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1 Introduction
One of the main focuses of modern biomedicine is the develop-
ment of supersensitive and high-throughput methods for rapid
detection of proteins and genes as well as visualization of bio-
markers and drug carriers in biological material.1–3 The most
widespread method of recognition of biomarkers and study of
cellular interactions is visualization by means of fluorescence.
However, a variety of complications exist in the tracking of fluo-
rescent markers in the biological environment. Most of the fluo-
rescent markers are excited by ultraviolet or visible radiation and
emit in the visible spectral range. However, in this spectral
range, biological tissue absorbs and emits light strongly.1–3

Therefore, illumination of the biological material in this range
induces fluorescence of the living tissue (autofluorescence),
which is caused by natural fluorophores (tryptophan, phenylala-
nine, tyrosine, collagen, flavins and flavoproteins, beta-carotene,
porphyrins, nucleic acids, coenzymes, vitamins, pigments and
so on4). The spectrum of the autofluorescence is the result of
superposition of fluorescence bands of fluorophores, vastly
complicating the observation of cellular processes and the
tracking of the fluorescent markers.

Currently, there are two major approaches to overcome the
problem of background fluorescence:

(1) synthesis of new biomarkers with minimum overlap of
their emission spectra with the background fluorescence2–25

and (2) development of advanced experimental techniques per-
mitting one to decrease the background signal.26–34

Intense work is being carried out on the search for and syn-
thesis of nanoparticles with optimal properties for biological
applications as biomarkers, absorbents, and drug carriers.2–5

The existing biomarkers have several drawbacks. Molecules of
organic dyes have a high intensity of luminescence per mass unit
but they are not suitable for long-term in vitro and in vivo control
because of fast photobleaching and cellular toxicity.6 Even dyes
with improved properties, created, for example, by combinato-
rial organic synthesis,7 are not photostable.

In comparison with organic probes, semi-conducting quan-
tum dots have a few major advantages:8,9 high quantum yield
and photostability, broad excitation range, and narrow emission
band with the emission maximum strongly depending on the
size of the quantum dot. The drawbacks include cytotoxicity,
which is still debated, and luminescence blinking.8,9

Promising materials for optical imaging are fluorescent car-
bon nanoparticles such as nanodiamonds (NDs),10–16 carbon
dots/graphene oxides (CD/GO),17–19 and nanodiamonds deco-
rated with carbon dots (CD-D-ND).20 Apart from outstanding
photostability and high quantum efficiency, CDs and NDs have
poly-functional surfaces which can be modified to address spe-
cific needs. Methods of coating carbon nanoparticles with poly-
mers or mesoporous silica shells have been developed. These
coatings improve biocompatibility and decrease the toxicity of
the particles while preserving their fluorescence properties.21–25

A drawback of the carbon nanoparticles is a broad emission
band overlapping with the autofluorescence, which does not
provide the required contrast in particles imaging.

Thus, despite significant progress in the synthesis of new
nanoparticles for biological applications, a big challenge
remains in the development of nontoxic imaging probes provid-
ing a highly reliable visualization in combination with a pro-
nounced therapeutic effect.

Most of the methods of optical imaging are based on optical
microscopy.26–30 Confocal laser scanning microscopy (CLSM)
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is a commonly used tool that provides morphological and func-
tional information within cells and tissues.28,29 It was shown that
the unique capabilities of CLSM such as the ability to detect
fluorescence, three-dimensional (3-D) image reconstruction,
and use of the reflection mode in tandem with other methods,
provide great promise with broad applications for the visualiza-
tion of various nanoparticles such as quantum dots, fullerenes,
dendrimers, for example, at their penetration into the surface of
the skin. It was shown that multiphoton excitation microscopy
has advantages over conventional one-photon imaging micros-
copy and can be used as a modern noncontact tool for 3-D fluo-
rescence imaging and optical diagnostics.31,32

For visualization of markers within tissue, the capability of
metal nanoparticles to generate plasmons while interacting with
an electromagnetic field is widely used.33,34 Thus, a dark-field
microspectroscopy technique for molecular imaging of live cells
using antibody-labeled plasmonic nanoparticles was demon-
strated.33,34 Experiments have shown that the accuracy of the
visualization is influenced both by interactions of the nanopar-
ticles with biomacromolecules and by the interactions of inter-
particle plasmons.

