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ABSTRACT. Photonic technologies have enabled a generation of nulling interferometers, such as
the guided light interferometric nulling technology instrument, potentially capable of
imaging exoplanets and circumstellar structure at extreme contrast ratios by sup-
pressing contaminating starlight, and paving the way to the characterization of hab-
itable planet atmospheres. But even with cutting-edge photonic nulling instruments,
the achievable starlight suppression (null-depth) is only as good as the instrument’s
wavefront control and its accuracy is only as good as the instrument’s calibration.
Here, we present an approach wherein outputs from non-science channels of a pho-
tonic nulling chip are used as a precise null-depth calibration method and can also
be used in real time for fringe tracking. This is achieved using a deep neural network
to learn the true in-situ complex transfer function of the instrument and then predict
the instrumental leakage contribution (at millisecond timescales) for the science
(nulled) outputs, enabling accurate calibration. In this method, this pseudo-real-time
approach is used instead of the statistical methods used in other techniques (such
as null self calibration, or NSC) and also resolves the severe effect of read-noise
seen when NSC is used with some detector types.
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1 Introduction
Nulling interferometry is a key technology in the quest to directly image high-contrast objects at
angular resolutions at and higher than the telescope diffraction limit, such as the case of directly
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imaging exoplanets in the habitable zone. As with conventional interferometry, light from sep-
arate telescopes or sub-apertures is coherently combined, and the visibility and phase of the
resulting fringes is used to determine the source intensity map of the target. But in nulling inter-
ferometry, differential phase delays are carefully tuned such that the central star is subject to
maximal destructive interference, removing its otherwise overwhelming photon noise and
allowing the faint, off-axis science object’s light to be detected.

Since the concept was originally suggested,1 a wide variety of implementations have been
proposed and realized, including multiple re-combinations of baselines2 and multi-element
space-based instruments,3 while applications have been extended to the detection of exo-zodiacal
disks.4 A standard mathematical formalism has also been developed.5 Notable instruments that
employ nulling interferometry, such as the Keck Interferometer Nuller6 and the Large Binocular
Telescope Interferometer,7 perform the necessary manipulation and interference of light using
conventional bulk optics. However, spatial structure in the wavefront, induced by seeing, limits
the null depths achievable with these methods, and restricts the types of output signals accessible.
Subsequently, photonic technologies, using either single-mode fibers (such as with the Palomar
Fibre Nuller8,9) or a more complex set of waveguides inscribed within a photonic chip [such as
the guided light interferometric nulling technology (GLINT) nuller10–13], were used to create
nulling instruments. Here, the single-mode nature of the waveguides removes all higher-order
spatial structure, with the null created and controlled entirely by a single phase and amplitude
value for each input (for a given wavelength and polarization). Photonic chips enable sophis-
ticated architectures with multiple beam combiners and splitters, and multiple simultaneous
outputs encoding photometry, bright (constructive interference) channels, and so on.

There are two central challenges to be met in nulling interferometry: (1) creating and main-
taining a deep null and (2) calibrating the null depth. The former is critical to achieve maximum
suppression of stellar photon noise and is dependent both on instrument and photonic chip design
and dynamically on fringe tracking and wavefront correction. The latter of these challenges—
null-depth calibration, which is essential for science measurements to be made—will be the main
focus of this paper.

2 Null-Depth Calibration Challenge

2.1 Contributions to Null Depth
For an ideal nuller, the light from an unresolved source would be perfectly nulled. It would be
entirely coherent so its fringe visibility would be unity and with the appropriate phase delay
applied to a baseline destructive interference would be complete and no light would emerge from
the “null” output of the instrument.

Any spatial extension of the source, however, would reduce the degree to which the light
could be destructively interfered (since the source is now partly spatially incoherent), and some
light would emerge through the instrument’s “null” output no matter the phase offset applied.
This null-depth N is the key science observable and is defined as

EQ-TARGET;temp:intralink-;e001;114;256N ¼ I−
Iþ

; (1)

where I− and Iþ are the intensity of the destructive and constructive fringes, respectively. This is
fundamentally the same property as the visibility V familiar to interferometrists,14 and the two are
related8 as per

EQ-TARGET;temp:intralink-;e002;114;185N ¼ 1 − jVj
1þ jVj : (2)

In this ideal model, the phase-delay across a baseline would be adjusted until the starlight is
maximally reduced, and the residual null-depth then measured to provide an interferometric
measurement of the source intensity distribution. As with conventional interferometry, null-
depths from multiple baseline lengths and angles could be used to construct a more detailed
image of the source—all free from the host star’s polluting photon noise.

However, in real life things are not so straightforward. Much of the light that emerges from
the “nulled” output is not due to spatial incoherence (the science signal) but due to instrumental
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leakage—that is, starlight that has not been fully nulled due to wavefront and instrumental
effects. This instrumental leakage term arises from constant sources (non-ideal beam combiner
design/fabrication, chromatic dependencies, asymmetric throughputs, etc) and rapidly varying
sources arising from seeing. These variable components are particularly problematic as they can-
not simply be calibrated out using a laboratory characterization of the optical/photonic system.
The instantaneous null depth is a function of the differential phase and differential amplitude
across each baseline, both of which are being rapidly modulated by uncorrected seeing (note
that for a single-mode photonic device, injection efficiency is a strong function of wavefront
error (WFE), and so rapidly varying baseline amplitude is a significant component). In some
cases, differential polarization can also be a source of leakage, though in the GLINT instrument
light is passed through a common linear polarizer prior to injection to avoid this.

