the analytical result (b) from “EDI calculator.” The conventional photon
dominated noise (dashed) in (a) and (b) is nonfringing noise without bell weighting, and hence is uniform
with ρ. (c) Signals after bell weighting, for both bass (nonfringing) and treble (fringing). Weighting
improves SNR by deleting noise from the high frequency portions of the bass curve from overlapping
the 0.4-cm region of the treble. Bell weighting shape is same as original peaks, hence reduces widths of
bass and treble signal peaks to 70%, and halves height of the treble. Shaping effects of weighting are
normally compensated during EQ process. But EQ step is skipped to better show high frequency behav-
ior. (EQ does not change SNR since it multiplies both noise and signal.) (d) SNR for EDI is higher in the
0.4 cm and higher region than conventional, even when output is divided by

ffiffiffi
3

p
(long dashes) or

ffiffiffi
4

p
(thin

purple) to account for multiple readouts of EDI relative to conventional, when readout noise dominates.
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curve) having the goal 10× boosted native resolution. This
shows that the EDI can produce SNR that exceeds the classical
at the very highest frequencies, which are the most important
frequencies.

This figure and discussion assume that the grating throw
length is fixed in size, which is relevant for airborne and space-
borne platforms, where volume and mass are critically limited.
The blue dashed comparison curve was calculated as if it was an
ideal conventional spectrograph with no intrinsic lens blur,
achieved by reducing the slitwidth by 10× and decreasing
the flux by 10× for an extended source (also requiring 10×
more pixels). This is just an artifice to remember EDI behavior,
and the native spectrograph could be, for example, an adaptive
optics (AO) enhanced spectrograph without a slit.

For an AO spectrograph to increase its resolution convention-
ally, it would increase its throw length, since its focal spot size
cannot be made smaller. If the instrument throw length grows by
a factor 10, then native spectrograph (AO or not) has its weight
and volume grow by roughly 1000× (ignoring material proper-
ties and if all dimensions scaled).

In this case, the comparison response curve would have the
same width as the blue dashed curve, but have the same height as
the native, i.e., unity on that figure, not 1∕

ffiffiffiffiffi
10

p
. Then, the EDI has

less SNR than the AO result by
ffiffiffiffiffi
10

p
, but it needs 10× the pixels

and 1000× the volume to accomplish this, a heavy cost to pay.

4.2 Gaussian Exposure Schedule

Figure 13 illustrates a Gaussian schedule of exposure time (flux)
per delay. This is an optimal distribution of exposure time to
produce a Gaussian final lineshape for the signal, while produc-
ing a white (uniform versus frequency) distribution for the noise.
This is useful because a Gaussian lineshape lacks ringing and
simplifies comparison to conventional spectroscopy, which typ-
ically has approximately Gaussian lineshape. The sum rule for
peak heights squared was used to redistribute the flux in a
Gaussian schedule while preserving the total flux. Due to the
square root relationship between noise and flux, this means
the exposure time Gaussian is 1.4× narrower than the desired
SNR Gaussian (blue dashes).

4.3 Velocimetry Exposure Schedule

For certain kinds of spectroscopy, such as Doppler RV, or for
elucidating the most narrow features of a spectrum, neither a
Gaussian nor a uniform flux schedule is optimal. Instead, it
is best to concentrate the exposure time for a certain range of

Fig. 10 Simulation output when EQ is applied to achieve “1×” boost, i.e., same final resolution for net EDI
as conventional. (a) The photon-dominated conventional noise (short dashes) is divided by

ffiffiffi
4

p
to esti-

mate single readout noise (long dashes), since simulation uses four exposures. (a) Net EDI noise (pur-
ple), bass (green), treble (red). EQ’ing deletes high frequency noise, so net EDI has less noise than
conventional photon-limited (or single readout noises), for ρ above 0.2 (or 0.3 cm). (b) Net EDI signal
(purple) overlays the conventional signal (black dashes) due to the EQ’ing. (c) EQðρÞ used.

Journal of Astronomical Telescopes, Instruments, and Systems 045001-11 Oct–Dec 2016 • Vol. 2(4)

Erskine et al.: High-resolution broadband spectroscopy using externally dispersed interferometry. . .



high delays (frequencies), where the most Doppler science lies
[see gold dashes of Fig. 13(a)]. The optimal frequencies for
Doppler velocimetry are found by taking the derivative of the
stellar spectrum and finding the maximum in its Fourier trans-
form. For sunlight, this is a broad peak between 0.5 and 1.5 cm
(see Fig. 9 of Ref. 5).

4.4 Sum in Quadrature Rule for Peaks

Let us demonstrate that when we use bell-shaped weighting,
the net SNR versus ρ curve produced by combining fringing
components of different delays and the native nonfringing com-
ponent is a sum in quadrature. The SNR is a ratio. For uniform

Fig. 11 Fraction of average EDI noise (area under purple) compared
to conventional (black dashed line) for case of Fig. 10(a). A root mean
square (RMS) integration up to a Nyquist imposed limit set by pixel
density. (a) 73% for 2 pixels per resolution element (FWHM in
ν-space) or (b) 60% for 3 pixels per resolution elements. The 2
pixel per resolution elements definition is approximately same as
5% signal height definition used in Fig. 15. Thus, the 1.4× improve-
ment of leftmost datum of EDI to conventional in Fig. 15 is justified. (c)
and (d) Noise fractions are even smaller (46% and 34%) when only
high frequencies are considered, this is where science signals typi-
cally reside. The low ρ integration limit is set at 0.22 cm by the
HWHM of psf0ðρÞ. Note that a 0.34× photon-limited noise reduction
is conventionally obtained by increasing flux 1∕ð0.34Þ2 ¼ 8.6 times.

Fig. 12 Multiple EDI sensitivity peaks (black, red is net) of the same
height, when each delay has same exposure time, so total flux is
evenly divided among M delays. Native spectrograph (green peak at
origin) defines unity SNR. An equal-area rule for SNR2 causes peak
height to be 0.5∕

ffiffiffiffiffi
M

p
forM delays. Blue dashed Gaussian response is

for grating with 10× resolution increase and 10× less flux (hypotheti-
cally due to slit narrowing 10×). In this figure, the spectrograph throw
length is considered fixed, so that avenue for increasing resolution for
AO and classical spectrographs is not shown here.

Fig. 13 (a) Net photon SNR behavior (red) when a Gaussian distri-
bution of exposure time versus delay # is used. This is superior to
uniform exposure time if white noise behavior is desired, such as
in general spectroscopy. For Doppler spectroscopy, concentrating
flux in a few high delays (gold dashes) is better. The native spectro-
graph (green peak at origin) defines unity photon SNR. (b) Asymptote
of many overlapped delays, for 10× boost, is ∼78% of a “classical”
spectrograph having resolution a factor boost larger, and heightffiffiffiffiffiffiffiffiffiffiffiffi
boost

p
smaller, as if slitwidth and flux boost times smaller.

