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Abstract. Ultrasound-guided diffuse optical tomography (DOT) is a promising method for characterizing malignant
and benign lesions in the female breast. We introduce a new two-step algorithm for DOT inversion in which the
optical parameters are estimated with the global optimization method, genetic algorithm. The estimation result is
applied as an initial guess to the conjugate gradient (CG) optimization method to obtain the absorption and scatter-
ing distributions simultaneously. Simulations and phantom experiments have shown that the maximum absorption
and reduced scattering coefficients are reconstructed with less than 10% and 25% errors, respectively. This is in
contrast with the CG method alone, which generates about 20% error for the absorption coefficient and does not
accurately recover the scattering distribution. A new measure of scattering contrast has been introduced to char-
acterize benign and malignant breast lesions. The results of 16 clinical cases reconstructed with the two-step
method demonstrates that, on average, the absorption coefficient and scattering contrast of malignant lesions
are about 1.8 and 3.32 times higher than the benign cases, respectively. © 2013 Society of Photo-Optical Instrumentation

Engineers (SPIE). [DOI: 10.1117/1.JBO.18.1.016006]

Keywords: breast imaging; diffused light; imaging reconstruction; optical tomography.

Paper 12438 received Jul. 10, 2012; revised manuscript received Oct. 29, 2012; accepted for publication Nov. 2, 2012; published online
Jan. 7, 2013.

1 Introduction
Diffuse optical tomography (DOT) is a noninvasive functional
imaging modality in which tissue is illuminated by near-infrared
(NIR) diffused light, and the reflected or transmitted light is
measured at the tissue surface. The interior optical properties
of the tissue are then estimated from these measurements by
image reconstruction algorithms. DOT has demonstrated clini-
cal potential for distinguishing benign from malignant breast
lesions.1–15 Two of the estimated optical parameters used to
characterize malignant and benign breast tissues are the absorp-
tion and scattering coefficients. By estimating these parameters
that are obtained from multiwavelength imaging systems, it is
possible to quantify tissue constituents such as oxygenated and
deoxygenated hemoglobin, lipid and water concentrations, as
well as structural parameters, which are linked to the dimensions
and densities of the scattering centers. The complex blood vessel
network found in malignant tumors provides the target absorp-
tion contrast. Clinical studies of female breasts imaged by differ-
ent optical tomography systems have demonstrated increased
total hemoglobin concentration in the malignant lesions.1–4

Scattering contrast, on the other hand, is caused by changes
in the organelle population within tumor beds. Based on clinical
data, a significant contrast ratio in the mean cellular size and the
volume fraction between malignant and benign lesions has been
found.5,6 Accordingly, malignant tissues have shown increased
mean values of the reduced scattering coefficients in comparison
with the benign tissue.7–10 Simultaneous reconstruction of
absorption and scattering distributions of human breast has

also been investigated. It was shown that cysts in the breast
can be differentiated from solid tumors because cysts generally
demonstrate lower absorption and scattering coefficients com-
pared with the surrounding normal tissue, whereas solid tumors
show both higher absorption and scattering relative to normal
tissue.11,12 In another study, the reconstructed distributions of
hemoglobin, oxygen saturation, water fraction, and subcellular
scattering in breast tissue showed that the fractions of both blood
and water were higher in fibroglandular than in adipose tissue.13

In some studies, a synthetic optical index was derived from these
intrinsic physiological properties and yielded an average of two-
fold contrast difference between malignant tumors and normal
tissue.14,15

Due to the intense light scattering in biology tissue, the
inverse problem of DOT is ill-posed. In addition, the recon-
structed optical properties are not unique unless constrained
by additional prior information. Furthermore, the inverse prob-
lem is underdetermined because the number of measurements is
one or two orders of magnitude smaller than the number of vox-
els with unknown absorption and scattering coefficients.16 A
variety of regularization techniques such as Tikhonov regulari-
zation, spatially varying regularization, and Levenberg-
Marquardt regularization have been applied to obtain a stable
solution for the DOT inverse problem.17,18 Different optimiza-
tion methods such as the modified Newton-Raphson method,
and the truncated Newton methods are then used to solve the
regularized problems.19,20

In our approach, we have used ultrasound-guided DOT to
overcome the limitation of inaccurate target quantification
by optical tomography alone.21 Having prior anatomical infor-
mation from co-registered ultrasound (US), we are able to solveAddress all correspondence to: Quing Zhu, University of Connecticut, Electrical

and Computer Engineering Department, 371 Fairfield Road, U1157, Storrs,
Connecticut 06269. Tel: 860-486-5523; Fax: 860-486-2447; E-mail: zhu@engr
.uconn.edu 0091-3286/2013/$25.00 © 2013 SPIE