The instrumental leakage term can easily be of the same magnitude as the science signal,
so obtaining a useful science measurement is contingent on accurately knowing the leakage term.
If you know the leakage then you know the true astrophysical null, and for small astrophysical
nulls, it can be shown15 that the observed null depth Nobs is given as

EQ-TARGET;temp:intralink-;e003;117;556Nobs ¼ Nastro þ Ninst; (3)

where Nastro and Ninst are the true astrophysical null and instrumental leakage terms, respectively.
The classical method to calibrate the null depth was to observe a separate point spread function

(PSF) reference star, as is common in interferometry, measure its average observed null depth, and
subtract this from the average observed null depth of the science target. But this assumes that all
properties of the seeing, the telescope, adaptive optics (AOs) system, etc., remain identical between
these observations and it has been shown15 that this is not an accurate method. Instead, recent
nulling interferometry has made use of a different technique, null self-calibration (NSC).

2.2 Null Self-Calibration
The NSC method7,10,15 is a statistical method, relying on the fact that no matter the applied wave-
front and amplitude errors the observed null depth cannot go deeper than the fundamental limit
imposed by the sources spatial incoherence. A histogram of the null-depths for an entire obser-
vation is calculated and this is compared with a probability distribution function (PDF) created by
a forward model. This model must include a priori knowledge of the chip’s various chromatic
coupling coefficients, etc., and can also draw on simultaneous or quasi-simultaneous on-sky
measurements of injection efficiency (from the chip’s photometric outputs) and detector
noise/background (via chopping).

The model’s predicted PDF of the observation is then fitted to the observed histogram by
fitting the model’s remaining free parameters. This includes the differential phase error across
the baseline—a dominant source of time-varying instrumental leakage. This is assumed to be
normally distributed over the observation and so is simply fitted with a mean and a standard
deviation parameter. The quantity of interest—the astrophysical null-depth—is also fitted.
Figure 1(a) shows an example of the observed histogram and fitted NSC PDF for GLINT obser-
vations of α Tau.10

However, NSC has some important limitations. First, it assumes that the differential phase
errors are normally distributed and so can be parameterized by a single mean and standard
deviation, an assumption that does not match the reality of the residual WFE from a complex
AO and/or fringe-tracking system. Moreover, it has been found that fitting these two parameters
to the observed PDF is somewhat degenerate with other noise processes,10 especially in low
signal-to-noise ratio (SNR) regimes.

This assumption of normally distributed phase errors is especially problematic in the pres-
ence of low-wind-effect/island modes/petaling modes16–19 (hereafter referred to as LWE). These
severe aberrations are caused by phase discontinuities across the spiders (secondary-mirror sup-
ports) in the telescope pupil, exacerbated by thermal effects that these structures create when the
wind is low. This phase shear causes a severely broken PSF and is a major issue in current high-
contrast imaging. However, pupil-plane wavefront sensors, such as a pyramid wavefront sensor
(PWFS) used with a conventional wavefront reconstruction algorithm, have poor sensitivity to
these modes. Worse still, if the phase offset across a spider is greater than λ∕2 the wavefront
sensor may jump to a semi-stable correction but with a 1 λ offset between pupil segments,
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causing the broken PSF to persist for some time. The effect of this “phase lockup” is very pro-
nounced in GLINT—since it operates at twice the wavelength of SCExAO’s WFS, phase lockup
results in a π phase offset being applied across a baseline that spans the spider, effectively
swapping the null and antinull outputs.

Instead, it would be advantageous if the actual baseline phase was known at each instant in
time, and this could then be fed directly into the model rather than fitted. Even then, this method
assumes an accurate forward-model of the interferometric chip (or system) exists, which is dif-
ficult to produce for a real-life non-ideal photonic component over a wide range of wavelengths.

Another problem faced by NSC is that it works very poorly when there is a large amount of
camera detector noise (i.e., read noise or dark noise) or IR background. The reason for this can be
seen by reference to Fig. 1. In Fig. 1(a), the mean of the distribution is clearly offset from zero
(i.e., the measured null-depth is >0), but this does not distinguish between the instrumental and
astrophysical nulls. Instead, the unique, asymmetric shape of the PDF helps distinguish between
these sources. Note the black distribution showing the contribution from detector noise—the
measured histogram will be a convolution of this with the wavefront- and amplitude-induced
null distributions.

However, this is a very high SNR example. Often, the histogram appears more like that
shown in Fig. 1(b).12 Here, the width of the detector noise distribution dominates and it is very
difficult to distinguish between null-depth contributions. Note that no matter how long the target
is observed, the width of the noise component never becomes narrower and the shape of the
histogram will not change (although it will be more precisely defined).

Another limitation of the NSC method is that it has no cognizance of correlations between
these error terms, which may occur due to optical factors (e.g., a moment of poor wavefront
correction would likely affect baseline phase and injection efficiency) and instrumental factors
(such as cross-coupling, either intentional or unintentional, between baselines in a photonic
chip).

