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Abstract. We examine the accuracy of a modified finite volume method compared to analytical and Monte Carlo
solutions for solving the radiative transfer equation. The model is used for predicting light propagation within a
two-dimensional absorbing and highly forward-scattering medium such as biological tissue subjected to a colli-
mated light beam. Numerical simulations for the spatially resolved reflectance and transmittance are presented
considering refractive index mismatch with Fresnel reflection at the interface, homogeneous and two-layered
media. Time-dependent as well as steady-state cases are considered. In the steady state, it is found that the
modified finite volume method is in good agreement with the other two methods. The relative differences
between the solutions are found to decrease with spatial mesh refinement applied for the modified finite volume
method obtaining <2.4%. In the time domain, the fourth-order Runge-Kutta method is used for the time semi-
discretization of the radiative transfer equation. An agreement among the modified finite volumemethod, Runge-
Kutta method, and Monte Carlo solutions are shown, but with relative differences higher than in the steady state.
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1 Introduction
The use of visible or near-infrared light provides many possibil-
ities, particularly for applications in biomedical treatment and
diagnosis, such as optical tomography, laser surgery, and photo-
dynamic therapy. To develop an efficient tool, it is essential to
have high-order accuracy models for predicting light propaga-
tion within inhomogeneous, absorbing, and highly forward-scat-
tering media, typical for biological tissues. Modeling of light
propagation through biological tissues has traditionally been
done with the diffusion approximation (DA)1,2 or the statistical
Monte Carlo (MC) method.3–11 The diffusion theory presumes
that the scattering is predominate and that the medium is opti-
cally diffuse so that the angle-dependent radiant intensity is
replaced by an angle-independent photon flux and the radiative
transfer equation (RTE) is simplified as a diffusion equation.
However, the DA is hardly applicable to heterogeneous biologi-
cal tissues with nonscattering or low-scattering regions;
moreover, experiments2 have shown that it fails to match exper-
imental data when the tissue sample is not optically diffuse. The
MC technique was broadly used because of its simple algorithm
and flexibility to include real physical conditions. Netherthe-
less, this method requires a large number of photons to obtain
smooth accurate solutions, which is highly time consuming.
Alternatively, different (deterministic) numerical methods

have been developed to solve the RTE in the spatial domain,
for example, the finite difference method,12–15 the finite element
method (FEM),16,17 or the finite volume method (FVM).18

By using an angular discretization of the RTE, the cited
methods are considered as a discrete ordinates method
(DOM).19 It is known that one of the more serious shortcomings
of the DOM is false scattering, which is a consequence of spatial
discretization errors. Another serious drawback of the method
is the so-called ray effect, which is a consequence of angular
discretization (see, for example, chapter 16 in Ref. 19). In
our earlier work, a modified FVM (MFVM) for solving the
two-dimensional (2-D) RTE has been developed.20 Recently,
two authors of the present paper succeeded in deriving exact
analytical solutions to the RTE for a variety of different geom-
etries.21–23 It has to be emphasized that these exact analytical
solutions are very useful for validation of the numerical
methods.

This paper presents a comparison between three different sol-
utions of the RTE based on the MFVM,20 the analytical
approach,21,22 and the MC technique6 for predicting light propa-
gation within absorbing and highly forward-scattering media,
subjected to a collimated light beam. Few works can be
found in the literature on the same topic.24–28 In Ref. 24, calcu-
lations based on the DA, the DOM for solving the RTE in the
time domain, and the MC technique were conducted and

*Address all correspondence to: Fatmir Asllanaj, E-mail: Fatmir.Asllanaj@univ-
lorraine.fr 0091-3286/2014/$25.00 © 2014 SPIE

Journal of Biomedical Optics 015002-1 January 2014 • Vol. 19(1)

Journal of Biomedical Optics 19(1), 015002 (January 2014)

http://dx.doi.org/10.1117/1.JBO.19.1.015002
http://dx.doi.org/10.1117/1.JBO.19.1.015002
http://dx.doi.org/10.1117/1.JBO.19.1.015002
http://dx.doi.org/10.1117/1.JBO.19.1.015002
http://dx.doi.org/10.1117/1.JBO.19.1.015002
http://dx.doi.org/10.1117/1.JBO.19.1.015002


