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Abstract. Fast Fourier transform-based phase screen simulations give accurate results only
when the screen size (G) is much larger than the outer scale parameter (L0). Otherwise, they
fall short in correctly predicting both the low and high frequency behaviors of turbulence-
induced phase distortions. Subharmonic compensation is a commonly used technique that aids
in low-frequency correction but does not solve the problem for all values of screen size to outer
scale parameter ratios (G∕L0). A subharmonics-based approach will lead to unequal sampling or
weights calculation for subharmonics addition at the low-frequency range and patch normali-
zation factor. We have modified the subharmonics-based approach by introducing a Gaussian
phase autocorrelation matrix that compensates for these shortfalls. We show that the maximum
relative error in structure function with respect to theoretical value is as small as 0.5% to 3% for
(G∕L0) ratio of 1/1000 even for screen sizes up to 100 m diameter. © 2021 Society of Photo-Optical
Instrumentation Engineers (SPIE) [DOI: 10.1117/1.JATIS.7.2.025007]
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1 Introduction

Accurately simulating the atmospheric turbulence behavior is well recognized as very chal-
lenging. For a variety of purposes such as the design and development of adaptive optics sys-
tems, speckle imaging techniques, and atmospheric propagation studies, it is essential to
simulate good atmospheric phase screen models. Methods based on Zernike polynomial
expansions,1 fast Fourier transform (FFT)-based methods,2–8 and low-frequency optimization
method9 have been in use for this purpose. The Zernike polynomial method, which is widely in
use, has a limitation due to the maximum number of coefficients needed for accurate com-
pensation. The optimization method, which compensates accurately for low-frequency part
of the spectrum using unequal sampling and unequal weight in low-frequency region, does
not cover high-frequency deficiencies. Among these, FFT-based methods are computer
memory size friendly and widely accepted. But, FFT operators assume uniform sampling for
the non-uniformly distributed phase power spectrum, which can lead to underestimation in the
low- and high-frequency out of band regions, as shown in Fig. 1. Thus, it has limitations in
recreating the true phase power spectrum. To compensate for low-frequency components,
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Johansson and Gavel3 suggested employing the modified subharmonics equation (an adapta-
tion from Lane et al.10), which works well up to an infinite outer scale length. Sedmak6 later
compared the performance of this method with that of Lane et al.10 by actually calculating the
phase structure function from the simulated screen. He improved upon Lane et al.10 by employ-
ing different fine-tuned subharmonic weights for differentG∕L0 ratios. Results from his analy-
sis show that these FFT-based simulations are accurate for large screen size (G) to outer scale
parameter (L0) ratios. For a screen size of G ¼ 200 m and outer scale of L0 ¼ 25 m, the maxi-
mum relative error in the simulation approaches 1%. Our simulations demonstrate that the
errors from low-frequency components start shooting up once we move to smaller G∕L0 ratios,
even after compensating with modified subharmonics.

In Fig. 1, we show11 a typical situation where the simulation band ð1G − 1
ΔÞ is actually smaller

than full band ð 1
L0
− 1

l0
Þ, where Δ is the sampling size defined as the ratio of screen size G to

sampling number N and l0 is the inner scale parameter. In practice, the simulations are often
curtailed at the low-frequency end, to a few times the optical beam size (say as determined by the
telescope or laser beam diameter), whereas at the high frequency end, they often extend to only a
few times that determined by the Fried parameter r0. Clearly, the larger the simulation band to
full band ratio, the more accurate the simulated results will be.

On the one hand, the apertures of upcoming and future astronomical telescopes are often of
the same order or even larger than the typical median outer scale sizes of about 20 to 25 m.12 On
the other hand, wavefront sensing and compensation technologies are fast progressing that
Nyquist sampling at r0 scales even for large aperture telescopes are becoming quite possible.
Thus, atmospheric turbulence simulations have to deal with a wide range in a multi-dimensional
parameter space.