Rapidly developing methods of visualization of nanopar-
ticles in biological tissues include photoacoustic high-resolution
imaging35,36 and high-sensitivity real-time radiometric imaging
of nanoparticles with surface-enhanced Raman scattering.37,38

One of the approaches to solve the problem of autofluores-
cence suppression is the synthesis of new nanoparticles called
upconversion nanoparticles (UCNPs).39–41 These particles have
improved luminescence properties (the emission/excitation
power ratio39). UCNPs properties allow strong suppression of
background signals (excitation light back-scattering and biologi-
cal tissue autofluorescence). Currently, UCNPs particles are
among the most promising for bionanomedicine.

Together with the microscopy technical capabilities, methods
of image processing are also being developed. Recent progress
in the 3-D single particle tracking is summarized in the review
by Dupont and Lamb.42 A modified version of the original
orbital tracking in which the intensities from two z-planes are
simultaneously measured is demonstrated. The precision of sin-
gle particle tracking is ∼5 nm in the x-y plane and ∼7 nm in the
axial direction.

Now, methods of background-free fluorescence based on
fluorescence modulation by electromagnetic or magnetic fields
combined with image subtraction are actively being developed.
Igarashi et al.43 improved the image contrast of fluorescent NDs
(FNDs) in vitro as well as in vivo based on the spin property of
the NV– center. The authors acquired wide-field fluorescence
images with and without microwave irradiation in resonance
with the crystal-field splitting (2.87 GHz) of the ground-state
spin, and then performed subtraction between these two images
pixel by pixel. As the alternative microwave irradiation modu-
lated only the fluorescence intensity of the NV– center, the oper-
ation effectively removed background autofluorescence signals
and significantly improved the image contrast. Similarly, Hegyi
and Yablonovitch44 applied the optically detected magnetic res-
onance technique to image FNDs in tissue in the field-free
region using an amplitude-modulated microwave source. More
recently, Sarkar et al.45 utlized a modulated external magnetic
field to achieve contrast enhancement of FNDs in vivo. The
magnetic field mixes the spin levels at the ground state, resulting
in modulation of the FND fluorescence. As a demonstration of
the potential translational relevance of the work, where unique

improvements to imaging efficiency were observed, this tech-
nique improved the image contrast by nearly two orders of mag-
nitude, allowing for wide-field imaging of FNDs in sentinel
lymph nodes of mice.

Thus, the problem of optical imaging of nanoparticles or
cells in biological tissues is currently being solved by synthesis
of novel nanoparticles or nanocomposites and their optimization
and through improvement of advanced equipment and methods
of image processing. At the same time, in all the methods under
development, there remains a problem of accounting for inter-
actions between nanoparticles and biomaterial, requiring inten-
sive study.

In this paper, a new approach to solve the inverse problem of
separation of the fluorescent signal of nanoparticles from the
background autofluorescence is proposed based on artificial
neural networks (ANNs).46 ANNs represent powerful data
analysis algorithms which provide an efficient solution of
inverse problems and problems of pattern recognition, including
those in optical spectroscopy.46–50 Artificial intelligence tech-
niques are practically used in all fields of bioinformatics,47 since
there are no universal methods of data processing comparable to
the efficiency of human intellectual potential. It is very prom-
ising now to use ANN for the solution of such problems as a
method for classification of proteins, selection of genome frag-
ments, recognition of signal peptides and transmembrane heli-
ces, and so on.51 In Refs. 52 and 53, the method of breast cancer
diagnosis based on ANN classification was proposed. The
inverse problem of autofluorescence recognition of cell culture
and cancer cells was solved. Total synchronous fluorescence
spectra of normal skin, nevus, and melanoma samples were used
as input for training the ANNs. Two different types of ANNs
were trained, the self-organizing map and the feed-forward neu-
ral network. Histopathology results of investigated skin samples
were used as the important standard for network output. Based
on the obtained classification success rate of neural networks,
Dramićanin et al.52 concluded that both networks provided
high sensitivity with classification errors between 2% and
4%. Despite the extremely wide application of pattern recogni-
tion methods in biomedicine, to the authors’ knowledge, this
paper is the first application of these methods for detection
of the fluorescence of nanoparticles in the presence of back-
ground autofluorescence.