compared for predicting light transport in multidimensional bio-
logical tissues. In that case, the DA were solved with the FEM
using a commercial package FEMLAB. Comparisons among
the three methods were performed over a broad range of param-
eters, such as the scattering and absorption coefficients, the
heterogeneity of the tissues, the CPU time, etc. It was concluded
that the DOM was found to closely match the MC simulation.
Da Silva et al.25 compared the auxiliary function method (giving
an exact solution) and the DOM for a heterogeneous absorbing
and scattering (one-dimensional) slab composed of a single flat
layer or a multilayer in the steady-state domain. The comparison
was applied to two different media presenting two typical and
extreme scattering behaviors: Rayleigh and Mie scattering with
smooth or very anisotropic phase functions, respectively. A
good agreement between the two methods was observed in
both cases. Mishra et al.26 studied numerically a square
short-pulse laser having pulse-width of the order of a femtosec-
ond on transmittance and reflectance signals in case of an
absorbing and scattering planar layer. A comparison of the per-
formance of the three numerical methods for solving the RTE,
namely, the discrete transfer method, the DOM, and the FVM,
was performed. Effects of the optical properties (extinction
coefficient, scattering albedo, anisotropy factor) and the laser
properties, such as the pulse-width and the angle of incidence,
on the transmittance and the reflectance signals were compared.
In all the cases, results of the three methods were found to com-
pare very well with each other. Computationally, the DOM was
found to be the most efficient. In Ref. 27, a comparison of light
transport models in view of optical tomography applications was
performed. These models were based on two FEMs associated
with the DOM (for solving the 2-D RTE in the steady-state
domain), namely, the least square and the discontinuous
Galerkin finite element (DGFE) formulations. The comparison
of both methods using the Sn and the Tn angular quadratures
shows that the DGFE gives more accurate solutions for prob-
lems with strong discontinuities, but may exhibit some oscilla-
tions due to the Galerkin procedure. A test on a collimated
irradiation showed that both methods give the same accuracy
due to the separation of the radiance into collimated and diffuse
components, which removes the discontinuities in the imple-
mentation of the boundary conditions. Recently, the RTE in
the time domain was solved for an axisymmetric cylindrical
medium using both the DOM and the FVM.28 Steady and tran-
sient flux profiles were determined for absorbing and scattering
media. Results for each solution method were compared and
shown for various grid numbers, scattering albedos, and optical
thicknesses. A comparison of CPU time and memory usage
among the methods was presented. It was found that the
FVM uses more memory and has a longer convergence time
than the DOM for all cases due to the difference in angular
treatment.

The remainder of this paper is organized as follows.
Section 2 deals with the problem statement for 2-D geometries
and gives details of the MFVM. In our previous publication,20

only homogeneous biological media have been considered and
the boundaries were assumed to be transparent. Also, some
extensions of the numerical method, regarding the space-
varying optical properties and the interface between two
media (refractive index mismatch with Fresnel reflection at
the interface), have been developed for the present work.
Moreover, more complex collimated light beams and a new
time semi-discretization of the RTE are employed here.

The third section analyzes and discusses the comparison results
among the different methods cited above. The last section
reports our conclusions and suggests further developments
for this work.

2 Numerical Treatment of the Radiative
Transfer Equation

2.1 Modified Finite Volume Method

2.1.1 Problem statement

A 2-D absorbing and highly forward-scattering medium, such as
biological tissue exposed to arbitrary collimated external radi-
ation, is analyzed. Except for the refractive index, which is con-
stant, the medium has nonuniform optical properties to model,
in the present study, a homogeneous or a two-layered medium
and, in the future, the complex heterogeneities inside biological
tissues. The external radiation that penetrates from the outside
into the participating medium is brought by a perpendicular col-
limated light beam. One part of it propagates in the medium
without being deviated, while the other part is scattered in all
directions of space. Then, it is convenient to split the radiance
into two components denoted as ψcðs;Ω; tÞ, where ψc is the
collimated radiance (Wmm−2 sr−1), s is the spatial position
(mm), Ω is the direction vector, and t is the time (ps), and
ψðs;Ω; tÞ, which are, respectively, the collimated and diffuse
components of light.19 The intensity (Wmm−2) of the colli-
mated light beam is ϒðsw; tÞ, given at any location point sw
on the bounding surface that is illuminated. Then, the
ψcðs;Ω; tÞ collimated radiance is governed by Bouguer-Beer-
Lambert attenuation law.

ψcðs;Ω; tÞ ¼ϒ
�
sw; t−

nΔs

c

�
exp

�
−
Z

s

sw

μtðuÞdu
�
δðΩ−ΩcÞ

for t≥
nΔs

c
and ψcðs;Ω; tÞ ¼ 0 otherwise; (1)

where n is the refractive index, c is the speed of light in vacuum
(0.299793 mmps−1), μt is the attenuation coefficient (mm−1), δ
is the Dirac-delta function, Ωc is the direction of the collimated
light beam, and Δs ¼ js − swj. The diffuse radiance ψðs;Ω; tÞ is
solution of the RTE with an additional radiation source term (S)
(Wmm−2) due to the scattered part of the collimated light
beam.19,20

Scðs;Ω; tÞ ¼ μsðsÞpðΩc → ΩÞϒ
�
sw; t −

nΔs

c

�

× exp

�
−
Z

s

sw

μtðuÞdu
�
; (2)

where μs is the scattering coefficient (mm−1) and p is the scat-
tering phase function (sr−1). The scattering phase function
pðΩ 0 → ΩÞ describes the probability that a light beam from
one direction, Ω 0, will be scattered into a certain other direction
Ω. The fluence ϕðs; tÞ (Wmm−2) and the outgoing flux at the
(transparent) bounding surface of the medium Qoutðs; tÞ can be
calculated, respectively, as
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φðs; tÞ ¼
Z
2π
ψðs;Ω; tÞþψcðs;Ω; tÞdΩ¼