For working with very small apertures relative to the outer scale, it may appear that we need
to simulate only a relatively small screen size. But cutting out small apertures from a larger
screen introduces deviation from phase structure function due to misrepresentation of low-fre-
quency components present in the small screen power spectrum.

In this paper, we present an approach and a corresponding algorithm to deal with phase
screen simulations for a wide range of G∕L0 ratios, using the FFT-based method.13 Our tech-
nique builds upon the modified subharmonic approach of Johansson and Gavel3 and is inspired
by Jingsong Xiang’s work.7 It works well for space- and time-invariant, zero intermittency
atmospheric turbulence. Section 2 explains how to obtain phase autocorrealtion matrix using
phase power spectrum, Sec. 3 presents the algorithm part to compensate for the remaining error
in phase structure function calculation, Sec. 4 steps through the implementation of the algorithm
with the help of a flow chart, Sec. 5 covers the validation of the technique using results from
simulated phase screens, and Sec. 6 provides the concluding remarks.

Fig. 1 Comparison between simulation band and full band.
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2 Obtaining Phase Autocorrelation Matrix Using Phase Power Spectrum

The 2D phase structure function and phase autocorrelation matrix are related as follows:14

EQ-TARGET;temp:intralink-;e001;116;704Dϕðm; nÞ ¼ 2ðBϕð0;0Þ − Bϕðm; nÞÞ; (1)

where Bϕðm; nÞ is the phase autocorrelation matrix and ðm; nÞ is the coordinates along x and y
axis. The 2D phase autocorrelation matrices for the FFT-based phase screen and the modified
subharmonic method by Johansson and Gavel3 are represented as follows.

EQ-TARGET;temp:intralink-;e002;116;636BFFT
ϕ ðm; nÞ ¼

XNx∕2−1

m 0¼−Nx∕2

XNy∕2−1

n 0¼−Ny∕2

f2FFTðm 0; n 0Þei2π
�

m 0m
Nx

þn 0n
Ny

�
; (2)

EQ-TARGET;temp:intralink-;e003;116;569BSUB
ϕ ðm; nÞ ¼

XNp

p¼1

X2
m 0¼−3

X2
n 0¼−3

f2SUBðm 0; n 0Þei2π3
−p

�
ðm 0þ0.5Þm

Nx
þðn 0þ0.5Þn

Ny

�
; (3)

where f2FFTðm 0; n 0Þ and f2SUBðm 0; n 0Þ are the von-Kármán spectrum and subharmonic power
spectrum as explained by Johansson and Gavel. ðNx; NyÞ are sample points, p is the p’th sub-
harmonic, and Np is the total number of subharmonics. Set fFFT ¼ 0, for ðm 0; n 0Þ ¼ ð0;0Þ and
fSUB ¼ 0, for ðm 0; n 0Þ ¼ ð−1;0Þ and ð0;−1Þ as originally proposed by Lane et al.10 There will
be an overlap between subharmonic energy sample and secondary lobes from first sample of
high-frequency spectrum or harmonic sample during subharmonic addition. Earlier this leakage
of energy has been dealt using patch normalization factor, where first patch of high-frequency
spectrum is weighted by 0.707 for ðm 0; n 0Þ ¼ ð�1;0Þ and ðm 0; n 0Þ ¼ ð0;�1Þ and 0.866 for
ðm 0; n 0Þ ¼ ð�1;�1Þ in the original method of Johansson and Gavel.3 Similarly, the original
method of Lane et al.,10 Sedmak6 proposed the corresponding weights to be 0.935 and
0.998, respectively. Our simulations show that these weights do not fit perfectly for different
G∕L0 ratios and hence need to be tuned on a case by case basis. We have made our approach
independent from these weights assignments. The weight factor has been set equal to 1 in our
approach. Section 3 explains this approach in detail.

