
Incoherence-based optimal selection of
independent measurements in diffuse
optical tomography

Calvin B. Shaw
Phaneendra K. Yalavarthy



Incoherence-based optimal selection of independent
measurements in diffuse optical tomography

Calvin B. Shaw and Phaneendra K. Yalavarthy*
Indian Institute of Science, Supercomputer Education and Research Centre, Bangalore 560012, India

Abstract. An optimal measurement selection strategy based on incoherence among rows (corresponding to
measurements) of the sensitivity (or weight) matrix for the near infrared diffuse optical tomography is proposed.
As incoherence among the measurements can be seen as providing maximum independent information into the
estimation of optical properties, this provides high level of optimization required for knowing the independency of
a particular measurement on its counterparts. The proposedmethod was compared with the recently established
data-resolution matrix-based approach for optimal choice of independent measurements and shown, using
simulated and experimental gelatin phantom data sets, to be superior as it does not require an optimal regu-
larization parameter for providing the same information. © 2014 Society of Photo-Optical Instrumentation Engineers (SPIE) [DOI: 10

.1117/1.JBO.19.3.036017]

Keywords: diffuse optical tomography; image reconstruction; incoherence; data-collection strategy.

Paper 130850R received Nov. 28, 2013; revisedmanuscript received Jan. 28, 2014; accepted for publication Feb. 20, 2014; published
online Mar. 21, 2014.

1 Introduction
Near-infrared (NIR) diffuse optical tomography is an emerging
imaging modality with applications including breast cancer im-
aging1,2 and brain function assay.1,3 The interrogating medium in
diffuse optical tomography is NIR light in the spectral range of
600 to 1000 nm. A finite set of boundary measurements are
acquired in NIR tomography that in turn is used to reconstruct
the internal distribution of optical properties.4,5 The NIR light is
delivered through optical fibers and the transmitted light is col-
lected typically through the same fibers, which are in contact
with the surface of the tissue. The distribution of optical proper-
ties of the tissue are reconstructed using measured boundary
data with the help of model-based iterative algorithms.4

The inverse problem encountered in diffuse optical imaging
is usually an underdetermined problem with a high correlation
between measurements because of the diffusive nature of light
propagation. Optimization of data-collection strategy has been
an active area of research,6–11 where the recent emphasis is on
independent measurement selection strategy.10,11 The data-col-
lection optimization plays an important role in any imaging sys-
tem design, where acquiring the independent measurements can
reduce significantly the data-collection time, in turn reducing
the total imaging protocol time. More over, this kind of optimi-
zation can lead to faster frame rates especially in dynamic im-
aging scenarios,12,13 where the emphasis is to achieve the video-
rate. Most diffuse optical imaging systems utilize the photomul-
tiplier tubes (PMTs) for detection of light due to their high gain
and sensitivity,5,14 making simultaneous detection channels de-
pendent on number of PMTs used, where the cost of the imaging
systems largely depends on the detection channels. The reduc-
tion in the number of measurements without compromising the
image quality will also lead to cost effective systems and such
testing of detection arrays could be achieved by these studies
without physically building them.

The measure of incoherence has been extensively studied in
the field of compressive sensing,15 which is defined as the maxi-
mum absolute value of the cross-correlations between the col-
umns of a matrix. In this work, we present a framework that uses
the measure of coherence on the set of rows of the sensitivity
(Jacobian) matrix to decide the coherent (dependent) and inco-
herent (independent) measurements encountered in diffuse opti-
cal imaging. In order to show the effectiveness of the proposed
method initially the data resolution-based measurement selec-
tion method,11 which was established recently as the state of
the art method for predicting if a specific measurement is inde-
pendent or not, is taken up to show the dependence of data res-
olution matrix on the regularization parameter. The proposed
method was compared with the random selection of measure-
ments using simulated and experimental gelatin phantom data
to show that it provides an optimal selection of independent
measurements. The discussion is limited to two-dimensional
(2-D) frequency-domain data case, where the collected boun-
dary data is the natural logarithm of amplitude and the phase
information and the unknown parameters to be reconstructed are
the optical absorption and reduced scattering coefficients.

2 NIR Diffuse Optical Tomography: Forward
Problem

In the frequency domain, the NIR light propagation in thick
biological tissues like breast and brain can be modeled using
diffusion equation,4 given as

− ∇:½DðrÞ∇Φðr;ωÞ� þ
�
μaðrÞ þ

iω
c

�
Φðr;ωÞ ¼ Qoðr;ωÞ;

(1)

where μaðrÞ represents the optical absorption coefficient and
DðrÞ, the optical diffusion coefficient, which is defined as
DðrÞ ¼ 1

3½μaðrÞþμ 0
sðrÞ�, where μ

0
sðrÞ is the reduced optical scattering
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coefficient, which is defined as μ 0
s ¼ μsð1 − gÞ with μs and g

representing the scattering coefficient and anisotropy factor
respectively. The isotropic light source is represented by
Qoðr;ωÞ and the speed of light in the tissue as c. The photon
fluence density at a given position r is represented by ΦðrÞ and
the light modulation frequency is given by ω (ω ¼ 2πf with
f ¼ 100 MHz). The finite element method (FEM) is used to
solve Eq. (1) to generate the amplitude and phase measurements
for a given distribution of the absorption μaðrÞ and diffusion
[DðrÞ] coefficients.16 A type-III boundary condition is incorpo-
rated to account for the refractive-index mismatch at the boun-
dary.4 This forward model is used repeatedly in an iterative
framework to estimate the optical properties of the tissue
under investigation.4,16,17