Here, an alternative method is proposed, which avoids using a statistical analysis and instead
directly determines the actual instrumental leakage for each baseline for each instant in time.

3 Direct Determination of Instantaneous Null Leakage
Instead of analyzing the overall statistics of the observation, here, a model of the chip and optical
system is created, which predicts the instantaneous instrumental leakage NinstðtÞ for each null
output for each moment in time as a function of wavelength. The model uses as its input the

Fig. 1 Example histograms of null-depths and NSC fits for GLINT observations. In both cases,
the center of the distribution (measured null depth) is >0, but to distinguish between instrumental
leakage and astrophysical contributions the detailed, asymmetric shape of the distribution must
be fitted. In panel (a), the camera read noise distribution (black) is small compared to the overall
null distribution, so this information can be recovered. But in panel (b), the star is fainter and
read noise dominates, washing out this required detail. Note that no matter how much data are
acquired, the width of the read noise contribution does not decrease. From GLINT data published
in Refs. 10 and 12.
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various other, bright outputs of the chip. These include the photometric channels, the bright
(anti-null) outputs of all baselines, and if applicable, the “null” outputs for baselines, which are
not currently in a null configuration (as is usually the case with GLINT). Crucially, since these
outputs are bright they all have a high SNR compared to the null outputs when detector noise is
a concern and so addresses the fitting problem encountered when the null channel is noisy as
described in Sec. 2.2.

3.1 Model Description
To create this model, a data-driven approach is used, where the model is entirely constrained by
actual data acquired from the chip, rather than an analytical or forward model which requires
prior knowledge of all aspects of the chip’s complex optical properties. This training data should
be obtained from observations of as diverse as possible wavefront conditions, so as to maximally
probe all regions of the chip’s transfer function.

If the model’s output is to be used to calibrate the null outputs, then this data should be from
an unresolved source, such as in the lab using the instrument’s inbuilt light source and a range of
turbulence applied to its deformable mirror (DM) or on-sky by observing an unresolved star.

It should be emphasized that even if this training data are acquired on-sky from an unre-
solved source, this is fundamentally different to the classical method of calibration with a PSF
reference star. In that case, one is assuming that the seeing statistics, AO properties, etc., remain
the same between calibrator and science target. But here, there is no assumption that any of these
things remain consistent. This is simply a means to obtain a diversity of data to probe the chip’s
transfer function. The only assumption is that the physical transfer function of the chip itself does
not change, which is true (up to the limits of photonic stability when encountering temperature or
strain changes). It should also be noted that in the case of largeWFE or shallow astrophysical null
depths, this data-driven model can be used to calibrate the bright output (as demonstrated in an
NSC context in Ref. 11) to avoid the use of small-value approximations (e.g., having Iþ approxi-
mated by the total measured flux).

The model that is learned from the data is implemented using a neural network (NN).20 NNs
and their application to AOs is explained in detail in Wong et al.,21 but essentially an NN is a
method that learns and reproduces any non-linear function22 based only on a set of examples.
These examples (training data) must include the inputs (independent variables) and outputs of
the function and should span as wide a region as possible of the parameter space in which the
function will be applied. The fidelity with which the NN reproduces this function depends on
the hyperparameters of the network (its architecture, complexity, training methods, etc.) and
the quantity and quality of the training data provided.

An NN is closely analogous to a matrix and its training process analogous to the standard
method of finding a matrix’s pseudo-inverse using a singular value decomposition, with the key
difference being that the NN is non-linear. This property is required in the present application,
since the observed quantities are intensities, which are a non-linear function of the (un-observed)
complex electric fields and complex coupling functions that describe the chip’s (or optical
system’s) transfer function.

A crucial aspect of the deployment of NNs is to avoid over-fitting, and a large amount of
machine learning research and methodology has been developed to avoid this problem. In the
case of overfitting, the model learns to describe only the training data (essentially “remembering”
this data) and does not generalize to new data. Before any training begins, standard practice is to
split the data (usually randomly shuffled) into training data, used to train the network, and val-
idation data, which is never seen by the training process and used as an independent test of the
success of the NNs performance. The performance metric of the NN (the loss function, often the
mean-squared error between true and predicted values) for both training data and previously
unseen validation data is closely monitored as training occurs, and if signs of overfitting are
observed, then network hyperparameters (such as regularization) are adjusted to prevent this.

To provide a straight-forward demonstration, the NN used here is a simple architecture—a
fully connected (a.k.a. dense) feed-forward NN. Here, inputs and outputs are a vector of numbers
(waveguide fluxes), and each unit in the hidden layers has a connection to every unit in the
subsequent layer. In this study, we slowly increased the network complexity until the point
of diminishing returns (for our relatively small data set) was reached, which led to a model
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consisting of three layers of 1000 units each using an rectified linear unit (ReLU) activation
function, plus the output layer. It was found that strong regularization was important to avoid
overfitting, with both dropout and L2 regularization being used. A slow learning rate of 10−5 was
found to provide the best convergence, likely because of the noisiness of the training data, and
500 epochs (with batch size 128) was used.