(c) Asymptote for 4× boost is 95% of classical. Gold line at 0.02 is
photon SNR of Fourier transform spectrometer, reduced from native
peak by square root of the number (∼2500) of native resolution ele-
ments, since in Fourier transform spectroscopy (FTS), fringes of dif-
ferent phases sum on a single pixel. In this figure, the spectrograph
throw length is considered fixed, so that avenue for increasing reso-
lution for AO and classical spectrographs is not shown here.
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flux, the noise denominator is the same magnitude between dif-
ferent delays. And for other flux schedules, we normalize to
force the denominators to be the same magnitude. Hence, we
need only to discuss the numerator, which is the EDI sensitivity
plots. Therefore, we use plots, such as Fig. 12, that show the
fringing response peaks to also represent the photon SNR peaks.

Consider two overlapping peaks 1 and 2, which could
include the native peak or different delays. We calculate net
SNR by summing the signal S linearly, but combine the
noise N in quadrature. We use weightings k1 and k2 associated
with each peak. Hence,

EQ-TARGET;temp:intralink-;e015;63;631S ¼ k1S1 þ k2S2; (15)

EQ-TARGET;temp:intralink-;e016;63;601N ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðk1N1Þ2 þ ðk2N2Þ2

q
: (16)

By bell-shaped weighting, we mean that the weight has the
same shape as the signal: k1ðρÞ ¼ S1ðρÞ and k2ðρÞ ¼ S2ðρÞ.
Because we normalize the noise denominators to be the same,
N1 ¼ N2 ¼ N0. Hence,

EQ-TARGET;temp:intralink-;e017;63;523

SNR ¼ S∕N ¼ ðS21 þ S22Þ
N0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
S21 þ S22

p

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðS1∕N0Þ2 þ ðS2∕N0Þ2

q
(17)

and similarly for multiple peaks. Thus, we have shown the SNR
sum in quadrature. (We calculate that the net noise level is not
very sensitive to the weighting shape. Rectangular weightings of
1.2 to 1.8 times peak full width at half max (FWHM) produce
∼95% of bell weighting case.)

The total exposure time may be allocated among the delays
in various schedules, which affects their heights while represent-
ing the SNRðρÞ. Since the square of SNR peak height is propor-
tional to the number of photons detected for a delay, and the sum
of these is fixed to the total exposure flux, then we have a sum
rule for SNR2 peak heights [Figs. 12 and 13(a)]. The sum rule
also works for the area under the SNR2 curves.

4.5 Distribution of Noise, White or Pink?

Suppose we are not doing velocimetry and thus desire Gaussian
final frequency response. Then what is the final frequency dis-
tribution of the noise, after any EQ step? Figure 14 answers this
question, showing Fourier transforms of the noise (residuals
from ideal) from a numerical simulation, for cases of (a) uniform
or (b) and (c) Gaussian flux scheduling, and also comparing
(c) photon and (b) detector types of noise.

4.5.1 Uniform exposure schedule

For the case of (a) uniform exposure time for each peak, the
noise distribution is initially uniform (white). However, a
Gaussian EQ is eventually applied to produce the desired
Gaussian behavior in the sensitivity. Since the noise is
embedded with the signal, the noise also receives this EQ shap-
ing. Hence, the final frequency distribution of the noise in the
uniform schedule is Gaussian. It could be called pink noise, hav-
ing more noise energy at lower frequencies.

4.5.2 Gaussian exposure schedule

For the case of a Gaussian exposure time schedule versus peak
#, the signal distribution is initially Gaussian, and the noise is
the square root of that Gaussian. We apply an EQ that divides by
this square root Gaussian. This leaves the signal as a Gaussian
having a 1.4× wider width and leaves the noise uniform (white
noise), as shown by Figs. 14(b) and 14(c). (Hence, the exposure
time Gaussian is narrower than the blue dashed curves of
Fig. 13.)

This simulation also shows that (c) photon noise, which
involves the square root of the flux, and (b) detector noise,
which is independent of flux, produce similar overall magnitude
of noise, after compensating for the average continuum level of the
native spectrum. Hence, there are no surprises for EDI when esti-
mating photon noise by inspecting the average continuum level.

4.6 Selecting Your Delays at Blue End of Band

For a fixed resolving power R ¼ ν∕Δν, the width in ρ-space of
the fringing peaks decreases as one moves to the blue (increas-
ing ν), since Δν increases and thusΔρ decreases. Hence, there is
a danger that gaps may open up between the different delay
peaks in the blue while being adequately overlapped in the
red. Since there is little penalty for having too much overlap
(other than excessive number of delays and hence readout

Fig. 14 Fourier transforms of the residuals, after EQ, for different
schedules of exposure time (flux) per delay, showing propagation
of simulated noise injected at the detector for the case of 10× reso-
lution boost. (a) Uniform exposure schedule (Fig. 12) produces pink
noise since a Gaussian EQ is later applied to produce a Gaussian
lineshape. (b) and (c) Gaussian schedule of exposures (Fig. 13)
using (b) detector and (c) photon noises. After an EQ divides by
square root of the Gaussian, the noise becomes a uniform (white) dis-
tribution, and signal becomes Gaussian with 1.4× wider width.
(d) Native spectrum from one of eight delays (1/8th flux), consistent
with rule of thumb that EDI noise is roughly conventional noise at 1/
boost flux, i.e., 1/10th flux. (a)–(c) Low noise section (<0.25 cm) due to
the cleaner contribution of the native averaged over eight exposure
times. Simulated noise was 3% of continuum on four exposures on
0.05 cm−1 pixels.
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noise), but a severe penalty for a gap (which causes a divide by
zero blow up in the EQ and hence increases noise), we recom-
mend selecting the delay positions at the blue end of the band,
by subdividing the delay range needed to produce a certain final
resolution by the width of psf0ðρÞ.

4.7 Readout Noise Case for Multiple

Analogous to the single delay case, the calculation output here
for multiple delays is for photon-limited noise, neglecting read-
out noise. Then to account for readout noise relative to conven-
tional single readout, we divide the EDI SNR peaks by factors offfiffiffi
3

p
or

ffiffiffi
4

p
for three or four phase steps. We also have to create

two different versions for the native peak, one assembled from
three or four exposures, and hence having a SNR reduced by

ffiffiffi
3

p
or

ffiffiffi
4

p
. (This would be the EDI one.) The other would be the

original native peak, which would represent the conventional
measurement done in a single read but four times longer expo-
sure. The final factor to consider is the increase in readout noise
versus ν due to changing phase step size, which is from
Fig. 4(a).

4.8 Actual Delay Positions for TEDI

In contrast to the uniform spacing of delays used in this theo-
retical discussion, the actual delay values used in the TEDI inter-
ferometer were irregularly positioned across delay space and
had gaps. This was due to the delays being primarily chosen
for precision RV, anticipating different sources having different
rotational broadening. This required different delay positions
over a wide range, and we had only eight positions in our rotary
“filter” holder that held the glass delay etalons.

Figure 21 of part 12 plots the fringing peak positions in delay
space for the TEDI instrument and indicates the TripleSpec
native peak as a green peak at the origin. This plot for modu-
lation transfer function is essentially a plot for SNR, since the
noise denominator is uniform.