Z
2π
ψðs;Ω; tÞdΩ

þϒ
�
sw; t−

nΔs

c

�
exp

�
−
Z

s

sw

μtðuÞdu
�
Qoutðs; tÞ

¼
Z
Ω·nout>0

ψðs;Ω; tÞðΩ · noutÞdΩ
�
þπϒ

�
sw; t−

nΔs

c

�

× exp

�
−
Z

s

sw

μtðuÞdu
�
if Ωc · nout > 0

�
; (3)

where the contribution of ϒ is valid only for t ≥ nΔs
c . n is the

local unit surface normal pointing into the medium. It should
be noted that the reflectance (respectively transmittance) corre-
sponds to the outgoing flux at the bounding surface (resp. oppo-
site bounding surface) that is illuminated.

2.1.2 Discretization of the time, angular, and spatial
domains

The time domain was discretized with a Δt constant step such
that tk ¼ kΔt, where k was the number of iteration. The angular
space (2ΠSr) was uniformly subdivided into Ωm discrete direc-
tions, m ∈ f1; : : : ; Nθg. The computational spatial domain was

divided into three-node triangular elements using unstructured
(or structured) meshes. As in Ref. 20, a cell-vertex formulation29

was adopted in this work to have a high resolution in space of
the RTE. It consists of building control volumes around each
node of the mesh and computing the solution at the nodes of
the mesh (nodes of triangles). The polygonal control volumes
connected to each node were built by joining the centroids of
the elements to the midpoints of the corresponding sides
(Fig. 1). Control volumes surrounding the nodes at the bounda-
ries of the medium were built as illustrated in Ref. 30. The sur-
face of the control volume related to node Pwas subdivided into
Nf surface elements. For a surface element f, if was the inte-
gration point located at the center of the surface element, Af was
its surface area (mm2) and, nf was the local unit outward normal
vector. It should be noted that the if integration points of panels
fðf ¼ 1; 2; : : : ; 12Þ are defined only from the coordinates of the
vertices of triangles of the mesh (Fig. 1).

2.1.3 Full discretization of the RTE

FVM applied to the RTE for the spatial domain. The
integration of the RTE over a VP control volume (mm3)
(Fig. 1) and into a ΔΩm discrete solid angle centered around
an Ωm discrete direction yields19,20

n
c

Z
VP

Z
ΔΩm

∂ψðs;Ω; tÞ
∂t

dΩdV þ
Z
VP

Z
ΔΩm

Ω · ∇ψðs;Ω; tÞdΩdV þ
Z
VP

μtðsÞ
Z
ΔΩm

ψðs;Ω; tÞdΩdV

¼
Z
VP

μsðsÞ
Z
ΔΩm

Z
Ω 0¼2π

pðΩ 0 → ΩÞψðs;Ω 0; tÞdΩ 0dΩdV þ
Z
VP

Z
ΔΩm

Scðs;Ω; tÞdΩdV; (4)

where ψðs;Ω; tÞ is the radiance defined at time t and at
position s traveling in the direction of unit vector Ω
[located here in the plane ðOxyÞ] where light propagates
at the velocity v ¼ c∕n in the medium. Sc is the radiation
source term given by Eq. (2). By applying the divergence
theorem to the second term of the left member of Eq. (4), it
follows that
Z
VP

Z
ΔΩm

Ω · ∇ψðs;Ω; tÞdΩdV

¼
Z
ΓP

Z
ΔΩm

ψðs;Ω; tÞðΩ · noutÞdΩdS: (5)

Let ψk;m
if

be an approximation of the radiance at time tk, and
at the if integration position traveling in the Ωm discrete direc-
tion. Then, Eq. (5) is approximated by

XNf

f¼1

ψk;m
if

AfΔm
f with Δm

f ¼
Z
ΔΩm

Ω · nfdΩ: (6)

It should be noted that Δm
f is an integral that depends only on

the orientation of surface element f for the direction considered.
This quantity is calculated in an exact way.30 We assume that (ψ ,
S) and optical properties (μa, μs), where μa is the absorption
coefficient (mm−1), are constant inside a sufficiently small
VP control volume (taking only one value at node P) and inside
ΔΩm. The full discretization of the steady-state Eq. (4) yields
the following algebraic equation:

XNf

f¼1

ψm
if
AfΔm

f ¼
�
−μtPψm

P þ μsP
XNθ

m 0¼1

p̃m 0→mψm 0
P ΔΩm 0

þ Smc;P

�
ΔΩmVP; (7)

where

Smc;P ¼ μsPp̃mc→mψcðP;ΩcÞ; (8)

Fig. 1 Control volume related to an interior node.
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and p̃m 0→m represents the average part of the scattered energy
from the control solid angle ΔΩm 0

toward the control solid
angle ΔΩm.20

Spatial discretization of the transport term of the radi-
ance. To solve Eq. (7), closure relations between the ψm

if
inte-

gration-point values and the nodal values of the radiance are
required (Fig. 1). The directional nature of radiative transfer
needed to be taken into account in order to establish the closure
relations. Thus, for a specific direction of propagation of light,
only the nodal values located upstream from the integration
point had to be considered. In the same way, as presented in
Ref. 20, a locally rigorous one-dimensional integration of the
RTE along the optical path ðuf; ifÞ has to be used.