In the GLINT instrument, all chip output fibers are spectrally dispersed via a prism and
imaged onto the detector, producing null, antinull, and photometric measurements as a function
of wavelength (see Ref. 11 for further technical details). Due to the dependence of baseline phase
as a function of wavelength [for a given optical path difference (OPD)], there is important wave-
front information contained in the spectral domain. For example, ambiguity arising from phase
wrapping is resolved. To leverage this, for each chip output, the NN model is given wavelength-
dependent values (as vector of fluxes for each wavelength channel and it predicts the null-
channel leakage as a function of wavelength. In the current fully connected model, the vectors
are simply concatenated at the NN’s input layer, and wavelength interdependence is learned
empirically, but in a future refinement, the spectral correlation could be enforced by, for example,
a spectral-domain convolutional kernel in a convolutional neural network (CNN).

Figure 2 shows a diagram of this method. The inputs to the NN are the ensemble of bright
outputs of the nulling chip described above, for each measured wavelength channel. The outputs
of the network are the null channels for which the leakage term is desired. Note that the actual
inputs to the nulling chip (i.e., the light from telescopes or sub-apertures) are not a measurable
value for our model.

To train the model [Fig. 2(a)], training data produced by applying some varied set of WFEs
to the instrument (as described above) is used. The set of bright chip outputs are taken as the
NN’s inputs, and the model’s outputs (null depths) are compared to the true chip null outputs
for each data point. A loss function is defined, here just the mean-squared-error between the
predicted and true values, and the model is trained to minimize this loss value. Once trained,
the model is used in inference mode [Fig. 2(b)] where the bright channels of new science data are
fed into the network, and the predicted null outputs used to calibrate the data.

However a diverse choice of data sources (or better still, a combination thereof) could also be
used to predict the null leakage, as long as there is some mapping between that measurement
space and the null outputs.23 In Sec. 6, the prediction of null leakage from the system’s wavefront
sensor telemetry and observed PSF is explored.

3.2 Fringe Tracking and Other Real-time Uses
Another application is to use this model to produce real-time baseline OPD measurements to
use for fringe-tracking. Driving the fringe-tracker directly from the nuller chip itself, rather
than from a separate fringe-tracker instrument, is ideal as it removes the effects of non-common
path error. Moreover, it means fringe-tracking and other AO measurements are performed at
the same wavelength as the science measurements, mitigating the effect of atmospheric angular
dispersion. It has been observed that these types of WFEs (especially those due to vibration and
temperature drifts) are considerable with GLINT. This concept could also be applied to real-time
measurement (and correction via the AO loop) of higher order terms, such as low-wind-effect/
petaling, global tip/tilt, and others. Even with just two-channel beam combiners for each base-
line, as long as multi-wavelength data is used, then the information required for fringe-tracking is
present.

Since these quantities are functions of the chip inputs, some labeled data must be introduced
into these inputs to obtain measurements in the desired space (coefficients for OPD, tip/tilt, etc.).
In other words, even though the OPD information is indeed contained within the leakage
predictions discussed thus far, for fringe-tacking use, we need to obtain a representation
of these predictions projected onto the OPD space. This process is essentially equivalent
to measuring a low-order response-matrix as in usual AOs. But in this case, the chip output
is a non-linear function of these applied modes and the current incident wavefront (since these
wavefronts are coherently combining, and the chip output intensities are the square of this
complex sum).

Figure 3 shows a proposed method. During training [Fig. 3(a)], the chosen aberration space
(e.g., differential OPD, tip/tilt, etc.) is modulated by some randomly chosen coefficients. This can
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be achieved by adding these modes to the AO system’s DM or using separate micro-electro-
mechanical systems piston mirrors in the case of differential OPD. These quantities are then
included in the model’s output space, and the difference between the predicted and actually
applied coefficients is included in the loss function. The model is trained to predict both the
null-depths and the coefficients of interest.

During observations, the model is run in inference mode [Fig. 3(b)] in realtime. The pre-
dicted null-depths can be saved for later calibration, but the predicted baseline OPD mismatch
(or other coefficients) is used in closed loop by the AO system to keep the fringes steady and
injection high. If used to sense and correct low-wind effect, this has the bonus effect of benefiting
all other imaging instruments that are operating at the same time.

If desired, the differential OPD data could be generated off-line instead and used to
conduct an NSC-like analysis of the data, but with the phase errors no longer being a fitted
parameter.

Fig. 2 (a) and (b) A diagram of the proposed method, wherein an NN model is trained to predict
the null-depth (instrumental leakage) using as inputs the remaining high SNR “bright” outputs of
the photonic nulling chip. See text for details.
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4 Demonstration of Instrumental Leakage Prediction

4.1 Method
To evaluate this process, a number of experiments were performed using the GLINT photonic
nulling interferometer,10–12 deployed on the SCExAO AOs system24,25 at the Subaru telescope.
This instrument, built around an integrated-optics nulling chip, has successfully demonstrated
on-sky measurements of objects well beyond the telescope diffraction limit,10,11 but its sensitivity
is largely limited by camera detector noise and its null calibration precision by the performance
of NSC (especially under noisy conditions).