In the current paper, the method was elaborated for selected
fluorescence nanoparticles––CDs17 and nanodiamonds and
using a particular biological object—chicken egg white. Proof
of concept of fluorescence biomarkers visualization in biologi-
cal media using neural network algorithms was demonstrated.
The minimum concentration of nanoparticles that can be reli-
ably detected in the presence of autofluorescence background
using ANN was determined. Ways to improve the sensitivity of
the ANN method at solving the above inverse problem are also
discussed.

2 Experimental

2.1 Carbon Nanoparticles and Their
Characterization

In this study, nano-graphene oxide (NGO) particles17 and det-
onation nanodiamond G01 (PlasmaChem, Germany) were used.
NGO nanoparticles were synthesized by oxidizing nanographite
in a 3∶1 sulfuric to nitric acids mixture at a temperature of
130°C. The reaction supernatant was collected by removing the
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graphitic carbon residue by centrifugation. The supernatant was
neutralized by the addition of sodium hydroxide. The neutral-
ized solution was dialyzed for 2 days against water.17 Below,
they are called CD.

Nanodiamonds G01 were prepared by controlled dry detona-
tion synthesis followed by purification. The bulk powder density
of the sample was 0.69 g∕cm3, the primary particle size was
about 4 nm.

Bidistilled deionized water was used for the preparation of
aqueous suspensions of carbon nanoparticles. Aqueous suspen-
sions of CD with a concentration of 0.1 g∕l and aqueous sus-
pension of ND with a concentration of 1 g∕l were prepared.
Suspensions were treated for 2 h in an ultrasonic bath (Bandelin
Sonorex rk 31).

Measurements of the sizes of CD and ND in water suspen-
sions were carried out by the method of dynamic light scattering
using correlator-goniometer systemALV-CGS-5000/6010 (Langen,
Germany), equipped with a He-Ne laser (at a wavelength of
633 nm, output power 20 mW). For numerical processing of
the correlation functions, the software package CONTIN was
used. Measurements showed that the majority of the CD par-
ticles in water had dimensions of 6 − 9 nm, and 88% of the
ND particles in the suspension had a size of 35 nm.

2.2 Biological Media

As a biological media, chicken egg white was chosen. This
choice is justified by the fact that delivery of nanoparticles
directly into the cell is provided, as the whole egg white is a
single cell. Also the choice is associated with representative
natural fluorophores in the egg white.

In subsequent experiments, in order to improve the reliability
of the trained neural network toward changes in biological
objects, egg whites of different stages of development and from
different vendors were used.

2.3 Quantum Efficiency and Photostability of
Carbon Nanoparticles

For the use of fluorescence nanoparticles in biological applica-
tions, high quantum yield, photostability and low toxicity are
required.

2.3.1 Quantum yield of fluorescence of carbon
nanoparticles

The fluorescence quantum yield is a critical parameter in select-
ing a material as a biomarker.

In this paper, the fluorescence quantum yields of CD and ND
were measured by a standard method relative to a reference dye
quinine sulfate. The absorption spectra of the aqueous suspen-
sions of CD and NDwere recorded by spectrophotometer Perkin
Elmer Lambda 25 in the range 200 to 900 nm with a resolution
of 0.5 nm. Spectra of fluorescence of suspensions were recorded
by fluorimeter FluoroMax-4 (Horiba Jobin Yvon). The obtained
fluorescence spectra were corrected for absorption. The mea-
sured values of the quantum yields of CD and ND are 3.07% (at
a wavelength of 405 nm) and 0.47%, respectively.

Previously, neural network algorithms were tested by us to
separate the fluorescence signal of the CD from background
autofluorescence.54 In this paper, it is shown that ANN provides
much greater sensitivity of detection of the fluorescent signal:
using neural network algorithms, a method of recognition of

fluorescent nanoparticles with a much lower quantum efficiency
was elaborated (the quantum yield of detonation nanodiamonds
is 6.5 times lower than the quantum yield of CD).