The 2D phase autocorrelation matrix after compensating with subharmonics is represented as

EQ-TARGET;temp:intralink-;e004;116;354Bϕðm; nÞ ¼ BFFT
ϕ ðm; nÞ þ BSUB

ϕ ðm; nÞ: (4)

3 Algorithm to Compensate for Residual Error in Phase Structure
Function

To calculate the remaining error in the final Bϕðm; nÞ, Eq. (4) is converted to phase structure
matrix Dϕðm; nÞ with the help of Eq. (1) with the assumption that BFFT

ϕ ð0;0Þ and BSUB
ϕ ð0;0Þ are

zero because we are not concerned about the piston component. This gives the following equa-
tion

EQ-TARGET;temp:intralink-;e005;116;212Derrorðm; nÞ ¼ Dtheoryðm; nÞ −Dϕðm; nÞ; (5)

where Dtheoryðm; nÞ is the well-known theoretical von-Kármán phase structure matrix,3 given as
follows:

EQ-TARGET;temp:intralink-;e006;116;156DtheoryðrÞ ¼ 6.16r5∕30

�
0.6ðL0∕2πÞ5∕3 −

ðrL0∕4πÞ5∕6
γð11∕6Þ K5∕6ð2πr∕L0Þ

�
; (6)

where r2 ¼ ðmΔÞ2 þ ðnΔÞ2, Δ ¼ G∕N.
We need to compensate Dϕ so that Derror is minimized. However, simply adding error cor-

rection terms in the Dϕ matrix directly would only introduce further error into the system while
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taking the Fourier transform. This is because any matrix or curve in general will have higher
order moments. Thus, if we take the Fourier transform of the adjusted equation, the resultant
curve will have completely different moments and hence power spectrum. This is because the
transition between two steps in the error matrix will not be smooth, which introduces additional
errors due to Gibb’s phenomena such as overshoots. Just curve fitting with any function does not
satisfy the additional requirement of leaving the power spectrum unaffected by the process. What
we really need is to introduce a smoothening operator such as a Gaussian function in the phase
autocorrelation matrix, which exactly compensates for Derror.

For that we have developed an iterative algorithm (see the flow chart shown in Fig. 4) and
implemented it in Matlab. The algorithm looks for the perfect Gaussian curve that minimizes the
Derror matrix. We use Matlab cftool to initially determine the correct 1D Gaussian matrix and
later convert it into a 2D matrix by exploiting the fact that BϕðrÞ, BtheoryðrÞ, and BSUBðrÞ all are
dependent on r only and hence are center symmetric functions. We call the fitted Gaussian phase
structure matrix Dgauss and the corresponding Gaussian phase autocorrelaiton matrix Bgauss

[using Eq. (1)].
The final equation for Btot can then be written as

EQ-TARGET;temp:intralink-;e007;116;542Btotðm; nÞ ¼ BFFT
ϕ ðm; nÞ þ BSUB

ϕ ðm; nÞ −Dgaussðm; nÞ∕2: (7)

Here, we have used Bgauss ¼ −Dgauss∕2 from Eq. (1). A look at the power spectrum of
Btotðm; nÞ in Fig. 2 shows that it contains negative terms7 for the case of G∕L0 < 1.
Directly putting those frequency terms equal to zero leads to a loss in the energy spectrum.
Hence, Btotðm; nÞ matrix needs to be preprocessed to eliminate most of these negative values
in the power spectrum. Over small frequencies, piston and tip/tilt components account for most
of these high magnitude negative elements. Therefore, we first extract the piston and tip/tilt
components from the phase autocorrelation matrix Btot. The tip/tilt component from phase auto-
correlation matrix is given as7

EQ-TARGET;temp:intralink-;e008;116;414BtiltðrÞ ¼ Btiltð0Þ − r2σ2tilt∕2; (8)

where σ2tilt is the variance of the random tilt angle in the x or y directions and given as follows:7

Fig. 2 Negative power spectrum values for small G∕L0 ratios.
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EQ-TARGET;temp:intralink-;e009;116;444σ2tilt ¼
BtotðG∕2þ ΔÞ − BtotðG∕2Þ