Journal of Biomedical Optics 016006-1 January 2013 • Vol. 18(1)

Journal of Biomedical Optics 18(1), 016006 (January 2013)

http://dx.doi.org/10.1117/1.JBO.18.1.016006
http://dx.doi.org/10.1117/1.JBO.18.1.016006
http://dx.doi.org/10.1117/1.JBO.18.1.016006
http://dx.doi.org/10.1117/1.JBO.18.1.016006
http://dx.doi.org/10.1117/1.JBO.18.1.016006
http://dx.doi.org/10.1117/1.JBO.18.1.016006


the inverse problem with the conjugate gradient (CG)
iterative optimization method without using the regularization
method. Our initial results obtained from more than 200 patients
have demonstrated twofold higher absorption or total hemoglo-
bin contrast between malignant and benign lesions.4 The
feasibility of simultaneous reconstruction of absorption and
scattering distributions using our approach has been investi-
gated; however, the crosstalk between these two parameters
often causes the CG to converge to the suboptimal values, espe-
cially in cases where there is a high scattering contrast between
the target and the background.22 It is well known that gradient-
based search algorithms often find local minima, which are
closer to an initial guess or do not converge if the gradient is
very small. In contrast, global optimization techniques such
as genetic algorithm (GA) can solve problems with multiple sol-
utions and are not prone to be trapped in the local minima; addi-
tionally, they are applicable to multidimensional, nondifferential
problems. These algorithms seek to find the global optimum and
are less sensitive to an initial guesses and regions with small
gradients. It has been shown that evolutionary strategies can reli-
ably find solutions to highly ill-posed inverse problems. The use
of evolution strategy algorithms has been introduced for estimat-
ing the optical properties of homogenous media.23–25 The fea-
sibility of reconstructing bioluminance source distribution in
the scattering medium using principles of evolutionary strategies
is also shown.26 An improved performance in absorption
reconstruction with GA as compared with Tikhonov regulariza-
tion for simulated time-gated data is also reported.27

In this study, we investigated a new two-step approach that
takes advantages of both global optimization and gradient tech-
niques to solve the DOT inverse problem. The method utilizes
the fitted values of the unknown target parameters estimated
from GA as the initial values for the CG reconstruction. This
new approach is validated using simulations and phantom
experiments, and demonstrated with 16 clinical benign and
malignant cases.

2 Method

2.1 US-Guided Image Reconstruction

The propagation of diffused light through tissue can be
described by photon diffusion approximation as Eq. (1):17

½∇2 þ k2�UðrÞ ¼ −
1

D
SðrÞ; k2 ¼ −υμa þ jw

D
;

D ¼ 1

3μ 0
s
;

(1)

where SðrÞ is the equivalent isotropic source and, UðrÞ is the
photon density, D is the diffusion coefficient and μa, μ 0

s are
the absorptions and reduced scattering coefficients, respectively.
The inverse problem is typically linearized by Born or Rytov
approximation. In Born approximation, the photon density is
divided into superposition of the homogenous and scattered
parts denoted by U0 and Usc assuming that Usc ≪ U0. By digi-
tizing the imaging space into N voxels, the resulting integral
equations are formulated as follows:28

½Usc�M×1 ¼ ½WA WS �M×2N

� R
vδμadvR
v
δDdv

�
2N×1

¼ WX; (2)

whereM is the number of measurements, δμa and δD denote the
unknown changes of absorption and diffusion coefficient at each
voxel, respectively. ∫ vδμadv and ∫ vδDdv are integral changes
at each voxel. The weight matrices of absorption and scattering,
WA and WS, describe the distribution of diffused wave in the
homogenous medium and characterize the measurement sensi-
tivity to the absorption and scattering changes. In the end, the
inverse problem is formulated as an unconstrained optimization
problem as: min kUsc −WXk2, where k:k is the Euclidean
norm. In our ultrasound-guided DOT image reconstruction, a
dual-zone mesh scheme is used to segment the imaging volume
into a lesion region and a background region with fine and
coarse voxel sizes, respectively.21 The reconstructed integral
changes ∫ vδμadv and ∫ vδDdv are divided by the different
voxel sizes after CG optimization search, to obtain δμa and
δD distributions. For computing the weight matrix, we used
a semi-infinite absorbing boundary condition at the surface
and the corresponding analytic solution of the diffusion equa-
tion. The ij’th element of WA and WS corresponding to i’th
source-detector pair with the source and the detector located
at rsi and rdi, the j’th voxel located at rj, is calculated as:28