The eight delay values for September 2010, labeled E1 to E8,
are 0.083, 0.34, 0.66, 0.96, 1.27, 1.75, 2.92, 4.63 cm. In June
2001, the E1 position was swapped for a new delay called E6.5
having 2.4 cm to fill the gap between E6 and E7 (1.75 to
2.92 cm). This still left a ∼1 cm gap between E7 and E8. In prin-
ciple, a 10-position rotary holder holding two more delays at 3.5
and 4.0 cm could have made a contiguous coverage. This would
have allowed minimal ringing (Gaussian) resolutions up to
36,000 (at 7450 cm−1), rather than the 27,000 we produced.
(Processing 36,000 with a delay gap would have produced sig-
nificant ringing in the lineshape.)

5 Quantifying Performance Relative to
Classical

Figures 13(b) and 13(c) red curves show that in the limit of
numerous, heavily overlapped, multiple delays having a
Gaussian flux schedule, the asymptotic behavior of the EDI
is similar to a classical spectrograph of boosted resolution,
but having a reduced SNR as 1∕

ffiffiffiffiffiffiffiffiffiffiffi
boost

p
, consistent with either

more read noise from the required more pixels (to maintain
fixed number of pixels per resolution element), or more frac-
tional photon noise from less flux (as if the flux was decreasing
from a reduced slitwidth acting on an extended source).

Let us quantify the performance of the EDI result by the frac-
tion of this “classical” result. Let the effective Gaussian height
(EGH) be the Y-intercept (SNR), where the Gaussian intersects

as the number of delay increases to asymptotically produce a
smooth curve, and let FC be the fraction relative to the classical
result 1∕

ffiffiffiffiffiffiffiffiffiffiffi
boost

p
.

For example in (b), the boost is 10×, and the classical value
would have EGH at SNR of 1∕

ffiffiffiffiffi
10

p
. The net EDI (red curve)

is fitted by a Gaussian shape (blue dashes) of fixed resolution
having an SNR EGH of 0.25. This is the classical result dimin-
ished to 0.25∕0.316 ¼ 78% height, so FC is 0.78. Then, the
EGH intercept 0.25 is plotted in Fig. 15(a) as a purple dot at
boost = 10.

5.1 Plotting Fraction of Classical versus Boost

How does the EDI compare to the classical result, and how does
that vary with boost? Figure 13(b) shows that for a 10× boost,

(a)

(b)

(c)

Fig. 15 (a) EGH for EDI versus boost (purple dots). Green dashed
line is square root dependence of “classical” standard, having sig-
nal-to-noise ratio 1∕

ffiffiffiffiffiffiffiffiffiffiffiffi
boost

p
due to hypothetical reduced flux from

reduced slitwidth. (b) Inflected shape of net EDI curve (red) is native
response (green) summed in quadrature with EDI peaks (gray). We fit
net EDI curve by a single Gaussian (purple dashes) of height EGH
and width set by boost. (c) EGH is found by requiring RMS of EQ
curve (blue) to be unity–range right limit at 5% height of Gaussian.
For boost = 2, EGH is 0.92 and plotted as black circle in (a).
Leftmost datum is boost = 1 (the original resolution is retained), show-
ing EGH is 1.4 and SNR is improved relative to a conventional, for the
case of photon limited noise (when readout noise insignificant). This is
confirmed in more detail by Figs. 10 and 11.
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we achieve 78% of the classical SNR, and [c] for 4× boost, we
achieve 95% of classical SNR.

Figure 15(a) shows in purple dots how the EGH or Y-inter-
cept for SNR (FC∕

ffiffiffiffiffiffiffiffiffiffiffi
boost

p
) varies with a variety of boost values.

The green dashed line is the “classic” standard, which has a
square root dependence because we are assuming its flux
decreases as 1/boost. Note the crossover near boost of 4×.
For larger boosts, the asymptotic behavior is that the EDI has
a square root dependence like the classical, but a factor ∼

ffiffiffi
2

p
worse, and for smaller boosts than 4, the asymptotic behavior
is a factor ∼

ffiffiffi
2

p
better than classical.

The reason EDI can be slightly better than classical for lower
boosts is that then the native sensitivity peak is much more
included in the Gaussian fit of the combination. For very
high boosts, the native peak is so much higher than the EDI
fringing peaks that it is not effectively included in the
Gaussian that must fit both, in the manner described in the cap-
tion of Fig. 15(c), which requires the RMS of an EQ curve to
be unity.

5.2 Including Focal Blur in Native Model

A more realistic spectrograph will act differently from our clas-
sic standard. Namely, it will have a minimum focal blur (FB)
that convolves with the slitwidth to put a ceiling to the resolution
even while the flux decreases because of the decreasing slit-
width. This behavior is shown in Fig. 16 in the green curve,
in comparison to the EDI result in black diamonds. This is a
theoretical comparison between EDI and conventional photon
noise behaviors versus final resolution, when the native

spectrograph used for both is operated near its resolution
limit, and where the slitwidth is summed in quadrature with
a constant FB to calculate the native resolution. It illustrates
the key point that at some point, every dispersive spectrograph
will reach a resolution limit, which is controlled by the FB or the
detector pixel density.

6 Comparing TEDI Instrument and Photon
Noises

6.1 TEDI Instrument Noise Roughly 3%

For TEDI instrument noise, we observe a large shift (along
wavenumber) of the native PSF versus time, as much as
0.6 cm−1 in the A-order, as shown by Fig. 35 of part 1.2

Since the resolution is about 2 cm−1 in this order, this is a
very large relative instrumental insult. Because it varies in mag-
nitude and even polarity across the band, it cannot be removed
by a simple monolithic shift. To express this as a vertical (inten-
sity) noise to compare it to the photon noise, we subtract each of
the individual spectra from the average spectra. Figure 38(c) of
part 12 shows the residual is between 2 and 5%, which we call
roughly 3%.

6.2 TEDI Photon Noise Roughly 0.1%

Figure 11 of part 12 shows that a typical single exposure of the
phase stepping set has of order 10,000 to 30,000 counts per pixel
for the continuum portion. (It represents an average single

Fig. 16 Theoretical comparison of photon noise-to-signal ratio (arb. units) between the two techniques
versus boost (final/native resolution), for EDI (black diamonds), and native-alone (green curve).
Hypothetical native spectrograph has a slitwidth (SW) and a FB of 0.70, that sum in quadrature. Red
dashed line having square root behavior is idealized “classic” spectrograph standard, whose flux
decreases as 1/SW but without any FB. We suppose native spectrograph operating point is at knee
of curve (solid green dot), where SW ¼ FB. From operating point, we drop 1.4× to set net EDI noise
behavior at boost of 1×, and the rest of the EDI curve follows based on this instance of native spectro-
graph. The factor of 1.4 is based on reciprocal of Fig. 15(a), and confirmed by simulation Fig. 11. The EDI
for low boosts has lower net noise than native-alone because it combines native signal with fringing
signal, and they have uncorrelated noises.
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exposure, not yet summed over 10 steps. This may not have
been clear from that figure caption.)