ΔðG − ΔÞ∕2 : (9)

After setting, Btiltð0Þ ¼ 0, the remaining phase autocorrelation matrix is given as follows:

EQ-TARGET;temp:intralink-;e010;116;395BhighðrÞ ¼ BtotðrÞ − BtiltðrÞ: (10)

The power spectra f2high and f
2
tilt of the phase autocorrelation matrices BhighðrÞ and BtiltðrÞ are

obtained by standard Fourier transformation. Figure 3, shows the remaining negative power ele-
ments present in the power spectrum of Bhigh matrix. In comparison to Fig. 2, the largest negative
power contributions fall by factor of three order of magnitude. Now, we set the negative values in
f2high equal to zero by hand. The new error matrix is given as

EQ-TARGET;temp:intralink-;e011;116;296Berr
highðrÞ ¼ B 0

highðrÞ − BhighðrÞ; (11)

where B 0
highðrÞ is the phase autocorrelation matrix obtained after setting the negative elements in

f2high to zero. The residual error that is present in the high-frequency region can then be reduced
with the help of a Gaussian smoothing operator, using Matlab fmincon tool. The high-frequency
compensated matrix is given as

EQ-TARGET;temp:intralink-;e012;116;211Bcomp
high ðrÞ ¼ BhighðrÞ −Hcomp

high ðrÞBerr
highðrÞ; (12)

where Hcomp
high ðrÞ is the smoothening operator, multiplied with error matrix to reduce the high

frequency errors. fmincon gives the optimized parameter for smoothening operator by calculat-
ing the final error in the DϕðrÞ matrix with respect to DtheoryðrÞ.

4 Implementation of the Compensation Algorithm

In this section, we explain the error compensation algorithm with the help of the flow chart
shown in Fig. 4. Brief explanations of each of the steps from L1 to L12 are given below.

Fig. 3 Residual negative power spectrum values after removing tip/tilt from Btot for small G∕L0
ratios.
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L1: Input screen size G, outer scale size L0, Fried parameter r0, and number of samples N.

L2: Initialize the algorithm with Np, the total number of subharmonics, and extrapolation
factor EF, both ranging from 1 to 10. The EF factor is relevant while performing curve
fitting, e.g., EF ¼ 2means curve fitting will work from 3 toN∕2 points and later that curve
will be extrapolated from 1 to N∕2 points (example shown in Sec. 4.1 and Fig. 6)

L3: Obtain BFFT
ϕ and BSUB

ϕ based upon L1 and L2 parameters.

L4: Add the matrices that were calculated in L3 layer, call that Bϕ.

L5: Obtain Dϕ from Bϕ using Eq. (1) and also produce Dtheory matrix based upon L1 and L2.
Then obtain error matrix Derror using Eq. (5).

L6: Obtain 1D array from Derror matrix from the center and give as input to the curve fitting
tool cftool, which works on 1D data. The output of the tool will be a best fitted curve in
terms of sum of Gaussian’s (SOG), called Dgauss.

L7: The final expression for Btot is shown Eq. (7).

L8: Extract tilt component from Btot matrix using Eqs. (8) and (9).

fmincon: High Frequency error Optimization

L9 − L11: Obtain error matrix Berr
high after setting negative elements in the power spectrum to

zero. Compensate for high frequency error by multiplying error matrix with smoothening
operator-SOG. Calculate the maximum remaining error in structure function matrix rel-
ative to the Dtheory matrix. Thus fmincon will give parameters for the smoothing operator,
which gives the lowest possible residual error.

L12: Update the entry for Np and EF to next value, evaluation from L2 − L12 would go in
loop, and maximum relative error (MRE) value stored in vector form. At the end of the

Fig. 4 Flow chart for error compensation.

Chhabra et al.: Generalized approach to compensate for low- and high-frequency errors. . .

J. Astron. Telesc. Instrum. Syst. 025007-6 Apr–Jun 2021 • Vol. 7(2)



iterations, min entry will get extracted out from stored vector and accepted for final
analysis.