For each experiment, 100 s of data was used, split into 80% training, 19% validation data and
a separate 1% of contiguous holdout data. Since the instrument samples at speeds comparable to
the atmospheric coherence time, it is expected there will be some correlation between consecu-
tive frames. Since the data are randomly shuffled, it is conceivable that the model could still

Fig. 3 (a) and (b) A diagram of a modified method, where additional coefficients describing
baseline OPD mismatch (or other aberrations) are directly predicted to be used in real time for
fringe-tracking or AO. See text for details.
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slightly “overfit” even if validation data loss is low, since strongly correlated frames may occur in
both training and test sets. The purpose of this additional holdout-data is to check that this is not
occurring. It is contiguous data taken from the end of the data set, and so should not have corre-
lated frames present in the main data set, and thus its loss function will reveal overfitting even if
not apparent in the validation data loss. Moreover, since this data are contiguous its predicted
wavefront can be viewed in a time-domain diagram (or as a movie) alongside the corresponding
true values, enabling a human “sense-check” that the wavefront prediction is working as expected
(e.g., to detect if an unsuitable loss function was used). This methodology was used for all experi-
ments in this paper, and the holdout data are used to create all figures and movies presented. Due
to non-optimal path-length matching in the current prototype chip, all four nullable baselines
cannot be simultaneously nulled, so for each experiment two sets of data were taken, each with
the phase offset for two baselines set to achieve a null.

Network hyperparameters were manually optimized to prevent overfitting and achieve pleas-
ing prediction accuracy, though for real-world deployment a rigorous automated hyperparameter
optimization should be performed. Hyperparameters were tuned simultaneously on all datasets.
This resulted in a single set of hyperparameters that were used for all experiments, to check that a
common architecture should work independent of source brightness. As described in Sec. 3.1, a
three layer (plus output layer) fully connected network was used, using an ReLU activation func-
tion, and trained with the Adam optimizer with a batch size of 128 and learning rate of 10−5.

Of central importance in building such a model is regularization—that is, preventing the
model from overfitting (e.g., fitting to noise or the stochastic composition of the training set)
and not generalizing. It was found that, especially when training on noisy (on-sky) data, strong
regularization was required to avoid overfitting while still maintaining a network complexity large
enough to provide accurate predictions over diverse WFEs. Here, dropout26 was found to be most
successful, which was used between each hidden layer, with a dropout rate of 50%. It was also
found that L2 kernel regularization was helpful and applied with a regularization factor of 0.01.

4.2 Results
In the first experiment, high SNR data were obtained off-sky using SCExAO’s internal broad-
band light source and a sliding Kolmogorov phase screen applied to the system’s 2K actuator
DM, simulating an on-sky observation. The data were acquired at 1400 frames∕s, with the
applied turbulence having an amplitude of 1000 nm root mean square (RMS) and wind-speed
of 5 m∕s. This large amplitude was used to maximally probe the transfer function of the chip over
a large WFE domain and be well outside the linear-approximation regime.

Figure 4 shows the actual and predicted measurements for a null output for this laboratory
phase-screen test (using holdout data), for a single wavelength. Data is shown at two zoom levels
and it can be seen that the predicted null depth (leakage) is highly consistent with the true,
measured values.

In the lower plot, vertically zoomed by a factor of ∼40 to show the null, the predicted values
do not perfectly lie within the 1σ detector noise band, illustrating the precision-level of the pre-
diction for this test. This region is at the “turning point” of the null, where the relationship
between delta-phase and output intensity is maximally non-linear. Performance may be increased
by rigorous hyperparameter tuning (including network dimensions) to maximize non-linearity
handling. This region also consists of the lowest SNR training examples (i.e., since the null
output is ∼zero), making it the slowest for the NN to learn. But due to the strong regularization
used in training, the values predicted here are in the middle of the true range, rather than blowing
up from noise. The prime requirement is that these errors do not introduce a systematic bias (i.e.,
they are noise with zero-mean). The impact of this is quantified by the experiments in Sec. 5.

In Fig. 5, results are shown for laboratory turbulence where a large wavelength range is
considered, for four “nulled” baselines. In the time-windows shown, periodic vibration-induced
leakage can be clearly seen in null baseline 1. In all cases, the residual is consistent with noise, as
would be expected from an ideal prediction.

A subsequent test was performed using on-sky data, obtained from an observation of the star
α Bootis with GLINT in June 2020, as shown in Fig. 6. Even though the delays on baselines 1
and 4 were correctly set to produce nulls, the observation suffered from severe LWE/petaling and
were high enough that phase-lockup (where the PyWFS intermittently locks with a 1 λ phase
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offset between segments, as described in Sec. 2.2) often occurred. This is clearly seen in the
measured null-depths, especially in the stripe-like patterns appearing in null baseline 1. The
model successfully predicts these, demonstrating it can access sufficient information to sense
these modes and predict them as a function of wavelength. It also demonstrates that the model’s
effectiveness is not limited to the linear regime.

The star δ Virginis was also observed and a model used to predict its leakage, as shown in
Fig. 7. As with α Bootis, LWE is present and successfully sensed and its corresponding effect on
the leakage predicted. It is clearly seen here that the predictions have much higher SNR than the
measured null outputs, since the predictions are based on the bright (high SNR) chip outputs.