Summing over the 10 exposures per phase set, the total count
is 1 to 3 × 105, and since there are 3.8 photons per count, this is
4 to 11 × 105 photons per pixel. Since there are ∼3 pixels per
native resolution element, there are about 1 to 3 × 106 photons
per native resolution element. Taking the square root, this yields
a photon noise of order 0.1%.

6.3 Noise Contribution Plot

From what we have learned about TEDI noise from this and the
companion paper (part 1),2 we assemble a very approximate pic-
ture in Fig. 17 of the various types of noise contributions and
how they might vary versus resolution boost ratio. For TEDI, the
native spectrograph instrumental noise is about 3% due to drifts
of the PSF. By contrast, the photon shot noise is about 30 times
smaller at about 0.1%. This plot is suggestive and not rigorous—
useful for identifying which issues to further investigate.

The red and green symbols denote EDI and native spectro-
graph. When boost varies for EDI, it uses the same 1× behavior
of the native but with different delay arrangements. But when
boost varies for the native, it is used alone and the EDI behavior
is not recomputed to use the higher resolution of the new native.
Readout noise is neglected here since the photon flux of TEDI
was very high.

Native photon: The native classic photon noise would grow
as square root of resolution as the flux is assumed to decrease
linearly with resolution (we are considering the case in which
the spectrograph throwlength is fixed).

EDI photon: The EDI photon noise has the S-shaped behav-
ior, crudely similar to the square root classic behavior, but better
than classic by 1.4× at low boosts and worse than classic at high
boosts (from Fig. 15).

Native instrumental: Measured vertical error from TEDI’s
native spectrograph PSF drift in A-order is 2% to 5%.
Regarding its dependence on the boost, this approximately fol-
lows a power law of 3/2 for blended lines (hence low res) and of
power of 1 for isolated lines (at high res). For TEDI data at res-
olution ∼3000, it is in between these values.

EDI instrumental: For low boosts of ∼1×, the interferometer
comb in the wavelet is as nearly as large as the wavelet envelope.
This makes the EDI result more susceptible to native PSF
changes. Hence, we place the 1× EDI dot near but slightly
below the native dot—below it because the EDI also eliminates
fixed pattern noise, so that counts for something.

By contrast, at higher boosts such as 6×, the interferometer
comb period is so much finer than the wavelet envelope that it is
insensitive to the PSF drifts. Calculations artificially shifting the
Moire data of a ThAr line show that TEDI has at least 20× less
horizontal reaction to a PSF drift, (and 350× less using a more
sophisticated “crossfading” process that modifies the line-
shapes. See Sec. 10 of Ref. 2). But at a 6× higher boost, the
slope of lineshape that connects between vertical and horizontal
errors has increased by 6×, so the net downward movement of
the red dot is 20∕6 ¼ 3×. This reduces the EDI instrumental
noise to a 1% level, 20× less than it would be with the conven-
tional alone. Instrument noise is still dominant over estimated
EDI photon noise of 0.2% at 6× boost.

7 Zoology of Different SpectroscopyMethods
Figure 18 is a notional plot comparing several methods of spec-
troscopies in Fourier space (delay space), including FTS. The
general goal is essential to map the Fourier information of
the source spectrum over a delay range. The higher the maxi-
mum delay, the higher the achieved resolution. Apparatus pho-
tos and example data of several different kinds of dispersed
interferometers are shown in Ref. 13. Different techniques
accomplish the mapping in different manners. Either (a) all at
once (purely dispersive), (b) subdividing the delay space in a
series of discrete chunks (EDI), (c) one chunk that is continu-
ously scanned (dispersed FTS), (d) spatially recording the delay
range at once [spatial heterodyning spectroscopy (SHS)], or
(e) an extremely narrow spike that is scanned (pure FTS).

7.1 Comparison to Dispersive Spectrographs

The purely dispersive method (a) has a peak at the origin whose
width is proportional to spectral resolution. Let the FWHM be
τmax (which is also the approximate the rightmost extent of the
delay range for a FTS or EDI to map out to the wing of the
Gaussian). Then, from the uncertainty principle:

Fig. 17 Estimated relative contributions of various noise contributions
for absorption spectroscopy in the A-order of TEDI, compared to
native spectrograph (if it could increase its resolution), and how
these two vary with boost ratio (EDI resolution over native). Green
denotes the conventional “native” spectrograph and red denotes
EDI. Circles are instrument noises and squares are photon noises.
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EQ-TARGET;temp:intralink-;e018;63;282Res ∼ ντmax ∼ τmax∕λ; (18)

which can be easily remembered as the number of wavelengths
that fit into τmax. The Res ¼ δλ∕λ ¼ δν∕ν, wavenumber ν ¼
1∕λ when wavelength is in cm, and maximum interferometer
delay τmax in cm. So, a Res 50,000 dispersive spectrograph at
1 μm wavelength has a peak 2.5 cm in half width, or ∼5 cm to
the wing of the Gaussian.

Panel (b) shows the EDI, which maps delays space in chunks
(one peak per delay) set by the native peak (green), which now
can be narrower (lower resolution) than in the purely dispersive
case (a). The heights of the peaks are 0.5∕

ffiffiffiffiffi
M

p
relative to the

native. Importantly, and the subject of the companion paper,2

the center of each peak is the most stable region against PSF
translations, and the EDI places these at high frequencies,
where the science information resides. By contrast, the classic
spectrograph has this stable region at zero frequencies, which
does less good for the science signals. Hence, the EDI can
be an order of magnitude more robust to PSF drifts for the
important high frequencies.

7.2 Comparison to Fourier Transform Spectroscopy

The purely interferometric method (e, FTS) scans the interfer-
ometer delay continuously over the delay range, recording the
Fourier information with an extremely narrow peak. It then
Fourier transforms this into a spectrum. The scanning delay
requires a time responsive detector capable of recording high
frequencies and prevents use of integrating detectors.

By contrast, the EDI does not scan a delay continuously but
sits in several discrete positions. It can use the slow (integrating)
but sensitive CCD detectors already present in astronomical
spectrographs. Thus, EDI can be an add-on unit to enhance
existing spectrographs.

For measuring single shot or rapidly changing phenomena,
we have designed an EDI using multiple delays in parallel on
different detector regions to make snapshot measurements (see
Figs. 12A and 12B of Ref. 14).

The EDI signal has lower photon noise15 than the FTS by the
square root of the number of native spectral resolution elements,
because the disperser isolates adjacent wavelengths on the
detector having independent phases. For an echelle spectrograph
that is of order 103 − 104, the EDI can have a better photon SNR
over the FTS by a factor of 30× to 100×.

7.3 Comparison to Dispersed-Fourier Transform
Spectroscopy

In a dispersed-FTS16,17 shown in Fig. 18(c), a FTS is in series with a
disperser. The latter increases fringe visibility, so its photon limited
SNR is intermediate between purely dispersive and purely interfero-
metric cases. It is sufficiently high to allow it to measure stellar
spectra and Doppler velocities, such as the spectroscopic binaries
measured at the Steward Observatory 2.3 m Bok telescope.16,17

The scanning delay requires time responsive detectors.