Table 1 shows the result of curve fitting using cftool for different cases ofG∕L0 and N, which
demonstrates that the Gaussian error matrix can compensate for a wide range of G∕L0 ratios and
under different sampling constraints.

4.1 Example

To illustrate the robustness of the above algorithm, we have taken an example with G ¼ 80 m,
say for a large future telescope, N ¼ 256, and median value of L0 ¼ 20 m.

The output from the above algorithm corresponding to minimum error entry as in (step L12),
has been plotted against EF ¼ 5 and Np ¼ 8. Figure 5 shows a 3D rendering of Derror matrix
with a maximum separation of up to 40 m, corresponding to Eq. (4).

Figure 6 shows 1D Derror matrix (radial section from 3D Derror matrix) along with 1D fitted
curve Dgauss including the extrapolated part, for a maximum separation of up to 40 m.

Lastly, MRE values are stored against 500 entries corresponding to Np ranging from 1 to 10,
EF ranging from 1 to 10 and SoG ranging from 2 to 6 after performing cftool fitting. This has
been arranged in descending order and shown in Fig. 7, which illustrates a large set of iterations
where errors are <1% and entry with minimum MRE has been picked up. Typical time required
to perform each iteration for this case is ≈4.9 s on 2.3 GHz quad-core Intel Core i5 Macbook Pro
2018 model.

Table 1 Result of curve fitting against Gaussian function for different cases of G∕L0 and N in
terms of MRE for fixed r 0 ¼ 0.2 m.

G L0

N ¼ 128 N ¼ 256 N ¼ 512 N ¼ 1024

Np EF SOG
MRE
(%) Np EF SOG

MRE
(%) Np EF SOG

MRE
(%) Np EF SOG

MRE
(%)

1 20 2 1 3 0.25 2 2 4 0.61 2 2 3 0.36 2 1 4 1

5 20 1 1 5 0.19 6 3 5 0.23 4 2 3 0.27 7 1 3 1

10 20 9 5 4 0.25 9 1 5 0.29 1 1 3 0.26 7 3 6 0.35

20 20 3 1 4 0.53 10 1 6 0.4 4 5 5 0.97 3 5 3 0.22

40 20 5 0 4 0.95 8 0 6 0.75 8 0 3 1 7 1 3 2.99

60 20 5 0 4 0.17 3 2 6 0.42 9 8 5 0.41 3 1 5 0.94

80 20 8 1 4 0.24 7 5 3 0.17 5 6 3 0.32 6 4 3 0.3

100 20 8 1 4 0.24 7 5 3 0.17 5 6 3 0.32 6 4 3 0.3

1 10 3 1 4 0.53 10 1 6 0.4 4 5 5 0.97 3 5 3 0.22

1 100 3 1 6 0.21 4 1 4 0.49 3 6 5 0.96 3 6 5 0.25

1 1000 5 0 4 0.95 8 0 6 0.75 8 0 3 1 7 1 3 2.99

10 100 2 0 6 0.28 3 0 4 0.22 8 1 4 0.30 7 0 3 0.27

10 1000 5 0 4 0.17 3 2 6 0.42 9 8 5 0.41 3 1 5 0.94

100 100 3 0 6 0.21 2 3 5 0.21 7 0 3 0.26 1 1 3 0.26

100 1000 8 1 4 0.24 7 5 3 0.17 5 6 3 0.32 6 4 3 0.3
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5 Validation via Phase Structure Function Calculated from Simulated
Phase Screen

To obtain the phase screen ϕðm; nÞ from the power spectrum, the following relation is used:7

EQ-TARGET;temp:intralink-;e013;116;125ϕðmΔ; nΔÞ ¼
XN∕2−1

m 0¼−N∕2

XN∕2−1

n 0¼−N∕2

½Raðm 0; n 0Þ

þ iRbðm 0; n 0Þ�fðm 0Δ 0; n 0Δ 0Þ exp½i2πðm 0mþ n 0nÞ∕N�; (13)

Fig. 6 1D Derror matrix fitted against Dgauss matrix, along with an extrapolated part of the curve.
Here G ¼ 80 m, L0 ¼ 20 m, r 0 ¼ 0.2 m, and Nx ¼ Ny ¼ 256.