WA
ij ¼ 1

D0
U0ðrj; rsiÞ:Gðrdi − rjÞ

WS
ij ¼ −1

D0
∇U0ðrj; rsiÞ:∇Gðrdi − rjÞ

: (3)

In Eq. (3), D0 is the background diffusion coefficient, U0 is the
homogenous part of photon density, and G is the green function
of the semi-infinite geometry. The average μa and μ 0

s of the back-
ground medium needed for the weight matrix computation are
obtained from the measurements made with the homogenous
intralipid solution for phantom experiments and the normal
contra-lateral breast for clinical study. Finally after computing
the weight matrix, we solve the aforementioned optimization
problem in order to obtain the desired absorption and scattering
distributions.

2.2 Genetic Algorithm

The genetic algorithm (GA) is an approach used to solve opti-
mization problems based on the survival of the fittest individ-
uals.29 First, a starting population is generated, formed by NP
individuals while each member is a possible solution of the opti-
mization problem and can be represented by a vector of real
numbers. These individuals then undergo a set of genetic oper-
ations—selection, crossover, and mutation—in order to promote
the population evolution.

Generally, a DOT problem has thousands of unknowns, so
the problem cannot be solved directly using GA. Since optical
properties of biological tissues usually change gradually rather
than dramatically, the Gaussian perturbation is used to represent
the solution as introduced in Ref. 30, where Bayesian inversion
was applied to estimate the unknown parameters. We have
added the scattering term to that model as formulated in
Eq. (4), and the optimization is performed with genetic algo-
rithm.

�
μa
μ 0
s

�
¼

�
μam
μ 0
sm

�
exp

�
−ðP − CÞ2

2Σ2

�
: (4)

This model has eight unknown parameters that are three-dimen-
sional (3-D) center position C∶ðcx; cy; czÞ, 3-D variance
2Σ2∶ðσx; σy; σzÞ), the maximum absorption and reduced
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scattering coefficient denoted as μam and μ 0
sm. The 3-D variance

is calculated as: 2Σ2 ¼ −R2 lnð0.25Þ, where R∶ðrx; ry; rzÞ is the
3-D radius in (x; y; z) dimensions. This means that the radius is
defined at the point where the target absorption/scattering coef-
ficient is less than 25% of its maximum value. In our imaging
procedure, first we examine the desired area with the handheld
probe and monitor the ultrasound scans such that the target
appears in the center of the imaging area. After that, the co-
registered ultrasound and optical data are acquired. The target
center and its radius in the z direction, denoted as cz and σz,
are also readily available using the ultrasound B-scan.
Therefore GA algorithm is applied to obtain the rest of the
parameters. Table 1 shows a pseudo code for the GA algorithm.
First, an initial population of Np ¼ 500 individuals is generated
while each individual is a vector of four elements, i.e.,
½ μam μ 0

sm rx ry� . For initialization, these unknown
variables are sampled from a uniformly distributed random
variables as: μamðcm−1Þ ∼ Uniformð0; 0.4Þ, μ 0

smðcm−1Þ∼
Uniformð1; 40Þ, and rxðcmÞ; ryðcmÞ ∼ Uniformðrmin; 4Þ.

The ranges of the distributions for absorption and scattering
are selected according to the typical values of lesion optical
properties at NIR wavelength. The minimum radius, rmin is
chosen according to the target size measured by the US, and
maximum radius is limited to the imaging field of view,
which is half of our probe size. The error of each individual
is defined as a square error between the measurement and
the model and is formulated in Eq. (5) as,

Er ¼ kUsc −WXk2;

X ¼

2
64
R
v
δμadvR

v
δDdv

3
75 ¼

2
64

R
v
ðμa − μa0ÞdvR

v
ðμ 0−1

s − μ 0−1
s0 Þ∕3dv

3
75; (5)

where μa0, μ 0
s0 are the background absorption and reduced scat-

tering coefficients, respectively. The fitness of each individual is
then calculated by inversing this error i.e., 1∕Er. In Table 1,
steps 1 to 6 show how a new population is generated with