ψðif;ΩÞ ¼ ψðuf;ΩÞ exp
�
−
Z

if

uf

μtðsÞds
�

þ
Z

if

uf

�
Scðs;ΩÞ

þ μsðsÞ
Z
Ω 0¼2π

pðΩ 0 → ΩÞψðs;Ω 0ÞdΩ 0
�

× exp

�
−
Z

if

s
μtðuÞdu

�
ds: (9)

Here, uf and if are assumed to be on the same optical path of
Ω direction with uf located upstream from if and Δsf ¼juf − ifj. The following approximation can be used, ψðs;Ω 0Þ ≈
ψðuf;Ω 0Þ s ∈ ðuf; ifÞ.

To compact the equations, the following notations are
introduced:

Dm
uf ¼ AfΔm

f exp

�
−
Z

if

uf

μtðsÞds
�
;

Em
uf ¼ AfΔm

f

Z
if

uf

μsðsÞ exp
�
−
Z

if

s
μtðuÞdu

�
ds

Cm
uf ¼ AfΔm

f

Z
if

uf

Smc ðsÞ exp
�
−
Z

if

s
μtðuÞdu

�
ds: (10)

From Eqs. (2) and (8), an approximate value of Cm
uf can be

deduced.

Cm
uf ≈ AfΔm

f exp

�
−
Z

if

sw

μtðuÞdu
�
p̃mc→mjif

− ufj
1

2
fμsifϒðswÞ þ μsufϒðswÞg: (11)

The computation of integrals in Eq. (10) is detailed in
Appendix B. Combining Eqs. (9) and (10) in Eq. (6) gives

XNf

f¼1

ψm
if
AfΔm

f ¼
XNf

f¼1

�
ψm
ufD

m
uf þ Cm

uf

þ
�XNθ

m 0¼1

p̃m 0→mψm 0
uf ΔΩ

m 0
�
Em
uf

�
;

where θ is the azimuthal angle (rad). The projections and linear
interpolations presented in Ref. 30 were expected to improve the

closure relations and the accuracy of the results. Also, they were
used and generalized in this study to link ψm

uf defined at the uf
point with the nodal values of the radiance (see Appendix A).

Full discretization of the RTE. The formula for the fourth-
order Runge-Kutta (RK4)31 was used for the time semi-
discretization of Eq. (4) combined to discrete Eq. (7). We
also tested the formula for the Runge-Kutta-Fehlberg method
(RK45), which is known to be more precise than RK4, but
the results were similar.

An iterative procedure is required to solve equations in the
time domain (and also in the steady state). Inspection of these
equations shows that they can only be solved for one prescribed
m discrete direction. To evaluate the sums over m 0 in Eqs. (7)
and (12), it is necessary to know, as preliminary at time tk
(respectively at iteration k in the steady state), the specific
radiances ψk;m 0

P and ψk;m 0
uf in all discrete directions

m 0 ∈ f1; : : : ; Nθg. In our case, these specific radiances were
changed by the same one computed at the previous iteration k −
1 since the values are known at time tk−1 (respectively at iter-
ation k − 1 in the steady state). The convergence criterion was
related to a relative difference dealing with the values of the out-
going flux at the bounding surface of the medium. In all results
presented further, the iterations have been achieved with a rel-
ative difference that does not exceed a prescribed tolerance set to
10−5. Moreover, our numerical method is designed to take into
account mismatched interfaces as described in Appendix C. The
MFVM described above was coded using C language. A par-
ticular effort has been done over the optimization of data struc-
tures and computations in the sequential code. As all real
numbers manipulated in the code are coded in double precision
to ensure a high accuracy of the results, a trade-off has been
required between memory consumption and computational
time in the context of sequential execution on a single computer.
However, this constraint may be at least partially relaxed in a
context of cluster computing, implying the use of several com-
puters and thus, a larger aggregated memory. Moreover, even in
the context of a single computer, there is a great potential of
computational time reduction by using the multiple cores
present in current computers and/or GPUs.