Fig. 5 3D Derror matrix for case G ¼ 80 m, L0 ¼ 20 m, r 0 ¼ 0.2 m, and Nx ¼ Ny ¼ 256.
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where Raðm 0; n 0Þ and Rbðm 0; n 0Þ are zero-mean and unity-variance Gaussian random number
generator. We get ϕhigh and ϕtilt, by replacing f with fhigh and ftilt, which are square roots of the
power spectrum corresponding to autocorrelation matrix Bcomp

high and Btilt, respectively.
For validation, we consider scenarios of apertures up to 40 m, i.e., G ¼ 80 m, at a median

L0 ¼ 20 m for two different sampling levels N ¼ 256 and 512. The phase structure function,
defined as an ensemble average of differences of phases at various separation,14 has been aver-
aged over 100 K independent frames. The relative error in phase structure function is calculated
as follows:

Fig. 7 Maximum relative error MRE with the maximum number of iterations for G ¼ 80 m,
L0 ¼ 20 m, r 0 ¼ 0.2 m, and Nx ¼ Ny ¼ 256.

Fig. 8 Left: Compares simulated structure function with respect to theoretical structure function for
maximum separation of G∕2 for two different cases N ¼ 256 and 512, for fixed G ¼ 80 m,
r 0 ¼ 0.2 m, and L0 ¼ 20 m. Right: Calculates the magnitude of relative error in simulated structure
function for maximum separation of G∕2, for both cases.
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EQ-TARGET;temp:intralink-;e014;116;735errðrÞ ¼ Dsim
ϕ ðrÞ −DtheoryðrÞ

DtheoryðrÞ
: (14)

Here,Dsim
ϕ ðrÞ is the phase structure function from the simulated phase screen. The magnitude

of the peak relative error maxðjerrðrÞjÞ is <1.6% for N ¼ 256 and <0.5% for N ¼ 512 as shown
in Fig. 8.

We also illustrate the performance (shown in Fig. 9) with parameters G ¼ 1 m, L0 ¼ 100 m,
and 1000 m, N ¼ 128, r0 ¼ 0.2 m, which cover the extreme cases (very lowG∕L0 ratios) which
leads to the maximum error in the simulation. The magnitude of the peak relative error
maxðjerrðrÞjÞ is <1.6% for L0 ¼ 100 m and <1.8% for L0 ¼ 1000 m. Figure 10 shows one reali-
zation of the corresponding phase screen plots for L0 ¼ 100 m.

Figure 11 contains results of magnitude of the peak relative error in Dsim
ϕ ðrÞ for the case of

different sampling points N ¼ 128∕256∕512∕1024, for L0 ranges up to 1024 m, r0 ¼ 0.2 m and
G ¼ 2 m. Similarly, Fig. 12 contains results of magnitude of the peak relative error inDsim

ϕ ðrÞ for

Fig. 9 (a) Compares simulated structure function with respect to theoretical structure function for
maximum separation of G∕2 for two different cases L0 ¼ 100 and 1000 m, for fixed G ¼ 1 m,
r 0 ¼ 0.2 m, and N ¼ 128. (b) Calculates the magnitude of relative error in simulated structure
function for maximum separation of G∕2, for both cases.

Fig. 10 Phase screen for case G ¼ 1 m, L0 ¼ 100 m, r 0 ¼ 0.2 m, and Nx ¼ Ny ¼ 128.
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the case of different sampling points N ¼ 128∕256∕512∕1024, for G ranges up to 100 m,
r0 ¼ 0.2 m, and L0 ¼ 25 m.