7.4 Comparison to Internally Dispersed
Interferometers

The internally dispersed interferometer techniques called
SHS12,18 or heterodyning holographic spectroscopy19 is related
to an FTS, but where the delay range is recorded at once splayed
spatially, and thus can use an integrating detector rather than
being scanned over time [Fig. 18(d)].

Similar to the other hybrids, the photon-limited SNR is gen-
erally intermediate between purely dispersive and purely inter-
ferometric extremes, because there is some overlap of signal
between pixels, which degrades SNR by a square root effect,
as described in Eq. A40 of Ref. 19. The SHS technique is
known for its very high resolution at high etendue of extended
objects such as the atmospheric glow. Recording the delay range
at once makes the instrument very rugged and well suited for
aerospace platforms, such as described in Ref. 12, for measuring
upper atmospheric wind by emission lines.

The one-dimensional (noncross-dispersed) internally dis-
persed interferometer can have a significantly reduced BW,
because it produces a fringe comb, whose period varies strongly
with wavenumber (due to the internal grating that changes the
angle of interference), and thus, the fringe frequency can exceed
the pixel pitch outside of a BW. Within this band, the resolution
can be extremely high. (By contrast, the EDI has an almost uni-
form interferometer comb period. This allows a much larger
BW, limited only by the native spectrograph.) However, newer
cross-dispersed SHS have been demonstrated18,20 that produce

Fig. 18 Notional arrangement of astronomical spectrograph systems,
from purely dispersive (top) to purely interferometric (bottom), in sug-
gesting photon-limited SNR in Fourier space (frequency or delay
space). (a) Dispersive spectrographs need a wide peak for high res-
olution– the goal is to cover maximal delay. (e) Purely interferometric
FTS maps out delay space directly (with a narrow peak); (d) 1-d spa-
tial heterodyning spectroscopy (SHS) splays a range of delays spa-
tially along a detector at once, recording interferogram on an
integrating detector. Since fringes of many phases overlap on pixels,
SNR is reduced from dispersive case. (b) and (c) EDI and dispersed
FTS are hybrids having a medium wide peak. The EDI measures
delay space in chunks; the dispersed-FTS scans the peak.
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a two-dimensional interferogram, and these have a much wider
BW than the noncross-dispersed type.

7.5 Comparison to Super-resolution Techniques in
2-D Imaging

Related mathematical methods of enhancing image resolution
by increasing its width in Fourier space have been developed
in other fields. For example, the microscopy method of “struc-
tured illumination”21 creates Moire patterns with spatial grids at
various orientations.

We caution the reader not to confuse EDI with the
“superresolution”22 technique of photo enhancement that relies
on the alias signal developed when the signal is undersampled
and translated in subpixel displacements. Our technique does
not use the alias signal and excludes it from the processed signal
by filtering. We avoid using the alias signal because it is sus-
ceptible to irregular placement of the pixels, which can occur
on a subpixel level, say, 0.1 pixel. This level may not be of con-
cern to ordinary imaging but is significant to spectroscopy.

7.6 Relation to Amplitude Squeezed Light

Because the noise in the fringing and nonfringing signals is
uncorrelated, when the two signals are combined, the net SNR
can be better than the native nonfringing signal used alone. A
related sub-shot-noise behavior has been previously observed by
other researchers23 (a topic called “amplitude-squeezed light”),
using a conceptually similar experimental arrangement to EDI,
but without the spectrograph. Namely, they have an interferom-
eter with detectors on both (complimentary) outputs. This
detects a photon both by summing the complementary outputs
(the classical way) while also simultaneously subtracting the
two complementary outputs; combining both signals produces
a sub-shot-noise level of net SNR.

8 Concluding Remarks
We show that a single interferometer delay can be used to reduce
the high frequency noise at the original resolution (“1× boost”
case), and that except for delays much smaller than the native
response peak half width, the fringing and nonfringing noises
act uncorrelated and add in quadrature. This is due to the fre-
quency shifting of the noise due to the heterodyning effect. We
study the change between uncorrelated and partially correlated
noise as the delay goes to zero.

We find a sum rule for the noise variance for multiple delays.
The multiple delay EDI using a Gaussian distribution of expo-
sure times has a noise-to-signal ratio (NSR) similar to a classical
spectrograph with a proportionately reduced slitwidth to achieve
the boost in the classical manner, but without the focal spot
limitation and pixel spacing Nyquist limitations. That is,
NSR ∼

ffiffiffiffiffiffiffiffiffiffiffi
boost

p
. At low resolution boosts (∼1×), the EDI has

slightly smaller (∼1.4×) noise than the conventional, and at
higher than four boosts, the EDI has slightly larger (∼1.4×)
noise than conventional.

The ∼1.4× better than conventional noise at low boost is due to
combining fringing and nonfringing components while their noises
are uncorrelated due to heterodyne shifting. The ∼

ffiffiffi
2

p
worse than

conventional noise at high boosts is due to the factor 2 smaller
height of the single delay fringing peak relative to the native,
and the sum rule that spreads this SNR2 over several delays.

The readout noise decreases as the square root of number of
reads, motivating use of three or four reads instead of the 10 used

in TEDI. With the irregular phase steps stemming from using
three or four phase step exposures at changing wavenumbers,
the BW is still comfortably large (∼2∶1) sufficient to handle,
for example, the visible band (400 to 700 nm, 1.8:1).

8.1 Uncertainty Principle Followed

Some readers may find it nonintuitive that including an interfer-
ometer can boost resolution (or equivalently, decrease noise at
constant resolution). Consider that the coherence length of the
light passing through a high-resolution grating spectrograph is
broadened more than passing through a low resolution spectro-
graph (imagine a single perfectly short input pulse). The output
will consist of a train of pulses, one per grating groove. Thus, by
including an interferometer of significant delay with a grating,
the output will also have a broadened coherence length, com-
prising the convolution of the grating pulse train with a two-
pulse impulse response (Fig. 19). Following the uncertainty
principle, the increased coherence length is consistent with a
spectral resolution increase.

This increase incoherence length causes greater ambiguity
for time scales of τ∕c or 0.05∕3 × 108 or 166 picoseconds.
This is not a problem for astronomy which typically measures
much slower phenomena. The increased ambiguity applies to
any method of increasing spectral resolution including those
in conventional dispersive spectrographs.

Operating a high-resolution spectrograph system is then
a business of producing very long coherence lengths, and
doing it in a very controlled manner. The dithering of an EDI
interferometer delay is very controlled, and the interferometer
has only three degrees of freedom. By contrast, the grating has
a multitude of degrees of freedom, at least one per grating groove,
and many of these are uncontrolled by environmental insults.

8.2 Externally Dispersed Interferometry Can Benefit
Adaptive Optics Spectrographs

The EDI can be useful in boosting the resolution and stability of
an AO spectrograph, whose resolution is limited by the number
of detector pixels. Ordinarily, to increase the resolution of an AO
enhanced spectrograph (or classical spectrograph limited by
FB), one increases the throw length, and the number of pixels,
by a factor boost. This has the disadvantage of increasing the
volume and weight of the instrument by a power law having
an exponent between 2 and 3, with the expense growing non-
linearly as well.