2.2 Monte Carlo Technique

The MC technique simulates the photons’ paths in the consid-
ered scattering medium according to the probability functions
for the involved physical quantities like the absorption coeffi-
cient, the scattering coefficient, and the scattering phase func-
tion. During or after the simulation of each photon’s path,
the information of the requested quantities, like the location
of reflectance, is scored. Upon calculating a large number of
photons, these quantities converge to the exact solution of
the RTE.21

In this study, the 2-D MC simulations were performed with a
modified version22 of a three-dimensional (3-D) code described
in detail elsewhere.6 The modification mainly consisted of hold-
ing the azimuthal angle fixed at a constant value and using the
2-D Henyey-Greenstein function as scattering function. As in
the 3-D code, Fresnel’s formulae were applied at the boundaries
of the scattering media. In the time domain, the reflectance was
calculated by converting the photons’ path lengths into time via
the speed of light in the scattering medium.
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2.3 Analytical Solution

The analytical approach for solving the 2-D RTE is based on an
infinite Fourier transform regarding one spatial coordinate as
well as on a Fourier series for the angular coordinate.23 The
resulting eigenvalue problem is solved via an eigenvalue decom-
position of a simple symmetric tridiagonal matrix, which has to
be performed once only. The boundary condition is satisfied by
using a Marshak-type boundary condition.23

3 Results and Discussion
In this section, the obtained solutions with the MFVM are vali-
dated against the analytical approach and the MC technique. The
Henyey-Greenstein phase function has been used to account for
the anisotropic nature of scattering by the medium. This func-
tion, which depends only on the scalar product between the inci-
dent direction Ω 0 and that scattered Ω and the anisotropy factor
g, is expressed for 2-D media as32

pðΩ 0 · ΩÞ ¼ 1

2π

1 − g2

ð1þ g2 − 2gΩ 0 · ΩÞ : (13)

In all the cases presented further, g is set to 0.9, which cor-
responds to highly forward-scattering media, such as biological
tissue. The refractive index of the outside medium (air) is equal
to 1. In the first three cases, the steady state is considered and the
bounding surface of the medium at x ¼ 0 mm was illuminated
with a perpendicular collimated Gaussian beam having a spatial
intensity of

ϒ̃ðyÞ ¼ 1

ϵy
ffiffiffiffiffi
2π

p exp

�
−

y2

2ϵ2y

�
; (14)

with εy set to 0.3 mm in all simulations. The angular space
(2ΠSr) was uniformly subdivided into Nθ ¼ 128 control
solid angles to obtain a converged solution of the MFVM in
the angular domain. Furthermore, sensitivity studies of the
MFVM were carried out on spatial discretization with four dif-
ferent structured spatial meshes composed of (nx × ny ¼ nxy)
nodes [nx according to the ðOxÞ axis]. Mesh 1:nx ¼ 31,
ny ¼ 181ðnxy ¼ 5611Þ; Mesh 2:nx ¼ 41, ny ¼ 321ðnxy ¼
13;161Þ; Mesh 3:nx ¼ 61, ny ¼ 361ðnxy ¼ 22;021Þ; Mesh
4: nx ¼ 61, ny ¼ 561ðnxy ¼ 34;221Þ. Each spatial mesh was
refined according to the ðOyÞ axis near the zone of interest
corresponding to the section y ¼ 0 mm. The calculations
were carried out with a computer of 2.56 GHz, 12 GB for
the MFVM and with a computer of 2.5 GHz, 4 GB for the MC.

3.1 Homogenous Slab (Case 1)

The first test case, taken from Ref. 22, deals with a homogenous
slab. The boundaries of the medium are assumed to be transpar-
ent. The optical properties of the medium [Fig. 2(a)] are typical
for biological tissue in the near-infrared spectral range, where
the absorption coefficient is particularly low. It should be
noted that the medium is optically thick (τ ¼10.01), and thus
the regime of multiple scattering has to be considered
[ls ≪ L < la, where L is the thickness of the medium (mm),
ls is the scattering mean free path (¼ 1∕μs), and la is the absorp-
tion mean free path (¼ 1∕μa)]. To correctly take into account the
first scattering events in the medium (ls ¼ 0.1 mm), the first
node of the grid [according to the ðOxÞ axis] from the bounding
surface of the medium at x ¼ 0 mm was located at 0.033 mm

for mesh 1, 0.025 mm for mesh 2, and 0.016 mm for meshes 3
and 4.

The steady-state spatially resolved reflectance (at x ¼ 0 mm)
and transmittance (at x ¼ 1 mm) are shown in Fig. 3(a). Due to
the relatively small thickness, the magnitudes for reflectance

Fig. 2 Physical model.

Fig. 3 Steady-state spatially resolved reflectance and transmittance
(case 1).
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and transmittance decrease strongly when spatial position y
increases. It can be seen that the numerical solution given by
the MFVM is in good agreement with the exact analytical sol-
ution.22 False scattering and ray effect cause mainly the relative
differences between the two solutions, and a potential way to
reduce it is to use a spatial mesh refinement [as illustrated in
Fig. 3(b)] accompanied by a finer angular quadrature. The
differences are higher for transmittance. The relative differences
for reflectance are <2% (meshes 1 and 2) and 1% (mesh 3),
respectively. For transmittance, they are < ∼ 4.3% (mesh 1),
3.4% (mesh 2), and 2.4% (mesh 3), respectively.

The diffuse fluence inside the medium is depicted in Fig. 4,
and we can seen a symmetry plane ðy ¼ 0Þmm and forward light
scattering, which is in agreement with the value of gð¼ 0.9Þ.