Fig. 5 (a) and (b) True, predicted, and residual leakage for four nulled baselines of the GLINT chip,
for a Kolmogorov phase screen applied in the laboratory, shown as a function of wavelength over a
35 ms time period. In baselines 1 and 4, the null is relatively deep, but intermittent leakage (arising
largely from vibration-induced WFE) is visible, which is well-predicted by the model. Baselines 5
and 6 are not at the true white-light null, so leakage is high and strongly chromatic, and this is still
well predicted. Note that while the true data is noisy, the predicted data is not, thanks to the high
SNR of the bright outputs used for prediction. Color stretch is the same across all panels. Video 1 is
an animated version of this figure. (Video 1, 45.2 MB, MP4 [URL: https://doi.org/10.1117/1.JATIS.9
.4.048005.s1]).
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Fig. 4 Predicted-by-model (blue) and measured (red) null leakage for null output 1 of the GLINT
chip, for a Kolmogorov phase screen applied in the laboratory. The intrinsic detector noise (rel-
atively small for this bright laboratory data) is shown by the red shaded region. (b) Zoomed-in
region of (a), at a time when the instantaneous WFE allowed a good null. The generated WFE
(1 μm RMS) produces large variation in null depth, which is well predicted by the model.
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Hence this method of calibrating using the predicted instantaneous null leakage does not suffer
from the same detector noise limitation as NSC.

5 Experimental Comparison to NSC

5.1 Method
To quantify the performance advantage of the NN method compared to the traditional NSC
method, the same dataset was analyzed with both methods and their ability to accurately predict
the null depth—and the associated uncertainties—was examined. It was not possible to perform
this test using on-sky data, since there was no on-sky data available for an unresolved star (to use
for training data), which meant the absolute value of the mean null depth in their resulting analy-
ses has an unknown offset. Instead, laboratory data (that shown in Fig. 5) where Kolmogorov
turbulence has been applied via the SCExAO DM is used. This dataset used an attenuated light

Fig. 7 (a) and (b) True, predicted, and residual leakage for four nulled baselines of the GLINT chip
for an on-sky observation of δ Virginis. As with α Bootis, the observations encountered strong LWE,
and PWFS phase lockup occurred. As before, this was well predicted by the model and subtracted
cleanly. It should be noted that the predictions are far higher SNR than the null-output measure-
ments (since they are built from the bright, high SNR outputs). Color stretch is the same across
all panels. Video 3 is an animated version of this figure. (Video 3, 45.1 MB, MP4 [URL: https://doi
.org/10.1117/1.JATIS.9.4.048005.s3]).

Fig. 6 (a) and (b) True, predicted, and residual leakage for four nulled baselines of the GLINT chip
for an on-sky observation of α Bootis. The observations suffered from severe low-wind-effect, lead-
ing to PWFS lock-up, which is especially well seen in the “striping” in baselines 1 and 4. Baselines
5 and 6 are not at the true white-light null and so show strongly chromatic leakage. In all cases, the
model provides a good high-SNR prediction of the leakage. Color stretch is the same across all
panels. Video 2 is an animated version of this figure. (Video 2, 38.0 MB, MP4 [URL: https://doi.org/
10.1117/1.JATIS.9.4.048005.s2]).
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source to approximately match the on-sky fluxes observed in the on-sky tests. To test perfor-
mance on even fainter targets, a second dataset was created wherein high read noise and dark
current contribution was simulated by adding Gaussian noise to the raw lab data—see Table 1 for
details.

In these tests, the light source is a broadband supercontinuum light source injected via a
single mode fibre and thus the true null depth is known to be zero. But the raw measured null
depths are high (of order 10−2) due to instrumental leakage. Calibration performance is judged by
the precision by which the true zero null depth is recovered, and the uncertainties placed on it.

First, the NSC method (using the Barnacle package27) was used to measure the calibrated
null depth. This implementation handles multi-wavelength data and does not assume small WFE
approximations. In this method, a PDF of the chip’s output signals is produced via a histogram of
all data. Then a simulated PDF is fitted to it as a function of parameters such as the average and
variance of phase error and amplitude error, as well as the parameter of interest (the astrophysical
null). The gradient descent algorithm was given initial parameter guesses close to the expected
null depth value and then the fit was re-run ∼250 times with randomized starting positions each
time (a.k.a. basin-hopping) to avoid the problem of starting within a local, not global, minimum.

Then, analysis was conducted using the NN method presented here. To correctly calculate
the null depth, predicted leakage values for both I− and Iþ are needed. In low WFE cases when
I− is extremely small, the true Iþ can simply be approximated as the total measured flux,5,15 but
in the present WFE regimewe cannot make that approximation and thus the Iþ value is calibrated
in the same way as described previously. In both cases, the data used to train the model is separate
to the data used to perform these tests to avoid potential overfitting leading to an overestimate of
performance.

For this dataset, the instrumental null depth Ninst was defined as the ratio of the predicted
I− to Iþ outputs. Similarly, the observed null Nobs is the ratio of raw measurements of the I− and
Iþ outputs. Then, as per Eq. (3), the real “astrophysical null” Nastro ¼ Nobs − Ninst. Since in this
data, the source is unresolved (a single-mode fiber), for both analysis methods, we would hope to
see Nastro ¼ 0.