Fig. 19 Apparent increase in coherence length of a grating when
viewed through an interferometer having delay τ. Any object viewed
through a Michelson interferometer appears twice (with 50% intensity
for each image), and with the second image delayed. The two images
of the grating appear as a single grating with a longer coherence
length. Since the spectral resolution is proportional to the net grating
coherence length, the resolution increases.
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Many airborne and spaceborne platforms have severe weight
and volume constraints. Hence, using EDI with an AO spectro-
graph is an attractive means of achieving higher resolution and sta-
bility without exceeding the financial weight and volume limits.

8.3 Externally Dispersed Interferometry Can Benefit
Integral Field Spectrographs

EDI can benefit integral field spectrographs that strive to pro-
duce spectra for each point on an image, because these systems
are typically starved of pixels. Even if AO is used to produce a
diffraction-limited focal spot, the spectral resolution is still lim-
ited by the paucity of pixels in the spatial dimensions. Consider
an objective prism creating a rainbow for each object. One can-
not spread the rainbows over very many pixels without danger of
overlapping rainbows of adjacent objects.

The EDI can boost the spectral resolution by inserting an
interferometer along the beam path. By taking a series of mea-
surements at different delays and combining the results, the EDI
boosts the final resolution to supersede what pixels allow in a
single exposure.

Provided a fairly light efficient interferometer is used, we
believe it would benefit spectrographs to have an EDI as a
front end. The suppression of fixed pattern noise and the enhance-
ment of the stability of the PSF through the sinusoidal fiducial
comb are just as important of advantages as the resolution
boost, especially for precision radial velocity, which requires
an extremely stable PSF. New data analysis methods that can fur-
ther improve the PSF stability, potentially up to 350×, by cross-
fading overlapped pairs of delays by reshaping the lineshape is an
exciting new development (Sec. 10 of part 1).2

8.4 Interferometer Fiducial Comb Lowers
Spectrograph Cost

The EDI enhances PSF stability through its sinusoidal fiducial
comb, which is embedded with the input spectra and shifts along
with it under a PSF shifting insult. Thus, the Moire (which
depends on difference between spectrum and comb) is largely
robust to a PSF shift.

By enhancing the robustness of the native spectrograph with
the fiducial comb, the structural and optical tolerances of its
design can be relaxed, saving cost and weight. It is possible
that the bulky and heavy vacuum tank enclosing some spectro-
graphs could be eliminated. Optical mounts can be made lighter.
Thermal expansion can be less worrisome not requiring special
materials. The diffraction grating and other optics could be opti-
mized to maximize throughput rather than reduction of aberra-
tions. Some lens elements or mirrors may be eliminated,
increasing throughput and decreasing weight. Hence, the EDI
presents a new and potentially useful leverage on the design
trade study, which could potentially improve the SNR achieved
at a given needed resolution.

Appendix A: Numerical Simulator Equations
The equations used for the numerical simulation of the EDI are
below. The simulator begins at Eq. (1) with a computation in
wavenumber space, using a hypothetical spectrum that is multi-
plied by a sinusoid and then blurred. Calculational pixels are
0.05 cm−1 wide. The blur is 40 pixels (2 cm−1) FWHM at
7450 cm−1 for a native resolution of 3725.

The added random noise is of either two types, detector
(magnitude independent of flux) or shot noise (magnitude scales

as square root of Bn prior to noise). We used a noise standard
deviation amount of 3% in some simulations and 30% of con-
tinuum in others. The calculational pixels were 0.05 cm−1.

The fringing (W) and nonfringing (Bord) components are
separated by idealized four step Eqs. (6) and (7). The variation
of phase step with ν across the band is ignored here and treated
elsewhere. This is justified since EDI works at a local level as
small as an individual resolution element.

Since it is easy to forget a factor of 2 somewhere in the math
chain, especially if sometimes we use a Fourier transform display-
ing both frequency branches and at other times a single branch, we
confirm the correct relative sizes of the W and B components in
the simulation results by inspecting the output of the purely sinus-
oidal test section of the input spectrum, 7420 to 7436 cm−1 in
Fig. 7(a) with the expected magnitudes from the theory in fre-
quency space indicated by red and green dots of panel (c).

Prior to heterodyning, reversal of some filtering is performed
to kill off high frequencies that contain mostly noise and little or
no signal. This can improve the photon-limited SNR by a factor
of 1.4× because it prevents two frequency branches of noise,
positive and negative, from combining into the final signal.
At this point, the signal lies in the neighborhood of zero, so
we optionally apply low pass filtering.

While rectangular lowpassing is the easiest to code and is the
minimal amount done, it is optimal to apply a filter passband
shape that has the same shape and magnitude as the expected
signal response, which has a shape psf0ðρÞ, which we model
as a Gaussian. We call this “bell-shape weighting” to be
more generic, denoted by kðρÞ. This is really meaningful in
the region, where two different signals overlap (bass and treble,
or trebles that belong to multiple delays), since for an isolated
component, the EQ function would undo the effect of any
weighting. The net noise changes slowly from the use of a non-
ideal shape or magnitude of weighting.

Gaussian shaped (bell-shaped) weightings are applied:

EQ-TARGET;temp:intralink-;e019;326;367k0ðρÞ ¼ psf0ðρÞ ¼ GaussðρÞ; (19)

or k0 ¼ 1 if no weighting is used.

EQ-TARGET;temp:intralink-;e020;326;325w 0ðρÞ ¼ 0.5wðρÞk0ðρÞ; (20)

EQ-TARGET;temp:intralink-;e021;326;295b 0
ordðρÞ ¼ bordðρÞk0ðρÞ: (21)

The factor 0.5 for weighting w is because its expected response
is half that of the nonfringing component.

Reversal of heterodyning is more accurately computed in
pixel or wavenumber space on WðνÞ, even though we discuss
it as being wðρÞ shifted in frequency space by an amount of
delay τ:

EQ-TARGET;temp:intralink-;e022;326;203W 0 0ðνÞ ¼ e−i2πντW 0ðνÞ: (22)

The polarity of the exponent is chosen to restore the Moire
signals to the high frequencies they originally had in the input
spectrum S0. A continuum in the input spectrum makes a sinus-
oidal comb in the measuredW. Our convention is that we assign
that a positive frequency. Hence, during heterodyning reversal,
we apply a negative exponent to shift that down to zero fre-
quency to recover the constant continuum.

The EQ is chosen to reshape the hump like shape of
ðbord þ wÞ:
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EQ-TARGET;temp:intralink-;e025;63;748netEDIðρÞ ¼ ½b 0
ord þ wðρÞ 0 0�EQðρÞ (23)

into an ideal Gaussian of a user selected width (choosing the
final resolution). The EQ is the ratio of desired shape divided
by actual shape, which is

EQ-TARGET;temp:intralink-;e024;63;697EQðρÞ ¼ Gaussðρ; FWHM � boostÞ
ðk0psf0 þ kedipsfedi þ ϵÞ ; (24)

where ϵ ¼ 1e−10 to prevent divide by zero blow ups.