GA algorithm. In step 1, the parents are selected using the rou-
lette-wheel selection. In this method, the probability of selecting
an individual as a parent is proportional to its fitness value. This
means that the members of the population with higher fitness are
selected more often and are less likely to be eliminated. In
step 2, in order to form a child, heuristic crossover is applied
followed by mutation in step 3. Mutation is an operator that
changes a piece of genetic information of the new individual,
and it is necessary to prevent the algorithm from converging
toward a local minimum condition. In this work, Gaussian muta-
tion is performed by adding a random number taken from a nor-
mal distribution with zero mean to the generated child. The
standard deviation of this normal distribution decreases by
increasing the number of generations. The fitness of the child
is evaluated in step 4 and compared with the fitness of its parents
in step 5. After that, the most fit member among the parents and
generated child becomes a member of next population. To gen-
erateNp members for a new population, steps 1 to 5 are repeated
Np times. With this procedure, a new population is generated
such that the members have generally higher fitness levels in
comparison with the older ones. The generation of the popula-
tions is then repeated until the algorithm reaches its termination
criteria; that is, when the improvement in the fitness of members
is less than 10−6, or the generation number exceeds 100. By per-
forming this GA optimization, the most fit values for the
unknown parameters of the model are obtained. Finally, in
order to obtain the optical distributions, the result of the GA
is applied as an initial guess of CG reconstruction method.
The iterative CG optimization for solving DOT inverse problem
is described in detail in Ref. 31. Briefly, CG starts the iterations
with an initial guess of the solution, X0. At iteration k, the sol-
ution is updated as Xkþ1 ¼ Xk þ αkdk, where the step size, αk, is
obtained by line minimization technique, and the direction dk is
obtained by using the gradient of the objective function, Er. The
stopping criterion for our CG method is defined such that the
algorithm stops when the cumulative change of the objective
function of three consecutive iterations is less than 15%.

2.3 Phantom and Clinical Experiments

Phantom and clinical experiments were performed using a fre-
quency domain NIR system co-registered with ultrasound. For
this study, we used the laser diode of wavelength 780 nm, modu-
lated at 140 MHz. The source was sequentially coupled to nine
positions on a handheld probe via optical fibers, and the
reflected light was detected by 14 light-guides of 3 mm diameter
that were coupled to 14 parallel photomultipliers. The system is
described in detail in Ref. 32.

3 Results

3.1 Simulated Targets

The DOT fitting with GA followed by CG reconstruction was
applied to estimate the optical properties of simulated targets of
diameters 1, 1.5, and 2.5 cm in size, and indicated as small,
medium, and big targets, respectively. The optical absorption
coefficients of μa ¼ ½0.02; 0.08; 0.16� cm−1 and the scattering
coefficients of μ 0

s ¼ ½4; 7; 16; 34� cm−1 were used for targets.
This gives 36 cases of targets with different sizes and optical
properties. The detected fluence, back reflected from the top
boundary was calculated for all cases, while the targets were
assumed to be embedded inside a turbid medium with

Table 1 Pseudo code for GA algorithm.

Initialization: P0 ¼ fYig0; i ¼ 1; : : : ;Np and
Yi ¼ ½ μam μ 0

sm rx ry �

Evaluate fitness of P0

While not terminated:

1. Select parents: Xp1, Xp2

2. Form child via crossover: Xc ¼ Xp1 þ RcðXp1 − Xp2Þ and
Rc ∼ Uniform (0,1).

3. Mutate the child: X̃ c ¼ Xc þ Rm and Rm ∼Normal (0, σm)

4. Evalute the fitness of the generated child

5. Choose the fittest member among (Xp1, Xp2, X̃ c ) as a member
of the new population

6. Repeat 1 to 5 until Np members are added to the new population

End
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μa ¼ 0.02 cm−1 and μ 0
s ¼ 7 cm−1. The targets were located at

different depths such that the distances of the medium boundary
to the top of the targets were 0.5, 1.0, 1.5, and 2 cm.

The fitted maximum values of μa and μ 0
s of all targets

obtained by GA are presented in Fig. 1(a) and 1(b), respectively,
and the estimated lateral diameter of the targets is shown
in Fig. 1(c). These parameters were then applied to the
CG-based reconstruction method. As an example, for the
medium-size target with μa ¼ 0.08 cm−1, μ 0

s ¼ 16 cm−1, the
GA algorithm converged after 51 iterations as shown in
Fig. 2, and the CG method initialized by fitted values converged
after five iterations. The GA fitted values for this target were
μa ¼ 0.09 cm−1, μ 0

s ¼ 14.3 cm−1, and the reconstructed values

using CG after GA were μa ¼ 0.071 cm−1, μ 0
s ¼ 15.4 cm−1.