5.2 Results
The results of this analysis are shown in Fig. 8. As shown in the left-hand panel, the NN method
produces a calibrated null depth for each wavelength channel, and the mean of these over wave-
length is taken to be the final null depth estimate. The uncertainties for each data point are the
standard error in the mean of the null depths predicted for each time step. The null-depths produced
are very small, of order 10−4, and in most cases, their uncertainties are consistent with the true null
depth of zero. The exception is the 1.477 μm measurement for null channel 1, which was affected
by a slowly varying bad-pixel on the detector [also visible in Fig. 5(a)], leading to the statistical
errors (shown here) underestimating the total error by a factor of ∼2 for this measurement.

Notably, the accuracy of this prediction is not obviously affected by the degree of
noise present. For the lower-noise data, the measured null-depths for the two channels were

Table 1 Overview of the noise properties (combined read-noise and dark-noise) of the test data
used to compare NSC and NN calibration. Both datasets contain data for the N1 and N4 null chan-
nels. The “low noise” data just contain the actual camera read-noise and dark-noise, while the “high
noise” data have had additional Gaussian noise injected into the raw signal. Noise and SNR given
here is per wavelength-channel per frame. All values are expressed in flux units (derived from
camera analog-digital units).

Dataset RMS noise Mean I− Mean Iþ I− SNR Iþ SNR

Low noise - N1 5.25 4.85 48.11 0.92 9.17

Low noise - N4 5.25 6.97 46.74 1.33 8.91

High noise - N1 11.29 4.84 48.12 0.43 4.26

High noise - N4 11.29 6.99 46.73 0.62 4.14
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1.2� 2.6 × 10−4 and −3.4� 3.5 × 10−4, respectively, while for the higher-noise data, they were
4.5� 2.5 × 10−4 and −1.0� 3.4 × 10−4.

On the other hand, the NSC method performed poorly in the presence of noise, with null-
depths of ∼10−3 and ∼10−2 for lower-noise and higher-noise data, respectively. Moreover, the
estimated uncertainties on these fitted parameters—derived from the diagonals of the covariance
matrix returned by the gradient descent algorithm—are underestimated by 1 to 2 orders of mag-
nitude. In the case of NSC, the accuracy of the predicted null is seen to be strongly influenced by
the noise level. For the lower noise data, the calibrated null depths were measured to be −7.9�
0.5 × 10−3 and −4.2� 0.5 × 10−3, and for the higher noise data, they were −7.7� 0.06 × 10−2

and −1.9� 0.1 × 10−2. The underlying problem encountered by NSC can be seen in the histo-
grams and fitted model PDF in the centre panel of Fig. 8. Despite the fact that a very good fit to
the data has been found, as described in Sec. 2.2, higher dark/read noise broadens the PDF
and washes out the tell-tale asymmetries, which allows static and WFE-induced leakage to be
disambiguated from true null depth. Note that the NSC method still fits to the data at multiple
wavelengths, but only a single wavelength’s histogram is plotted for clarity.

6 Prediction of Leakage from Diverse Data Sources
In addition to the bright outputs of the nuller chip, there are various other sources of real-time
data available in the SCExAO system, which may contain useful information determining the
null leakage. One such data stream is the PWFS. An experiment was performed where the PWFS
telemetry was used as the sole input to a model to predict the null leakage, rather than the chip’s
bright outputs. Tests using the raw PWFS image [flattened to a one-dimensional (1D) vector] and
also using SCExAO’s reconstructed wavefront were performed, with no clear difference seen in
the quality of prediction between these two methods.

Figure 9 shows the results of this experiment (in this case using SCExAO modes), from May
2021 on-sky observations of α Bootis. At first glance, it appears the PWFS-based prediction
does not perform as well as the previous examples. However, it is informative to note that

Fig. 8 Results of the comparison of NSC and NN calibration methods, for laboratory data with
moderate WFE and an unresolved source (so true null-depth of 0), for datasets with different noise
levels (see Table 1) and for two baselines. Left: the resulting calibrated null depths using the NN
method, plotted as a function of wavelength. The null depth is measured to be of order 10−4 and in
most cases with estimated uncertainties consistent with null depth of zero. Center: the measured
histograms and resulting PDF fit using the NSC method, along with the resulting null-depths and
uncertainty estimation. The histogram is hard to distinguish from a Gaussian distribution (espe-
cially for higher-noise data), resulting in poor estimation of null depth and uncertainties. Right:
summary of resulting null depths from the two methods, with the absolute difference between true
and measured nulls plotted on a hybrid-log scale (vertical axis <10−4 is linear). The NN method
outperforms that NSC method by ∼2 orders of magnitude in accuracy and has far more realistic
uncertainty estimations.
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the prediction appears to work relatively well for small-amplitude, short period WFS, but has
large systematic offsets from the true values. This is consistent with the fact that the PWFS is
insensitive to LWE or other inter-segment phase-shear modes. In this case, the small success-
fully predicted perturbations correspond to “normal” WFE, but the large offsets arise from
LWE modes.