EQ-TARGET;temp:intralink-;e025;326;752

kedipsfedi ¼ 0.5k0ðρþ τÞpsf0ðρþ τÞ
þ0.5k0ðρ − τÞpsf0ðρ − τÞ: (25)

The factor 0.5 is because the fringing response peak is half of
the native. This includes the contribution of the conjugate (or
“twin”) treble peak in the other (negative) frequency branch,
which can bleed over into the positive branch for very small
delays relative to the native psf0 width.

Appendix B: Code for Externally Dispersed Interferometry Calculator

The EDI calculator is a faster way to visualize EDI behavior than the numerical simulator, and it lacks the statistical
variations. It differs from the simulator by not using a specific input spectrum. It shows frequency response
(ρ-space). It is based on equations that we have confirmed reproduce the numerical simulation results. Script written
in Wavemetrics Igor data analysis application.

Functions below are in Fourier space, which is feature frequency space having variable rho
(units cm).

================ Gaussian Peak maker ========================
function GaussRsp(Res,aveWn,tau) // Calculates gaussian blurring vs rho, of grating
variable Res, aveWn, tau // Res is resolution, aveWn is in cm-1, tau is delay in cm
return exp(-(((x-tau)*1.133*aveWn)/(0.6006*Res))^2); // This is wavenumber savvy
end

================= Signals prior to EQ, and weighting ========
//<Bass signal, called hSigBassFinal>
hBass = GaussRsp(3725,7450,0); // Makes Gaussian peak centered at delay (3rd parameter), width
from resolution in

//first parameter, and average wavenumber in 2nd parameter.
//<Treble signal, called hSigTreb>
hTreble = 0.5*GaussRsp(3725,7450,tauG);
hTrebleTwin = 0.5*GaussRsp(3725,7450,-tauG); // This is the conjugate treble peak, on the other
frequency branch,

//that can bleed over when delay is small.

================ Make Weighting: Bell, or none ==============
k0 = hBass // Make weighting have same bell shape as expected signal.
kedi = hTreble // Make weighting have same bell shape as expected signal.
kediTwin = hTrebleTwin // Make weighting have same bell shape as expected signal.
or if desiring no weighting, make all weights = 1

================ Signals after weighting, prior to EQ =======
hBassFinal = hBass*k0 = hBass*hBass
HTreble2 = hTreble*kedi = kTreble*hTreble
HTrebleTwin2 = hTrebleTwin*kediTwin = hTrebleTwin*hTrebleTwin
hTrbBoth = HTreble2+HTrebleTwin2

//< Net EDI signal, called hFinal>
hAll = hBassFinal + hTrbBoth

================ Make EQ multiplier =========================
// Currently the net signal has a hump and thus does not have a ideal Gaussian shape. The purpose
of the EQ is to force

// the final net signal into a Gaussian shape. The final width is chosen by user.
Boost = 1 // We are examining the particular case where final resolution is same as native.
hBassWider = GaussRsp(3725*Boost,7450,0) // This one differs from hBass by having resolution
increased by Boost

hEq = hBassWider/(hAll+1e-10) // The 1e-10 useful for preventing blowups
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================ Signals after EQ ==========================
hSigBassFinal = hBassFinal*hEq // Equalization
hSigTreb = hTrbBoth*hEq // Equalization
hFinal = hAll*hEq // Equalization

=============== Noises =====================================
//<Bass Noise, called hBassN>
hBassN = 1*k0 = 1*hBass // The noise (constant) times the bell weighting
If no bell weighting, then hBassN = 1
hBassN *= hEq // Equalization

//<Treble Noise, called hTrbBothN>
hTrbBothN = sqrt(kedi*hTreble + kediTwin*hTrebleTwin) = sqrt(hTreble^2 + hTrebleTwin^2)
// Add conjugate from other

//frequency branch in quadrature, after applying weightings
If no bell weighting, then hTrbBothN = 1.414
hTrbBothN *= hEq // Equalization

//<Net EDI Noise, called hPurpleN>
//We will calculate both linear and quadrature versions, then mix them appropriate to the delay.
Unless delay is very

//small, quadrature is the usual result.
hAllN = sqrt(hBassN^2 + hTrbBothN^2) // <Sum in quadrature version>
hAllN *= hEq // Equalization
hAllNL = hBassN + hTrbBothN // <Linear version>
hAllNL *= hEq // Equalization

if (YesShotTypeNoise) // If Shot noise, then its somewhere between Quadrature and Linear
(uncorr and corr).

// Use Fig. 8(b) (noise vs delay), and MaxCorr*hBass(tauG) to estimate where in between the
two asymptotic behaviors.

// The peak is empirically found to fit a shape that is same as hBass, but only 70% high, //not
the full 100% between the linear (upper) and quad (lower) behaviors. MaxCorr = sqrt(0.5) //
Empirically found to be ~0.7, guessing its 0.707
hPurpleN = hAllN*(1-MaxCorr*hBass(tauG)) + MaxCorr*hBass(tauG)*hAllNL
else
hPurpleN = hAllN // If detector noise, then purely quadrature
endif

================ SNR =====================================
hPurpleSNR = hFinal/hPurpleN <For Net EDI, no readnoise case (photon limited)>
hPurpleSNR2 = hPurpleSNR/2 <For Net EDI, simulate four reads by dividing by sqrt(4)>
hTrebSNR = hSigTreb/hTrbBothN <For Treble component, fringing>
hConvSNR = hBass/1 <Bass is same as hBass because noise is uniform>

Acknowledgments
This material is based upon work supported by the National
Science Foundation under Grant Nos. AST-0505366, AST-
096064, PAARE AST-1059158, NASA under Grant
No. NNX09AB38G and by Lawrence Livermore Nat. Lab.
under Contract No. DE-AC52-07NA27344. Thanks to Ed
Moses for his valuable support during the genesis years. Thanks
to Y. Ishikawa, E. McDonald, W. V. Shourt, A. M. Vanderburg,
J. Wright, D. Harbeck, S. Halverson, T. Mercer, D. Mondo, A.
Czeszumska, M. Marckwordt, M. Feuerstein, G. Dalton, Jason
Wright, Daniel Harbeck, Eric Linder, Alex Kim, Ron Bissinger,
Richard Ozer and many others who have helped the project over
the years. Thanks to Palomar Observatory and UC Berkeley
Space Sciences staff including Mario Marckwordt, Michael
Feuerstein, and Triplespec PI Terry Herter and Cornell staff
Charles Henderson and Stephen Parshley.

References
1. J. C. Wilson et al., “Mass producing an efficient NIR spectrograph,”

Proc. SPIE 5492, 1295–1305 (2004).
2. D. J. Erskine et al., “High-resolution broadband spectroscopy using

externally dispersed interferometry at the Hale telescope: part 1, data
analysis and results,” J. Astron. Telesc. Instrum. Syst. 2(2), 025004
(2016).