The diffuse fluence is concentrated in the region between
y ¼ −1 mm and y ¼ 1 mm. These imply that the relative differ-
ence for transmittance has peaked regions [Fig. 3(b)] between
y ¼ 0 mm and y ¼ 1 mm. A uniform angular quadrature was
used in this work. A potential way to reduce the relative differ-
ence for transmittance is to use a nonuniform angular quadrature
and to refine it near the zone of the collimated direction.

3.2 Refractive Index Mismatch with Fresnel
Reflection at the Interface (Case 2)

The medium studied in this section has a refractive index equal
to 1.4 and the boundaries of the medium are assumed to be semi-
transparent (see Appendix C). The other parameters are the same
as in case 1. The steady-state spatially resolved reflectance (at
x ¼ 0 mm) and transmittance (at x ¼ 1 mm) are depicted in
Fig. 5(a). Compared to case 1, the magnitudes for reflectance
and transmittance are lower for y near to 0. It is due to the
reflected light at the boundaries of the medium directed back
into the medium. At the same time, it contributes to give higher
magnitudes for reflectance and transmittance when y increases.
The numerical solution given by the MFVM compares well with
the MC solution6 taken as the reference solution in this case.
Also, the relative differences between the two solutions
[Fig. 5(b)] decrease with spatial mesh refinement, and the
differences are higher for transmittance. The relative differences
for reflectance are almost always <1% (meshes 1, 2, 3) except
for y > 2.4 mm, but this is due to the statistical errors of the MC
method, which increase with larger y values. For transmittance,
they are < ∼ 4.1% (mesh 1), 3% (mesh 2), and 2.2% (mesh 3),
respectively.

Fig. 4 Steady-state diffuse fluence computed with the modified finite
volume method (case 1).

Fig. 5 Steady-state spatially resolved reflectance and transmittance
(case 2).

Fig. 6 Steady-state spatially resolved reflectance (case 3).

Journal of Biomedical Optics 015002-6 January 2014 • Vol. 19(1)

Asllanaj et al.: Radiative transfer equation for predicting light propagation in biological media. . .



The number of simulated photons with MC was 3 108 and
the computational time was 112 min for this case. The computa-
tional times required by the MFVM were, respectively, 31 min
(mesh 1), 80 min (mesh 2), and 131 min (mesh 3).

3.3 Two-Layered Medium (Case 3)

A two-layered medium having a relatively thin first layer of
thickness 0.1 mm and a second layer of thickness 0.9 mm is
studied. The boundaries of the medium are assumed to be trans-
parent. The values of optical properties of the medium are shown
in Figs. 2(b) and 6. In Fig. 6, the steady-state spatially resolved
reflectance (at x ¼ 0 mm) are presented for three different
absorption coefficients of the first layer (μa1 ¼ 0.01, 1, and
10 mm−1). As expected, the reflectance decreases when the

absorption coefficient of the first layer increases. The results
show a good agreement between the numerical solution given
by the MFVM and the MC solution.6 The relative differences
between the two solutions are higher for μa1 ¼ 10 mm−1 and
lie between 0 and 5% [Fig. 6(b)]. For the two other absorp-
tion coefficients of the first layer, the relative differences are
globally <2%.

3.4 Results in the Time Domain (Case 4)

The last test case was chosen to evaluate the performance in the
time domain of the numerical scheme of the RTE. The optical
properties of the homogeneous medium and the boundaries of
the medium are the same as in case 1. The Courant-Friedrich-
Levy (CFL) condition needs to be satisfied, namely,
Δt ≤ ðn∕cÞΔsmin, where Δsmin is the size of the smallest cell
of the spatial mesh.13 In other words, since a light beam always
travels with a velocity c∕n corresponding to the speed of light in
the medium, the traveling distance between two consecutive
time steps should not exceed the size of the smallest cell.
The CFL condition was satisfied in our simulations by setting
Δt ¼ 0.01 ps for mesh 3. As initial condition (t ¼ 0), there is no
light (or photons) in the medium before light impingement. At
subsequent times, the bounding surface of the medium at x ¼
0 mmwas illuminated with a perpendicular collimated Gaussian
beam in space and in time.

ϒðy; tÞ ¼ ϒ̃ðyÞϒ̂ðtÞ for t ≥ 0; (15)

where ϒ̃ is given by Eq. (14), and

ϒ̂ðtÞ ¼ 1

ϵt
ffiffiffiffiffi
2π

p exp

�
−
ðt − tcÞ2
2ϵ2t

�
for t ≥ 0; (16)

where tc is a constant positive time value. For the simulations
presented further, ϵy ¼ 0.3 mm, ϵt ¼ 5 ps, and tc ¼ 25 ps.
The curves of time-resolved reflectance (at x ¼ 0 mm) are
presented for different spatial positions, namely, y ¼
0.5; 1.5; 2.5; 3.5; 4.5 mm (Fig. 7). A close shape of the
Gaussian pulse in time [Eq. (16)] is found. The curves of reflec-
tance decrease with the increase of y-coordinate due to the light
propagation. An agreement between the MFVM-RK4 and MC
solutions can be seen in Fig. 7(a). However, the relative
differences in the time domain are higher than in the steady
state. The relative differences increase with the y-coordinate
and for long times. They are related to the time discretization
error of the RTE but also to the statisical error in the MC
simulation.