The CG method that was also applied for simultaneous
reconstruction of absorption and scattering started from zero ini-
tial value. It converged after 11 iterations to a local minimum
with μa ¼ 0.047 cm−1, μ 0

s ¼ 8 cm−1. The CG method solved
for the absorption coefficient only and started from a zero initial
value and converged after six iterations. The maximum recon-
structed absorption was 0.132 cm−1. For this example, the final
error, Er, calculated after CG iterations using GA fitting was
about 4.5 times smaller than the one that started from a zero
initial value.

The spatial absorption and scattering distributions of all cases
were reconstructed simultaneously with CG method after GA
fitting, and the result was compared with the one that started
from a zero initial value. In addition, the spatial absorption dis-
tributions that were reconstructed with the CG method started
from a zero initial value and assumed that there was no scatter-
ing contrast between the target and the background. The maxi-
mum μa and μ 0

s of each target were extracted from its
corresponding reconstructed maps, and the results are shown
in Fig. 3. The light-gray bars in Fig. 3(a) show the maximum
μa reconstructed with the CG method after applying the GA fit-
ting, while the gray bars are results of the CG obtained from
simultaneous reconstruction of μa and μ 0

s, starting from a
zero value. The black bars are the maximum μa values obtained
from the CG reconstructions for μa only, and which started from
a zero initial value. The standard deviations in Fig. 3(a) are
due to different target μ 0

s, sizes and depths. The error of the
reconstructed absorption for high- and low-contrast targets
(μa ¼ 0.16 cm−1 and μa ¼ 0.08 cm−1) using CG for μa only

Fig. 1 The maximum fitted (a) absorption coefficient; (b) reduced scattering coefficient; and (c) diameter of simulated targets using GA. The targets are
located at depths of 0.5 to 2 cm. The dotted line shows the true values.

Fig. 2 An example of the reduction of the mean error, Er, of the
population calculated at each generation of GA.

Fig. 3 The maximum reconstructed (a) absorption coefficient and (b) reduced scattering coefficient of 1-, 1.5-, and 2.5-cm diameter simulated targets
located at depths of 0.5 to 2 cm. The dotted line shows the true values.
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and CG for simultaneous μa and μ 0
s started from a zero initial

value are on average 18.5% and 52%. While with this method,
the ratio of high contrast target of μa ¼ 0.16 to the low contrast
one of μa ¼ 0.08 is 1.25 and 1.33, respectively. This error
reduced to 14% and the contrast increased to 1.7 by applying
the CG method after GA fitting. In addition, the standard
deviation for all cases has also reduced by about five times
after using the GA initial values. The light-gray and gray
bars in Fig. 3(b) show the maximum μ 0

s reconstructed with
the CG method after applying the GA fitting, and CG started
from a zero initial value, respectively. It was determined
from calculation that the maximum scattering was reconstructed
with 18% error on average using CG after GA fitting. It can be
seen that if CG started from a zero initial value is used for the
simultaneous reconstruction of absorption and scattering, it can-
not get close to the true value and is trapped in the local mini-
mum close to the background values. The final Er calculated
using CG after GA fitting is about 3.7 times smaller than the
one using CG started from a zero initial value. The Er obtained
using zero-initialized CG for reconstructing μa only is also 1.6
times smaller than the one for the simultaneous reconstruction of
μa and μ 0

s.
Figure 4(a) and 4(b) shows the bar plots of the reconstructed

maximum μa and μ 0
s versus the size of the targets, respectively.

The absorption of targets are reconstructed with 8.3%, 14.5%,
and 24% errors while scattering are reconstructed with 11.4%,
19.5%, and 25% errors for the small, medium, and big targets,

respectively. It can be seen that the optical values of the small
targets are estimated more accurately in comparison with the
larger ones. Furthermore, the increase in the estimation error
caused by increasing the absorption and scattering values is
also seen in this figure. The reconstructed values of the big target
with highest absorption of 0.16 cm−1 and scattering of 32 cm−1

have a maximum error of about 40%.
The reconstructed maximum μa by CG only versus the target

scattering is demonstrated in Fig. 5(a). The crosstalk between
the absorption and scattering parameters is clearly seen in
this figure (i.e., absorption values have increased by increasing
the target scattering). Figure 5(b) indicates that the absorption
values are not affected by changes in the scattering when simul-
taneous reconstruction of both parameters is performed with CG
method after GA fitting. The standard deviations shown in Fig. 5
are due to the different sizes and depths of the targets. In addi-
tion to reducing the cross-talk between these two parameters, it
is seen that even for the case when there is no scattering contrast
between target and background (i.e., μ 0

s ¼ 7), the absorption val-
ues are reconstructed more accurately after GA fitting since the
initial guess is closer to the true value.