2.3.2 Photostability of aqueous suspensions of carbon
particles

We carried out a comparative analysis of the temporal stability
of the fluorescence of water suspensions of CDs, the typical det-
onation ND, and organic dye Alexa Fluor 488 with the same
concentration, 0.3 g∕l.

A cuvette with a suspension of nanoparticles was fixed in the
cell holder and constantly exposed to laser radiation (argon
laser, at a wavelength of 488 nm, power density in cuvette
about 10 W∕cm2 in a defocused beam) for 2 h. Spectra were
measured every 15 min in the spectral range 500 to 800 nm
using a photomultiplier tube (PMT) (Hamamatsu, H-8259-01)
in photon counting mode. The geometry of the experiment
and the experimental conditions were exactly the same for all
samples. Spectra were corrected for laser power, data acquisition
time, sensitivity of the PMT, and absorption of samples.

Figure 1 shows the dependence of the integral intensity of the
fluorescence of the studied suspensions as a function of irradi-
ation time. The experimental results clearly demonstrate the
advantages of photostability of carbon nanoparticles as com-
pared with the organic dye.

3 Fluorescence Spectroscopy of Biological
Objects with Carbon Nanoparticles Ion

3.1 Laser Spectrometer

Fluorescence and Raman signals from aqueous suspensions of
nanoparticles and biological objects containing nanoparticles
were excited by a diode laser (at a wavelength of 405 nm, power
incident on the sample ∼50 mW). Spectra were recorded by
PMT (Hamamatsu, H-8259-01) in the range 430 to 750 nm. The
practical spectral resolution was 0.5 nm. The temperature of the
samples was stabilized at 22.0� 0.1°C. Spectra were corrected
for the laser power and data acquisition time. Further, mathematical
data processing consisted of the subtraction of the background
caused by light scattering in the cuvette with the sample and

Fig. 1 Dependence of the integral fluorescence intensity of carbon
dots (CDs), nanodiamonds (NDs) and dye Alexa Fluor 488 as a func-
tion of time of the laser irradiation of the suspensions.
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normalization of the obtained spectra by the area under the
Raman valence band of water.

3.2 Analysis of the Fluorescence Spectra of Egg
White with Introduced Carbon Nanoparticles

Figures 2 and 3 show Raman and fluorescence spectra of egg
white, water suspensions of CD and ND, and egg white with
introduced nanoparticles. The relatively narrow band near
470 nm is the Raman valence band of OH-groups either of water
or of biological media (percentage of water in the egg white is
about 85%) under excitation at a wavelength of 405 nm. This
band is caused by the valence vibrations of molecular OH-
groups (wavenumber of this band maximum is 3400 cm−1 and
width is about 400 cm−1).

The spectrum of autofluorescence of egg white in the studied
range consists of several bands: an intense broad structureless
band in the range 430 to 730 nm with a maximum at 480 nm,
and weaker bands with maxima at 640 nm, 655 to 660 and
675 nm. It is known4 that the basic fluorescence band of egg
white is formed by the fluorescence contributions of pyridoxine,
NADF, flavins, and lipo pigments. Weak fluorescence bands

near 640 to 670 nm are caused by the fluorescence of
porphyrins.

As seen from Figs. 2 and 3, when excited at a wavelength of
405 nm, CDs exhibited fluorescence in the spectral region
between 430 and 680 nm with a maximum near 500 to
505 nm, while NDs emit in the region 430 to 680 nm with a
maximum near 520 to 525 nm. Egg white emits in the region
420 to 700 nm with a maximum which varies for different eggs
within 480 to 520 nm (see below). Thus, the fluorescence spec-
tra of nanoparticles and egg white are largely overlapping struc-
tureless bands. They differ in the position of the maximum and
the position and extent of the fluorescence spectral bands. These
characteristics are the basis for the extraction of the fluorescent
signal of the nanocarbon particles.