The use of the simultaneously recorded PSF as a data source was also investigated. Here, the
image from SCExAO’s infrared high-speed camera, flattened into a 1D vector, was used as the
sole input to the model. As seen in the results in Fig. 10, this data-source enabled a much better
prediction of null depth than PWFS data. The PSF clearly shows LWE aberrations (with a split-
ting PSF), and the large offsets in the null leakage are correctly predicted. However, it is not
perfect, and one interesting issue can be seen in the zoomed region in the figure. In some places,
such as here, the variation in null leakage is successfully predicted but the sign is reversed. This is
consistent with the fact that a focal-plane image has sign degeneracies for even modes (for
example, a PSF cannot show a difference between a positive and negative defocus aberration
of the same amplitude). It is therefore not unexpected that the PSF alone cannot unambiguously
determine the null leakage.

Introducing phase diversity to the PSF, such as including a defocused image or using multi-
ple wavelengths may break this degeneracy. While using the PWFS or PSF alone to predict the

Fig. 9 Predicted (blue) and measured (red) null leakage for null outputs 1 and 4 of the GLINT chip
using only the PWFS (inset) telemetry as input to the model. Data are on-sky observations of α
Bootis in May 2021. Prediction using only PWFS data does not work quite as well. However,
as most clearly seen in the zoomed portion, often the prediction includes correct features but is
missing larger offsets. This is consistent with the large offsets being due to inter-segment phase
offset, such as from LWE, to which the PWFS is insensitive.
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null is informative, a key goal is to maximize the input space and SNR by simultaneously
utilizing all data streams (nulling chip bright outputs, PWFS telemetry, PSFs at multiple wave-
lengths, and other sensors) to perform the optimal null leakage prediction. This will require
careful weighting and regularization of the model, to ensure degeneracies in one source to not
bias the model.

7 Conclusion and Next Steps
Along with maintaining a deep null, calibrating the null depth to extract accurate science observ-
ables is a key challenge in nulling interferometry. The measured output of a nulled baseline is a
combination of the astrophysical null (the science quantity of interest) and instrumental leakage,
which is rapidly varying in time as a function of seeing. The instrumental leakage must be pre-
cisely known to perform science measurements. Simply subtracting the time-averaged null depth
of an unresolved target from the science data works poorly, since it requires seeing and AO
parameters to remain very consistent. Often a statistical approach—NSC—is used, but this
assumes normally distributed phase errors (fitted by a single mean and standard deviation) and
does not work well when detector noise or background contributions are high.

Fig. 10 Predicted (blue) and measured (red) null leakage for null outputs 1 and 4 of the GLINT chip
using only the infrared PSF (inset) as input to the model. Data are on-sky observations of α Bootis
in May 2021. While the prediction is more successful than using only PWFS data, one interesting
problem should be noted. As emphasized in the zoomed version, at some times, the predicted
variation in null leakage is correct but of inverted sign. This is consistent with the sign degeneracy
present in any focal-plane image of the PSF.
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Here, an approach using an NN model to predict the instrumental leakage for every instance
in time is proposed. The model is built entirely using empirical data taken by the instrument
(either on-sky or in the laboratory by applying turbulence to the DM). Using the bright outputs
of the chip as input to the model, the instrumental null depth can be predicted with a high SNR.
An extended version of the model could also produce differential OPD (or other aberration)
measurements in real time, for use in closed-loop fringe-tracking or AO. Diverse data sources
(such as the system’s WFS or camera) could also be used.

A model was trained and tested using several datasets, including laboratory data and two
on-sky targets, representing brighter and fainter cases. In all cases, the model successfully pre-
dicted the null leakage as a function of wavelength and with high SNR.

To deploy this in a science context, several aspects require further investigation. First, the
robustness of a single model to different observing conditions or epochs must be evaluated.
Ideally, a single model would be trained, using multiple sets of on-sky and laboratory data.
Whether a single model will give accurate predictions in all cases, or whether a model needs
to be additionally fine-tuned or trained for each observation, remains to be seen. The actual
accuracy of the calibration using this method must be investigated and improved if necessary.
While a noisy prediction is acceptable, a bias in the prediction of instrumental null directly trans-
lates to miscalibration. Evaluating the hardware and model in the laboratory using incoherent
sources of precisely known sizes should be performed.

Beyond the basic model demonstrated here, additions such as real-time prediction of differ-
ential OPD for fringe tracking should be implemented and tested. It may also be advantageous to
combine data from multiple sources (WFS, PSF, etc.) but this must be done in a way to avoid
degeneracies in one sensor space affecting the overall inference.

The model architecture here was very simple (a fully connected NN). Gains may be found in
using other architectures, for example, a CNN where 1D convolutional kernels in the wavelength
domain are used. Furthermore, taking into account, the time domain may be highly advanta-
geous. Consecutive measurements are highly correlated in time (due to temporal sampling at
rates comparable to the atmospheric coherence time) but this is currently ignored. A time domain
model, such as a recurrent NN or time-domain CNN, would enable this correlation to be
exploited to potentially improve calibration accuracy and SNR. A transformer type network
could also prove useful thanks to its positional encoding, and more complex architectures can
take into account the interconnected spectral/spatial/temporal relationships. Finally, it is hoped
that the general concept presented here will find utility in the calibration of other types of mea-
surements, such as long-baseline interferometry, speckle nulling, and adaptive coronagraphy.

Code and Data Availability
The data and code utilized in this study are available from the authors upon request.
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