3.2 Phantom Experiments

Phantom experiments were performed to validate the simula-
tions. Phantom targets of diameter 1.5 and 2.5 cm were
submerged in 0.8%-intralipid solution with the calibrated

Fig. 4 The maximum reconstructed (a) absorption coefficient and (b) reduced scattering coefficient versus size calculated for simulated targets located
at depths of 0.5 to 2 cm. The dotted line shows the true values.

Fig. 5 Maximum reconstructed absorption versus reduced scattering of simulated targets of different sizes located at depths of 0.5 to 2 cm:
(a) reconstructed with CG method and (b) with CG after fitting with GA.
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absorption coefficient μa ¼ 0.03 cm−1 and reduced scattering
coefficient μ 0

s ¼ 7.5 cm−1, to model the breast tissue optical
properties. The targets used were thin glass balls filled with vari-
ous intralipid concentrations of 0.4%, 0.16%, and 0.32%, which
provided mean calibrated scattering coefficients of 3, 13, and,
24 cm−1, respectively. In another set of experiments, Indian
ink was added to the different concentrations of the intralipid
solutions to obtain a calibrated average absorption value of
0.085 cm−1. Measurements were made with our frequency
domain NIR system co-registered with ultrasound while the tar-
gets were located at depths of 0.5 to 2 cm measured from the
surface of the target to the imaging probe.

The absorption and scattering distributions were recon-
structed with the new two-step method. The fitted lateral diam-
eters of 1.5 and 2.5 cm of the phantom targets are 2.43 and
3.24 cm on average, with standard deviations of 0.22 and
0.14, respectively, as shown in Fig. 6. For the phantom target
of diameter 1.5 cm located at depth of 1.5 cm, with calibrated
μa ¼ 0.085 cm−1, μ 0

s ¼ 13 cm−1, the fitted values using GA
were μa ¼ 0.088 cm−1, μ 0

s ¼ 14.48 cm−1. The maximum
reconstructed coefficients using CG after GA were μa ¼
0.091 cm−1, μ 0

s ¼ 15.9 cm−1, while the maximum absorption
reconstructed with CG started from zero value was
0.1268 cm−1.

The maximum reconstructed absorption of all phantom
targets is shown in Fig. 7(a). For the target phantoms with
μa ¼ 0.085 cm−1, the error of maximum reconstructed absorp-
tion is reduced from 14% to 4% after using the GA fitted values.
The error is reduced about 22% on average for all experimental
cases. The standard deviation shown is due to the differences in

depth and μ 0
s of the targets and is reduced about 1.5 times by

using the GA fitting. The bar plots in Fig. 7(b) show the recon-
structed μ 0

s for all phantom targets. The scattering coefficient of
the medium-size targets is reconstructed with about 16% error,
while the standard deviation is about 1.8. The scattering of the
big-size target is reconstructed with less than 31% error for
lower scattering coefficients of 3 and 13 cm−1 while there is
about 52% error for higher scattering coefficient of 24 cm−1.
This result agrees with the simulated data that the algorithm
is less accurate in reconstructing higher scattering coefficients
of big targets.

3.3 Clinical Studies

The two-step method is demonstrated with clinical cases
obtained with our ultrasound-guided NIR system. The study
protocol was approved by the local Institution Review Board
(IRB), and all patients signed the informed consent. Patients
were scanned in a supine position while multiple sets of optical
reflectance measurements were made with co-registered ultra-
sound images at the lesion location and the normal contra-lateral
breast of the same quadrant as the lesion.