Obviously, if the concentration of nanoparticles in the egg
white changes, the band of the integral fluorescence varies sig-
nificantly for several reasons. The main reasons are as follows:
(1) when the concentration of nanoparticles changes, the inten-
sity of the fluorescence of individual particles changes and
(2) due to the interactions of CD and ND with components of
the egg white, both the fluorescence of the egg white and that of
nanoparticles change. These interactions are very complex and
still not well understood in part because the carbon nanoparticles
have been relatively recently synthesized. Using conventional
methods, it is impossible to construct a mathematical model
of the change of the overall fluorescence of an egg white and
nanoparticles as a function of their concentrations (for example,
during movement of nanoparticles in biotissue). This means that
traditional mathematical methods cannot solve either the direct
problem of spectra modeling, or the inverse problem of
extracting the fluorescent contribution of varying amount of
nanoparticles against a background fluorescence of egg
white. Therefore, the algorithms of ANNs have been used.

4 Artificial Neural Networks

4.1 Multilayer Perceptron

In this study, we use the most widespread type of ANNs such as
the multilayer perceptron (MLP). The elementary unit used to
construct a MLP is a so-called formal neuron, a unit with several
inputs and a single output. Each of the inputs is characterized by
its own weight coefficient, wj. The value y at the output of a
neuron is calculated as a weighted sum of the values xj at its
inputs, put through a nonlinear function F called activation
function:

y ¼ F

 XN
j¼0

wjxj

!
; x0 ≡ 1: (1)

Now, identical neurons, different only by their weights, are
combined into blocks, which are used to create layers. Each neu-
ron is connected with each of the neurons in the preceding and
the next layers (fully connected scheme) (Fig. 4). The signal is
fed, according to Eq. (1), from the input of the first layer of the
MLP to the output of the last one.

The first layer of an MLP is called the input layer, as it is used
to feed data into the MLP, and serves as the input for the whole
network. There are as many neurons in the input layer as there
are features describing each of the processed data samples. The
neurons of the input layer perform no calculations; they simply
distribute the input signal to all the neurons of the next layer.

Fig. 2 Raman and fluorescence spectra of water, egg white, aqueous
suspensions of CD and egg white containing CD.

Fig. 3 Raman and fluorescence spectra of water, egg white, aqueous
suspensions of ND and egg white containing the ND.
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The last layer of an MLP is called the output layer; it serves as
the output of the whole network. There are as many neurons in
the output layer as there are values that are to be simultaneously
determined for each data sample. One or several layers between
the input and the output layers are called hidden layers. The
numbers of neurons in the hidden layer(s) determine the com-
plexity of the network; it can be estimated by some half-empiri-
cal equations, but often it is determined by trial and error.

When the MLP is applied, its output depends on the values of
the weight coefficients w (1). Hence, to provide correct answers
for an MLP, it should be trained prior to its application. This is
done by analyzing the answers of the MLP on the samples of the
training set of data, for which the correct (desired) answers are
known, with subsequent tuning of the weight coefficients. The
goal of training is to minimize the average error of the MLP over
the training set by changing the values of the weight coefficients
of all the neurons. Most often this is performed by the so-called
error backpropagation algorithm, which performs gradient
descent in the space of weight coefficients.46

4.2 Use of Artificial Neural Networks to Solve
Inverse Problems

Application of ANN for solving inverse problems of optical
spectroscopy is possible using three approaches: “model,”
“quasi-model,” and “experiment-based.”48

In the “model” approach to obtain a learning sample for
ANN training, one applies an existing analytical or computa-
tional model of the solution of the direct problem. In the pres-
ence of such a model, it is possible to provide the required
representativity of all the datasets necessary for ANN training
(description of the necessary datasets into which the total learn-
ing sample should be divided is provided in Sec. 5.3). However,
the quality of solution in this case depends on the adequacy of
the model used. In situations where the development of an
adequate model is impossible because of the complexity of
the object, this approach is not feasible.

In the “quasimodel” approach, in order to obtain representa-
tive datasets, simulated spectra are used. Unlike the “model”
approach in which the data for the learning sample are calcu-
lated according to the known analytical expression describing
the spectra, in the “quasimodel” approach, first a parametric
“quasimodel” describing the spectra on the basis of a small set
of experimental data is constructed, and then it is used to com-
pute the data for the learning sample. Obviously, in this way, a
sufficient number of patterns can be obtained providing a good
representativity of all sets for ANN training. However, the accu-
racy of solving the inverse problem with the “quasimodel”
approach largely depends on two factors: (1) the error of the
“quasimodel” used for the calculation (i.e., correspondence of
the selected or calculated “quasimodel” with reality) and
(2) differences of the noise in calculated patterns and the noise
in real experimental data.