The number of simulated photons with MCwas 4.1 · 107 and
the computational time was 148 min. The computational time
required by the MFVM-RK4 to carry out 7000 iterations (direct
solution in the time domain) was approximately five days.

Fig. 7 Time and spatially resolved reflectance (case 4).

Fig. 8 Projection of integration points i f ðf ¼ 1;2;3Þ in a specific Ω
direction and a ðP1; P2; P3Þ reference triangle.

Fig. 9 Computation of integrals along the optical path ðuf − i f Þ.
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4 Conclusion
An MFVM for predicting light propagation within 2-D absorb-
ing and highly forward-scattering medium subjected to a colli-
mated Gaussian light beam has been presented. The accuracy of
the MFVM has been examined by comparing the results with an
exact analytical solution of the RTE and the MC technique.
Numerical results for the spatially resolved reflectance and
transmittance over different situations (refractive index mis-
match with Fresnel reflection at the interface, homogeneous
and two-layered media) have shown that the MFVM yields
accurate results. In the steady state, relative differences of the
different solutions were found to decrease with spatial mesh
refinement obtaining <2.4% compared to analytical and MC sol-
utions. In the time domain, the RK4 has been used for the time
semi-discretization of the RTE. An agreement between the
MFVM-RK4 and MC solutions has been shown, but the relative
differences were found to be higher than in the steady state.

In our future work, we are interested to implement another
technique for the time semi-discretization of the RTE as recently
proposed in Ref. 33. The technique is based on solving the RTE
in the frequency domain at multiple modulation frequencies. It
has been reported by the authors that using the Fourier-series
representation of the radiance, the solution can be obtained
in the time domain with good accuracy and with significantly
fewer computational resources than are needed in the direct sol-
ution in the time domain. Moreover, the MFVM presented in
this paper will be extended to 3-D geometry for biomedical
applications, such as diffuse optical tomography for tumor diag-
nosis. Several aspects of parallel computing for 2-D/3-DMFVM
code will be explored to speed up the computation, such as the
multithreaded computation (the use of multiple cores present in
the same computer), the potential use of GPUs, and the larger
scale of parallelism making use of multiple computers in order
to manage larger and more complex problems. Our preliminary
studies on the parallel computing of the MFVM over direction
(in our simulations, typically 128 discrete directions were used)
show that we can expect significant gains in computing speed.

Appendix A: Projections and Linear
Interpolations
To simplify, a notation was introduced: A⇐B means point A is
upstream from point B. A specific Ω direction of light and a
reference triangle denoted by J ¼ ðP1; P2; P3Þ with
P1⇐P2⇐P3 are considered (Fig. 8). ΔPlðl ¼ 1; 2; 3Þ are the
planes orthogonal to the Ω direction and that pass, respectively,
by Pl. The ilðl ¼ 1; 2; 3Þ integration points are related to the J
triangle.

Except in particular cases such as boundaries of the medium
(see Ref. 30 for the details), points u1 and u2 are always built in
the same way. The if ðf ¼ 1; 2Þ integration points are projected
on lines perpendicular to the Ω direction and located upstream
from points i1 and i2, the lineΔP1 in the case of points u1 and u2
(Fig. 8). The point u3 is the intersection point, located upstream
from i3, between the Ω direction and the first side met of an
element of J . Thus, only two cases can arise: u3 is on the
line ðP1; P2Þ or it is on the line ΔP1. In our case, radiances
at points uf are approximated by linear interpolation with the
values of the closest upstream nodes. The reader is referred
to Refs. 20 and 30 for details about this method.

Appendix B: Evaluation of the Integral Terms
Along an Optical Path
Let Σ and Σ̄ be two triangles that have Piði ¼ 1; 2; 3Þ and
Piði ¼ 1; 2; 4Þ, respectively, as vertices (Fig. 9).

The spatial discretization of the transport term of the radiance
leads to the computation of the integrals given below.

J1 ¼
Z

if

uf

μtðsÞds; J2 ¼
Z

if

s
μtðs 0Þds 0

with s ∈ ðuf; ifÞ;

J3 ¼
Z

if

uf

μsðsÞ exp
�
−
Z

if

s
μtðs 0Þds 0

�
ds;

where s is the curvilinear abscissa along the optical path
between the points uf and if in the specific Ω direction of
light (Fig. 9). The computation of J1, J2, and J3 requires knowl-
edge of functions μs and μt along this optical path, but these
functions are only known at nodes of the mesh Piði ¼
1; 2; 3; 4Þ. Let μt;i ¼ μtðPiÞ ði ¼ 1; 2; 3; 4Þ, μt;uf ¼ μtðufÞ,
and μt;if ¼ μtðifÞ. Then, μt;if is approximated by a linear inter-
polation using the value of μt at the three vertices of Σ. In the
same way, μt;uf is approximated using the value of μt at the three
vertices of Σ̄. Let if be the point (belonging to Σ) of coordinates
ðxif ; yif ; μt;if Þ. Similarly, let Piði ¼ 1; 2; 3Þ be the point of coor-
dinates ðxi; yi; μt;iÞ ði ¼ 1; 2; 3Þ. Then, if belongs to the plane
ðP1; P2; P3Þ if and only if