3. D. J. Erskine et al., “High resolution broadband spectroscopy using an
externally dispersed interferometer,” Astrophys. J. Lett. 592, L103–
L106 (2003).

4. D. J. Erskine and J. Edelstein, “Interferometric resolution boosting for
spectrographs,” Proc. SPIE 5492, 190–199 (2004).

5. D. J. Erskine, “An externally dispersed interferometer prototype for sen-
sitive radial velocimetry: theory and demonstration on sunlight,” Publ.
Astron. Soc. Pac. 115, 255–269 (2003).

6. J. C. van Eyken, J. Ge, and S. Mahadevan, “Theory of dispersed fixed-
delay interferometry for radial velocity exoplanet searches,” Astrophys.
J. Suppl. Ser. 189, 156–180 (2010).

Journal of Astronomical Telescopes, Instruments, and Systems 045001-21 Oct–Dec 2016 • Vol. 2(4)

Erskine et al.: High-resolution broadband spectroscopy using externally dispersed interferometry. . .

http://dx.doi.org/10.1117/12.550925
http://dx.doi.org/10.1117/1.JATIS.2.2.025004
http://dx.doi.org/10.1086/377703
http://dx.doi.org/10.1117/12.549947
http://dx.doi.org/10.1086/pasp.2003.115.issue-804
http://dx.doi.org/10.1086/pasp.2003.115.issue-804
http://dx.doi.org/10.1088/0067-0049/189/1/156
http://dx.doi.org/10.1088/0067-0049/189/1/156


7. J. Ge et al., “The first extrasolar planet discovered with a new-gener-
ation high-throughput Doppler instrument,” Astrophys. J. 648, 683–695
(2006).

8. P. S. Muirhead et al., “Precise stellar radial velocities of an M dwarf with
a Michelson interferometer and a medium-resolution near-infrared
spectrograph,” Publ. Astron. Soc. Pac. 123(904), 709–724 (2011).

9. D. J. Erskine et al., “Two-dimensional imaging velocity interferometry:
data analysis techniques,” Rev. Sci. Instrum. 83(4), 043116 (2012).

10. R. Jensen-Clem et al., “Attaining Doppler precision of 10 cm∕s with a
lock-in amplified spectrometer,” Publ. Astron. Soc. Pac. 127(957),
1105–1112 (2015).

11. S. Mahadevan et al., “An inexpensive field-widened monolithic
Michelson interferometer for precision radial velocity measurements,”
Publ. Astron. Soc. Pac. 120, 1001–1015 (2008).

12. J. M. Harlander et al., “Design and laboratory tests of a Doppler asym-
metric spatial heterodyne (dash) interferometer for upper atmospheric
wind and temperature observations,” Opt. Express 18(25), 26430–
26440 (2010).

13. D. J. Erskine, The WSPC Handbook of Astronomical Instrumentation,
Vol. 3, Chapter Dispersed Interferometers, World Scientific Publishing
Company, Singapore (2017).

14. D. J. Erskine, “Combined dispersive/interference spectroscopy for pro-
ducing a vector spectrum,” US Patent 6,351,307 (2002).

15. R. Beer, Remote Sensing by Fourier Transform Spectrometry, John
Wiley & Sons, New York (1992).

16. B. B. Behr et al., “Stellar astrophysics with a dispersed Fourier trans-
form spectrograph. I. Instrument description and orbits of single-lined
spectroscopic binaries,” Astrophys. J. 705, 543–553 (2009).

17. B. B. Behr et al., “Stellar astrophysics with a dispersed fourier transform
spectrograph. II. Orbits of double-lined spectroscopic binaries,” Astron.
J. 142, 6 (2011).

18. J. Harlander, R. Reynolds, and F. Roesler, “Spatial heterodyne spectros-
copy for the exploration of diffuse interstellar emission lines at far-ultra-
violet wavelengths,” Astrophys. J. 396, 730 (1992).

19. N. Douglas, “Heterodyned holographic spectroscopy,” Publ. Astron.
Soc. Pac. 109, 151 (1997).

20. A. Bodkin and A. Sheinis, “Multiband spatial heterodyne spectrometer
and associated methods,” US Patent 8,154,732 (2012).

21. M. G. L. Gustafsson, “Surpassing the lateral resolution limit by a factor
of two using structured illumination microscopy,” J. Microsc. 198(2),
82–87 (2000).

22. G. Cristóbal et al., “Superresolution imaging: a survey of current tech-
niques,” Proc. SPIE 7074, 70740C (2008).

23. Y.-Q. Li, D. Guzun, and M. Xiao, “Sub-shot-noise-limited optical
heterodyne detection using an amplitude-squeezed local oscillator,”
Phys. Rev. Lett. 82(26), 5225–5228 (1999).

David J. Erskine has been an experimental physicist at Lawrence
Livermore National Laboratory since 1987 and has experience in fem-
tosecond lasers, semiconductor physics, superconductivity, diamond
anvil cell high pressure physics, shock physics, high-speed recording
techniques, Doppler interferometry, white light interferometry, digital
holography, Fourier signal processing, image reconstruction, and
phase stepping algorithms for interferogram analysis. Since 1998,
he has collaborated with astronomers to innovate interferometric tech-
niques for the Doppler planet search and high-resolution spectros-
copy. He is a member of SPIE.

Edward H. Wishnow received his PhD in physics from the University
of British Columbia. He is now a research physicist at the Space
Sciences Lab at UC Berkeley. He is working on stellar interferometry
and spectroscopy in the midinfrared and visible.

Martin Sirk has over 30 years of experience in the design, construc-
tion, calibration, and science analysis of astronomical instrumenta-
tion. This has included working with Digicon detectors on the
Hubble Space Telescope, CCD detectors on ground-based tele-
scopes, microchannel plate detectors and optics on six NASA mis-
sions (EUVE, FUSE, ORFEUS, CHIPS, SPEAR, ICON), and
photographic plates at Lick Observatory.

Biographies for the other authors are not available.

Journal of Astronomical Telescopes, Instruments, and Systems 045001-22 Oct–Dec 2016 • Vol. 2(4)

Erskine et al.: High-resolution broadband spectroscopy using externally dispersed interferometry. . .

http://dx.doi.org/10.1086/apj.2006.648.issue-1
http://dx.doi.org/10.1086/660802
http://dx.doi.org/10.1063/1.4704840
http://dx.doi.org/10.1086/683796
http://dx.doi.org/10.1086/529182
http://dx.doi.org/10.1364/OE.18.026430
http://dx.doi.org/10.1088/0004-637X/705/1/543
http://dx.doi.org/10.1088/0004-6256/142/1/6
http://dx.doi.org/10.1088/0004-6256/142/1/6
http://dx.doi.org/10.1086/171756
http://dx.doi.org/10.1086/133870
http://dx.doi.org/10.1086/133870
http://dx.doi.org/10.1046/j.1365-2818.2000.00710.x
http://dx.doi.org/10.1117/12.797302
http://dx.doi.org/10.1103/PhysRevLett.82.5225