In the “experiment-based” approach, experimental data are
used to train the neural network. The disadvantage of this
approach is the low representativity of sets because getting a
very large amount of experimental material is very time consum-
ing. The main advantages of this approach include: training neu-
ral network directly on the experimental data taking all
molecular interactions into account, and the fact that the net-
work is trained on real experimental noise, which increases the
accuracy of the solution of inverse problems.

As was mentioned above, a problem of recognition of the
nanoparticles’ fluorescence in the presence of the background
fluorescence of egg white cannot be solved based on the
“model” approach due to the lack of a correct analytical descrip-
tion of the fluorescence spectra of nanoparticles and the egg
white. In addition, because the object of the study is a living
biological material and its state can vary significantly with time,
it is especially important to train the ANN on real signals of
objects containing noise. Thus, in this paper, the inverse prob-
lem was solved by ANN in the framework of the “experiment-
based” approach.

5 Results and Discussions

5.1 Experimental Learning Sample for Artificial
Neural Networks

Two series of Raman and fluorescence spectra were obtained for
two different egg whites containing CD. The CD concentration
varied in the range from 0 to 20 μg∕ml with increments of 0.75
and 1.5 μg∕ml. Three series of three egg whites containing ND
were obtained. The concentration of ND varied from 0 to
30 μg∕ml with increments of 1, 1.5, and 3 μg∕ml.

To improve the stability of the solution relative to the bio-
logical object model, different series of spectra were recorded
with different egg whites. As seen from Fig. 5, such an approach
is justified since the fluorescence spectra of different egg whites
are significantly different. At that position and shape of integral
fluorescence band of pyridoxine, NADF, flavins, lipo pigments
(430 to 730 nm), and band of porphyrins (640 to 670 nm) remain
practically unchanged.

Figure 6 shows examples of the experimental Raman and
fluorescence spectra of egg whites with different concentrations
of nanoparticles. As seen from Fig. 6, the water Raman valence
band (in the region 470 nm) and fluorescence bands of porphyr-
ins (bands near 640 to 670 nm) practically do not change while
the fluorescence contribution of CD in the integral fluorescence

Fig. 4 Multilayer perceptron.
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band in the region 430 to 600 nm changes. The obtained datasets
for CD and ND were used for the training of ANN.

5.2 Preliminary Processing of Input Data

The considered problem in its original formulation is character-
ized by an extremely unfavorable ratio of the number of patterns
in the training set (30 to 45) and the number of input features
(651 points–wavelengths of spectra). Therefore, an important
area of research is the use of algorithms to reduce the input
dimensionality of the problem, i.e., to reduce the number of
input features.

Previous studies made by the authors of this work55 showed
that one of the most effectiveways to reduce the dimensionality of
the spectroscopic data is the aggregation of the channels of a spec-
trum. Newly generated features represent the sum of the inten-
sities in several adjacent channels of the spectrum. Apart from the
possibility of improving the quality of the problem solutions, this
approach, if successful, may allow the use of much less expensive
equipment with a significantly lower spectral resolution.

In this paper, two methods have been explored in order to
decrease the dimensionality of the input data: channel aggrega-
tion, and selection of the most significant features based on the

standard deviation of the values in a channel, proportional to the
amount of information contained in that channel.

These studies are important not only from the viewpoint of
increasing the sensitivity of the method, but also from a practical
point of view. Thus, the aggregation of every four channels cor-
responds to a coarsening of the spectral resolution of the regis-
tration devices by four times (from 0.5 to 2 nm). The spectral
range of registration is usually chosen in a way to include the
entire bands of interesting objects. Discarding insignificant
input features allows one to select the most informative region
of the spectra and to use the device with registration in the more
narrow spectral range.