There are some outliers that have a high residual error as shown in Figs. 11 and 12, because
we have not set the phase autocorrelation matrix to zero for r > G∕2. The reason for this stems
from the non-zero value of BhighðrÞ at r > G∕2, where BhighðrÞ is formed from the removal of
piston and tilt from BtotðrÞ. This can be resolved using a better smoothening operator, which we
can multiply with Bhigh so that it falls to zero progressively and not sharply. This can provide
further improvement in the compensation.

Fig. 11 The magnitude of the peak relative error for N ¼ 128, 256, 512, and 1024 for L0 ranges up
to 1024 m. Here G ¼ 2 m and r 0 ¼ 0.2 m.

Fig. 12 The magnitude of the peak relative error for N ¼ 128, 256, 512, and 1024 for screen size
up to 100 m. Here, L0 ¼ 25 m and r 0 ¼ 0.2 m.
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6 Conclusion

In this paper, we put forward a new method to compensate for the residual error in both the low
and/or high-frequency region of FFT simulated phase screens that remain even after compensat-
ing with the modified subharmonic method. This method provides accurate phase screen struc-
ture for even G∕L0 ratios as small as 1/1000 plus screen sizes as large as 100 m. No patch
normalization factor is needed, no need to calculate subharmonic weight coefficient10 and
weights to compensate for high-frequency components, as done by Sedmak.6 While adequately
large G∕L0 ratios may be the natural choice for modern large telescopes, simulations that deal
with applications such as laser beam propagation through turbulent atmospheres would tend to
have very small G∕L0 ratios. The method we propose is independent of the G∕L0 ratio choice.
However, we emphasize that properly sampling r0 and the high-frequency phase spectrum forces
N to be at least larger than ð2G∕r0Þ and preferably up to the inner scale limit ð2G∕l0Þ. Currently,
we have demonstrated this technique for only circular screens. We have used a GPU processor
with total number of 128 cores, such that each iteration runs independently on each core. We
have fixed the number of iterations to 500, although increasing this will lead to improvement of
errors in some cases. Each core takes about ∼0.06, ∼0.1, ∼0.36, and ∼1.1 min for sampling
sizes of 128, 256, 512, and 1024. On the above GPU system, this translates to total computing
times for error minimization of about ∼0.2, ∼0.5, ∼1.25, and ∼4 min for sampling sizes of 128,
256, 512, and 1024, respectively. Once the coefficients are determined, generating multiple
phase screen realizations from the corresponding power spectrum takes a few milliseconds
at most on 2.3 GHz quad-core Intel Core i5 Macbook Pro 2018 model. Then it takes
<1 min to ∼10 min for averaging over 100k phase screens, for sampling sizes ranging from
128 to 1024.

The uniqueness of our approach is its ability to deal with any G∕L0 ratio within a very broad
range, in an automated iterative process with little human intervention needed for tuning of
parameters. Any standard FFT-based approach (say Sedmak’s6 compensated approach) for a
given computer platform is computationally fast, only if we already have determined proper
measures of the various compensating components such as the patch normalization factor, sub-
harmonic weights, and high-frequency weights. Typically, determining these compensations is
where the difficulty is due to mathematical complexity, algorithmic limitations, and/or computa-
tional power requirements. Our algorithm accomplishes the determination of the required com-
pensation in very little time, with fairly reasonable computational power while at the same time
keeping the residual errors competitively low using an appropriate compensator. Other existing
FFT based approaches have limitations in their operable G∕L0 range. For example, Xiang et al.7

offer a very computationally fast approach but does not apply subharmonic compensation.
Zhang et al.9 does not consider compensation for the high-frequency error, thus leaving a
residual error of more than 100% in the high-frequency region. Sedmak’s6 approach needs the
determination of accurate subharmonic weights for different G∕L0 ratios. The accuracy of our
method from low-frequency to the high-frequency range is between 0.5% and 3% for G∕L0 as
low as 1/1000 and screen size up to 100 m in diameter.
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