Figure 8(a) shows the ultrasound B-scan of a small suspi-
cious mass located at the 11 o’clock position of the left breast
of patient #2. The location of the lesion is marked with the white
dashed line. The estimated background tissue optical properties
were μa ¼ 0.017 cm−1 and μ 0

s ¼ 3.59 cm−1. The core needle
biopsy revealed that the lesion was benign. The reconstructed
absorption distribution with CG starting from zero initial values
and CG using the GA fitted values are shown in Fig. 8(b) and
8(c), with the maximum values of 0.136 and 0.142 cm−1,
respectively. Each subfigure is the spatial x-y image of 8 by
8 cm, reconstructed at the depth marked on its title and with
0.5 cm increment in depth. Figure 8(d) shows the reconstructed
reduced scattering map of this lesion with maximum value of
4.81 cm−1. It can be seen that there is a small contrast between
the μ 0

s of the lesion and the background region. Similarly, Fig. 9
shows a co-registered ultrasound and the optical maps of a
suspicious lesion located in the left breast of patient #11.
The estimated optical properties of background tissue were μa ¼
0.048 cm−1 and μ 0

s ¼ 4.09 cm−1. The maximum absorption
coefficients were 0.182 and 0.19 cm−1 reconstructed with CG
method only, and after applying the GA fitting, respectively.
The spatial reduced scattering map is also shown in Fig. 9(d),
with the maximum value of 10.38 cm−1, which has a high

Fig. 6 Fitted diameter of phantom targets using GA. The targets are
located at depths of 0.5 to 2 cm.

Fig. 7 Maximum reconstructed (a) absorption and (b) reduced scattering of medium (1.5 cm diameter) and big (2.5 cm diameter) phantom targets
located at depths of 0.5 to 2 cm.
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contrast as compared with the background tissue. The core
biopsy revealed that the lesion was malignant. The optical
maps of benign and malignant lesions reconstructed with and
without applying the GA fitting were evaluated for seven malig-
nant and nine benign cases. Table 2 provides patient informa-
tion, lesion size and center depth as measured by co-
registered ultrasound. All lesion diameters are smaller than

2 cm in the z-direction and located at center depths of 1 to
3 cm. The lateral diameters of the lesions estimated with the
GA algorithm are also presented in the last column of
Table 2. They are on average 2.6 times larger than the size mea-
sured with the ultrasound image. The measured background tis-
sue scattering varies from 1.7 to 6.7 cm−1 and the reconstructed
lesion scattering changes from 1.9 to 23 cm−1. Therefore a

Fig. 8 A benign lesion obtained from patient #2: (a) ultrasound B-scan, spatial absorption map reconstructed at depths from 0.5 to 3 cm with (b) CG
method and (c) after GA fitting; (d) reconstructed scattering distribution after GA fitting.

Fig. 9 Amalignant lesion obtained from patient #11: (a) ultrasound B-scan, spatial absorptionmap reconstructed at depths from 0.5 to 3 cmwith (b) CG
method and (c) after GA fitting; (d) reconstructed scattering distribution after GA fitting.
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scattering-contrast term has been introduced and is defined as
the ratio of absolute difference of lesion and background scat-
tering to the background scattering. It was also reported in Ref. 6
that only the relative scattering of lesion to background showed
a significant difference between the benign and the malignant
tumor cases. The maximum reconstructed absorptions are
shown in Fig. 10, and the scattering-contrasts of all cases are

presented in Fig. 11. These figures imply that the maximum
absorption and scattering contrast are significant parameters
for characterizing the lesions. Figure 12(a) shows the statistics
of maximum reconstructed absorption of all lesions. The ratio of
the maximum absorption coefficient of malignant to benign

Fig. 10 Maximum absorption of nine benign (1 to 9) and seven
malignant (10 to 16) cases reconstructed with CG method started
from zero initial values compared with the CG after GA fitting.

Fig. 11 Scattering contrast calculated for nine benign (one to nine) and
seven malignant (10 to 16) cases.

Table 2 Patient information and lesion size in lateral and depth dimensions and center depth measured by co-registered ultrasound. The lateral
dimension estimated by GA algorithm is also given.

Patient age Lesion type
US measurements

(lateral × depth in cm)
GA estimated
lateral size (cm)

Target depth measured
by US (cm)