5.3 Results of Using Artificial Neural Networks

For the correct realization of the “experiment-based” approach
to ANN training, the learning sample containing the experimen-
tal data must be divided into three datasets: training, test, and
examination. The training set is used for actual ANN training;
the test set—for periodic testing of the network during the learn-
ing process in order to determine the moment of termination of
the training and to prevent network overtraining; the examina-
tion set—to check the quality of the network on an independent
dataset. In this paper, this partitioning was carried out randomly
in the ratio of 70∶20∶10 (training-test-examination). As a result,
for the spectra of egg white containing CD, the partitioning of
31∶8∶4 (total 43 patterns) was obtained, and for the spectra of
egg white with ND–45∶12∶6 (total 63). For an unbiased evalu-
ation of the quality of the networks, averaging over 10 random
partitionings was conducted for each type of dimensionality
reduction of the input data.

To solve this problem, we used a three-layer perceptron (with
10 neurons in the single hidden layer), trained by the error back-
propagation algorithm46 with the following parameters: the
hyperbolic tangent transfer function in the hidden and output
layers, learning rate 0.01, moment 0.5, the initial dispersion
of weights 0.3, random order of presentation of patterns, and
stop after 100,000 training events after the minimum of the aver-
age error on the test dataset. The software package NeuroShell
256 was used for all calculations.

Tables 1 and 2 show the best results of ANN applied to exami-
nation sets for different experimental series, for various partition-
ings into training, test, and examination sets, and after averaging
over 10 partitionings, for the original dataset and after the use of
the methods of dimensionality reduction for the space of input
features. As seen, the error on the examination set for the initial
array of data for CD is on the average 2.2 μg∕ml, and for
ND–4 μg∕ml. The high value of the coefficient of multiple deter-
mination R2 should be noted. It indicates effective ANN training.

As seen from these results, both methods used to reduce the
dimensionality of input feature space decrease the error. In the
case of aggregation, significant features are concentrated in a
smaller number of channels without loss of representativity. In
the case of discarding insignificant features, the same principle
operates: the network is trained better when more information is
concentrated in fewer input features without loss of representa-
tivity. Table 1 shows the best results, which were obtained by
aggregation over four channels. However, the removal of unin-
formative channels turned out to be more effective. As a result,
the average error on the examination set decreased by one and a
half times.

The obtained results show that, on average, the error of deter-
mination of the concentration of nanoparticles in the studied

Fig. 6 One of the series of Raman and fluorescence spectra of egg
whites with different concentrations of introduced carbon dots.

Fig. 5 Fluorescence spectra for different egg whites: a, b, c—egg
whites from different vendors; d—egg white after 3 weeks.
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volume on the examination set for CD is half as much as for ND.
It was expected since, first, the quantum yield of CD for the used
excitation wavelength (405 nm) is approximately 6.5 times higher
than the quantum yield of ND. Second, the size of ND
is several times larger than the size of CD, which causes more
intense scattering of light by nanoparticles, and this, in turn,
can introduce an additional error in the registration of the spectra.

Thus, the results of the use of ANN showed the principle
possibility of solving the problem of separation of the fluores-
cent contribution of carbon nanoparticles from the background
autofluorescence. After reducing the dimensionality of the input
data feature space, the attained accuracy of determination of the
concentration (on examination set) in the studied volume is up to
2 μg∕ml for CD and 3 μg∕ml for ND, which is also equal to the
minimum detectable concentration of nanoparticles.

5.4 Prospects of the Proposed Method

In this study, the successful detection of fluorescent nanopar-
ticles in biological objects using ANN was demonstrated. The
presented method is fast, sensitive, inexpensive, and nondestruc-
tive. Obviously, in this case it is possible to operate with blood,
skin, subsurface vessels, lymph nodes, excretas, and cells in vivo
and in vitro. In our study, the suggested method was elaborated
for fluorescent nanodiamond particles and CDs. However, this
method can be also used to work with other fluorescent
nanoparticles having fluorescence spectra different from the
fluorescence spectra of natural biofluorophores, even to a
small degree. Note that the suggested method of using ANN

is very sensitive. It may provide good optical visualization
not only for nanoparticles having a strong fluorescence as a
result of some pretreatment (e.g., nanodiamonds after creation
of vacancies by electron bombardment or surface modification),
but also for nanoparticles with less intense fluorescent properties
(detonation nanodiamonds). In this paper, this can be seen from
the comparison of the results of ANN application for CD and
detonation ND.