ðP1P2 ∧ P1P3Þ · P1if ¼ 0 ⇔ detðP1P2; P1P3; P1ifÞ ¼ 0

⇔

�������
x2 − x1 x3 − x1 xif − x1
y2 − y1 y3 − y1 yif − y1
μt;2 − μt;1 μt;3 − μt;1 μt;if − μt;1

�������
¼ 0:

Then, an approximate value of μt;if can be deduced:
μt;if ≅ aifμt;1 þ bifμt;2 þ cifμt;3, with

aif ¼ 1þ ðyif − y1Þðx3 − x2Þ þ ðxif − x1Þðy2 − y3Þ
C1

bif ¼
ðxif − x1Þðy3 − y1Þ − ðyif − y1Þðx3 − x1Þ

C1

cif ¼
ðyif − y1Þðx2 − x1Þ − ðxif − x1Þðy2 − y1Þ

C1

C1 ¼ ðx2 − x1Þðy3 − y1Þ − ðy2 − y1Þðx3 − x1Þ:

The point uf (which belongs to Σ̄) is approximated in the
same way.

By using the previous relations and the numerical integration
with the midpoint rule, it follows that

J1 ≅
ðμt;if þ μt;uf Þ

2
Δsf with Δsf ¼ jif − ufj: (17)

Changing uf by s in Eq. (17) and using the approximation
μt;s ≅ f½ðμt;if þ μt;uf Þ�∕1g, it follows that
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J2 ≅
ð3μt;if þ μt;uf Þ

4
jif − sj: (18)

Finally, from Eqs. (17) and (18), one obtains

J3 ≅
2ðμs;if þμs;uf Þ
ð3μt;if þμt;uf Þ

�
1− exp

�
−
ð3μt;if þμt;uf Þ

4
Δsf

��
: (19)

Appendix C: Refractive Index Mismatch
The real part of the complex refractive index of the medium and
the outside medium (air) are denoted as n and nout, respectively.
Partial reflection of light at the medium–air interface is caused
by the refractive index mismatch of both media, and the fraction
of reflected light is given by the directional reflection coefficient
ρ. For a semitransparent interface illuminated by an external
light source ϒ, the partly reflecting boundary specifies the radi-
ance as the sum of two contributions.19,34

ψðs;Ω; tÞ ¼ ½1 − ρðΘÞ�ϒðs;Ω; tÞ þ ρðΘÞψðs;Ωinc; tÞ
for Ω · n > 0;

(20)

where Ω is the specular reflection of Ωinc∶Ωinc ¼
Ω − 2ðΩ · nÞn. The angle Θ satisfies cosΘ ¼ Ωinc · nout > 0,
where Θ is the angle between two directions and nout is the
local unit outward normal vector. The directional reflection
ρðΘÞ is given by Snell-Descartes laws. Considering that n2 ≪
k2 (n; k being the real and imaginary parts of the complex refrac-
tive index, respectively)

ρðΘÞ ¼
�

1
2

�
cosΘ−nrRðΘÞ
cosΘþnrRðΘÞ

�
2

þ 1
2

�
nr cosΘ−RðΘÞ
nr cosΘþRðΘÞ

�
2

ifΘ < Θcrit

1 otherwise

;

(21)

with RðΘÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − n2r sin2 Θ

p
, and nr ¼ ðn∕noutÞ is the relative

refractive index between the two media. The critical angle
satisfies Snell’s law: sinΘcrit ¼ n−1r . In our application,
nout ¼ 1, nr ¼ n ¼ 1.4, and Θcrit ¼ 45.58 deg. In the particular
case of the collimated direction (Θ ¼ 0 deg), ρðΘÞ ¼ 0.0278.
The outgoing flux at the semitransparent bounding surface of
the medium is

Qoutðs; tÞ ¼
Z
nout ·Ω 0>0

½1 − ρðΘ 0Þ�ψðs;Ω 0; tÞðΩ 0 · noutÞdΩ 0

with cos Θ 0 ¼ Ω 0 · nout:

(22)

To solve the RTE with the boundary condition [Eq. (20)], it is
necessary to know, as preliminary at time tk (respectively, at iter-
ation k in the steady state), the radiance in the specific Ωinc
direction. In our case, this radiance was changed by the same
one computed at the previous iteration k − 1 since the values
are known at time tk−1 (respectively, at iteration k − 1 in the
steady state). The convergence criterion was related to a relative
difference dealing with the values of the outgoing flux at the
bounding surface of the medium. In all results presented further,
the iterations have been achieved with a relative difference that
does not exceed a prescribed tolerance set to 10−5.
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