82 Benign papillary 1.16 × 0.6 5.02 1.4

33 Benign breast tissue 0.53 × 0.75 2.5 1

49 Benign fibrocystic changes 0.87 × 0.8 2.42 1.4

46 Benign fibrosis 0.53 × 1.6 2.24 1.25

34 Fibroadenoma 2.38 × 1.2 3.39 1.5

26 Fibroadenoma 2.2 × 1.5 6.03 1.25

39 Fibrocystic changes and moderate
degree of intraductal hyperplasia

5.3 × 2.4 7.84 2

76 Complex cyst 2.1 × 1.2 5.56 2

31 Fibroadenoma 5.2 × 3 7.9 2

61 Invasive ductal Ca. 1.1 × 1.0 2.77 1.7

51 Invasive lobular Ca. 1.1 × 0.7 2.76 1.5

61 Invasive Ca. with ductal and lobular
features

0.9 × 0.6 2.88 1.25

60 Invasive ductal Ca. 1.7 × 1.1 3.68 1.8

53 Invasive ductal Ca. 2.2 × 1.9 4.17 1.7

78 Invasive ductal Ca. 1.8 × 2.0 3.86 3

76 Invasive lobular Ca. More than 3 cma 5.2 2

39 Inflammatory ductal Ca. 3.1 × 1.4 7.1 2.0

aRecurrent cancer in the previous surgical site. Tumor size cannot be estimated from US due to scar tissue. The size was estimated from x-ray CT.
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cases improved slightly from 1.75 to 1.82 by applying the GA
fitting before CG reconstruction. The scattering contrast shown
in Fig. 12(b) of the malignant cases is also found to be about
3.32 times higher than that of the benign cases on average.

4 Summary and Discussion
We have introduced a new two-step imaging reconstruction
algorithm based on a global optimization approach for estimat-
ing target parameters and then reconstructing the absorption and
scattering distributions with the conjugate-gradient method. The
GA algorithm can converge to the optimum solution with less
than 60 iterations and takes less than 45 s of processing using a
personal computer with CPU of 2.40 GHz. Results of simulation
and phantom experiments with targets located at a depth range
of 0.5 to 2 cm have shown that the new algorithm recovers the
target absorption with errors less than 10%, while the use of the
traditional conjugate-gradient approach results in about 20%
error. Therefore 10% more accuracy has been achieved with
the use of global optimization. With this approach, it is possible
to reconstruct the reduced scattering distribution of targets with
error less than 25% for the simulated and phantom targets. We
have applied the new method for reconstructing the optical maps
of nine benign and seven malignant clinical cases. The result
shows a slight improvement in the absorption contrast of malig-
nant to benign lesions. However, the scattering contrast showed
about 3.32 times higher contrast on average in malignant lesions
compared with benign ones.

There are some malignant cases that may not have high
absorption contrast but high scattering contrast. For example,
the patient #17 had an advanced inflammatory breast cancer
with no measurable vascular content. The maximum recon-
structed absorption with CG method only was 0.028 cm−1,
and it increased to 0.057 cm−1 after GA fitting. Using either
of these values, this lesion would be characterized as benign.
However the scattering-contrast for this case, calculated as
2.44, is in the malignant lesion range. This example demon-
strates that tumor scattering distribution can add significant
diagnostic value to further improve the lesion characterization.
This result is applicable for the accurate diagnosis of breast can-
cers once it is validated by more clinical cases.

Although the algorithm here is applied for estimating the
optical properties of one target, it is straightforward to expand
the method for general cases with multiple targets as follows:
We assume that the optical map of each target follows a
Gaussian distribution as in Eq. (4). Having the prior information
of center location and radius in z-direction for each target, we
need to estimate four unknowns for each target in this model. So

we generate the population with members of size four times of
the number of targets and perform GA fitting to find the opti-
mum values for these parameters. Finally we apply CG iteration
starting from the fitted parameters to reconstruct the optical dis-
tribution of all targets.

Another point worth to note is that there could be a mismatch
between the centers of the lesion optical map and ultrasound
image because the contrast mechanism of the two modalities
is different. Therefore the lateral center positions were added
as unknown variables and the fitted values were estimated
with the GA algorithm. It was seen that the final optical
reconstruction results were not sensitive to these parameters
especially for the large lesions.

We have used genetic algorithm as the first step since the
promising result of applying evolutionary algorithms for recon-
structing tissue optical properties was studied before. Other
global optimization techniques can be investigated in future
for solving DOT inverse problem.

In summary, we have introduced a two-step image
reconstruction algorithm by estimating initial target optical
properties using a global optimization procedure and then apply-
ing the initial values to the gradient search algorithm to solve
DOT inverse problem. Simulations and phantom experiments
have shown that the maximum absorption and reduced scatter-
ing coefficients are reconstructed with less than 10% and 25%
errors, respectively. However, the CG method alone generates
about 20% error for the absorption coefficient and does not
accurately recover the scattering distribution. The scattering
contrast introduced to characterize benign and malignant breast
lesions demonstrated that, on average, the reconstructed target
absorption and scattering contrast of malignant lesions were
about 1.8 and 3.32 times higher than the benign cases,
respectively.
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