As the elaborated method not only provides optical visuali-
zation of nanoparticles in biological tissue, but also allows an
estimation of their concentration, it can be used for monitoring
the distribution of nanoparticles in biomaterial and of their
excretion from the organism. This is especially important when
nanoparticles (e.g., nanodiamonds or nanocomposites based on
nanodiamonds) are used not only as fluorescent biomarkers, but
also as drug carriers.10,12,15,20,22,24 ANNs allow not only the
detection of the fluorescent signal of nanoparticles carrying
drugs or without drugs against the background of autofluores-
cence, but also the distinguishing of fluorescence spectra of
nanoparticles in both states. This means that the suggested
method is capable of providing all the necessary stages of a bio-
marker “job”: monitoring of address delivery, of drug release
degree, and of excretion of nanoparticles from the organism.

It should be noted that for each type of biomaterial and nano-
particles, it is necessary to obtain a new experimental database
and to retrain the ANN. However, such retraining is performed
only once, whereupon the trained ANN can be repeatedly used
to solve this specific problem, providing express solution of this
problem in real-time experiments.

Table 1 Results for average error on examination set for the best partitioning.

Type of preprocessing Number of features R2 on the training set
Average absolute error on
the examination set, μg∕ml

CD, 43 patterns; No preprocessing 651 0.9993 1.61

Partitionings Aggregation 163 0.9833 1.14

31∶8∶4 Selection 346 0.9525 0.70

ND, 63 patterns; No preprocessing 651 0.9948 2.41

Partitionings Aggregation 165 0.9954 1.04

45∶12∶6 Selection 330 0.9954 0.91

Table 2 Results of averaging over 10 different partitionings: mean ± standard deviation.

Type of preprocessing Number of features R2 on all patterns
Average absolute error on
the examination set, μg∕ml

CD, 43 patterns; No preprocessing 651 0.918� 0.021 2.2� 0.4

Partitionings Aggregation 163 0.935� 0.036 1.9� 0.5

31∶8∶4 Selection 346 0.925� 0.027 1.4� 0.4

ND, 63 patterns; No preprocessing 651 0.837� 0.106 4.0� 2.0

Partitionings Aggregation 165 0.832� 0.112 3.5� 1.6

45∶12∶6 Selection 330 0.910� 0.084 2.5� 1.0
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Unfortunately, so far it is impossible to obtain a fluorescence
signal from the deeper layers of the biological system. However,
the elaborated method can be also used for detection of signals
from deeper layers of bio-objects (for example, when x-ray
sources of excitation are used).

6 Conclusion
In this paper, the principle possibility of solving the inverse
problem of optical imaging – extraction of the fluorescence
of nanoparticles in the presence of background autofluorescence
of the biological environment using neural network algorithms
was demonstrated. It is shown that the used methods allow
detection of CD and ND fluorescence against a background
of the autofluorescence of egg white with a sufficiently low con-
centration for the detecting threshold (not more than 2 μg∕ml
for CD and 3 μg∕ml for ND). It was also shown that the use
of the input data compression by aggregation or selection of ini-
tial spectral channels can further improve the accuracy of solv-
ing the inverse problem by 1.5 times.

Some peculiar properties of the proposed method of imaging
nanoparticles in biological tissues should be noted.

1. In this paper, the successful application of ANN for
detection of nanoparticles in biological objects using
the fluorescent signal (i.e., for the case of fluorescence
spectroscopy, when only simple inexpensive equip-
ment is required) was demonstrated. The elaborated
method is fast, sensitive, inexpensive, and nondestruc-
tive. It has broad prospects in bionanomedicine.

2. An important advantage of using ANN is that the train-
ing of neural networks already takes all possible inter-
actions of nanoparticles with biomacromolecules into
account. Of course, each specific network is able to
work with only the specified object. For another bio-
object and other nanoparticles, new ANN training is
required using appropriate experimental sets.
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