3 NIR Diffuse Optical Tomography: Inverse
Problem

The inverse problem primarily deals with the estimation of opti-
cal absorption (μa) and diffusion (D) coefficients from the
amplitude [lnðIÞ] and phase (θ) boundary measurements using
a model-based approach. This is accomplished by matching the
experimental measurements (y), which is the natural logarithm
of the amplitude and phase of the experimental data with the
model-based ones [FðD; μaÞ] iteratively in the least-squares
sense over the range of D and μa. Even though D and μa are
the parameters that are being estimated, the μa and μ 0

s images
are shown as the final output, which are spectroscopically mean-
ingful to interpret. This minimization problem is solved using
the Levenberg–Marquardt (LM) optimization scheme18 and
the objective function to be minimized is defined as

Ω ¼ min
D;μa

ky − FðD; μaÞk2: (2)

The first order condition (setting the first derivatives with
respect to D and μa to zero)18 to minimize Eq. (2) results in
an iterative update equation of the form,

ðΔDi;ΔμiaÞ ¼ JT½JJT þ λI�−1δði−1Þ: (3)

Here, ΔDi and Δμia represent the update of the optical dif-
fusion and absorption coefficients at the i’th iteration, respec-
tively, δ ¼ y − FðD; μaÞ is defined as the data-model misfit,
J as the Jacobian or the sensitivity matrix, which has four
parts defined as

J ¼
�
J1 ¼ ∂ ln I

∂D ; J2 ¼ ∂ ln I
∂μa

J3 ¼ ∂θ
∂D ; J4 ¼ ∂θ

∂μa

�
: (4)

The above Jacobian matrix (J) maps the changes in the log of
the intensity (I) and phase (θ) to both optical diffusion (D) and
absorption (μa) changes with respect to each node in the FEM
mesh. It has dimensions of ð2 � S �DÞ × ð2 � NNÞ, where S and
D represent the number of sources and detectors in the imaging
setup and NN being the number of nodes in the FEM mesh.
Finally, λ and I denote the regularization parameter and identity
matrix respectively.

In order to determine the independent measurements using
the methods that will be presented in the next sections, only
the J2 part in Eq. (4) is considered, which represents a mapping
between small change in the absorption coefficient and a small

change in the measured log intensity (I). Note that this matrix
has a dimension of ðS �DÞ × NN.

4 Independent Measurements Selection

4.1 Data-Resolution Matrix-Based Approach

The data-resolution matrix (N) provides a way to optimize the
data-collection strategy for NIR diffuse optical tomography and
returns a set of independent measurements from the available
measurements.11 It is computed based on the sensitivity matrix
(J2) and the regularization parameter (λ), with magnitude of
diagonal values of the data-resolution matrix revealing the
importance of a particular measurement and the off-diagonal
entries revealing the dependence among measurements.11 The
data-resolution matrix is defined as

N ¼ J2JT2 ½J2JT2 þ λI�−1: (5)

Here, “N” has a dimension of ðS �DÞ × ðS �DÞ. Note that
the data-resolution matrix is dependent on the regularization
parameter (λ) as J2JT2 is ill-conditioned. The details of the
data-resolution matrix and the algorithm for determining the in-
dependent measurements is given in detail in Ref. 11. As each
row of N represents a measurement resolution characteristics
of the corresponding measurement with ideal scenario being
N ¼ I, where I represents the identity matrix. By comparing
the magnitude of the off-diagonal entries of a particular row
with its corresponding diagonal value, the set of measurements
that are dependent were known and only the independent mea-
surements were chosen.11 Note that once the indices for the in-
dependent amplitude measurements are obtained we need to
account for its corresponding phase part as well.

Though the data-resolution matrix does not depend on spe-
cific measurement vector (y), but it is dependent on the proper-
ties of J2 and the regularization (λ), making it evident that an
appropriate selection of λ is required to get optimal results.
The effect of regularization (λ) on the number of independent
measurements for different threshold values is well studied in
Ref. 11, where the number of independent measurements and
the regularization parameter (λ) are inversely proportional to
each other. As a result any suboptimal selection of λ would
yield an inaccurate prediction of independent measurements
from the data-resolution matrix.

As the data-resolution matrix-based independent measure-
ment selection demands optimal selection of λ, the need for a
method that is independent of λ having the same applicability
as data-resolution approach arises, to provide a high level of
data-collection strategy optimization.

4.2 Incoherence-Based Measurement Selection

The absolute value of the normalized inner product is a measure
of the orthogonality or incoherence of two different rows/col-
umns of a matrix (J2).

15,19 It is defined as

rJp;q ¼
j < jp; jq >j
kjpk2kjqk2

; (6)

where jp∕q denotes the p∕q’th row of the J2 matrix. The rows
p’th and q’th are said to be incoherent if rJp;q has a small value
and is said to be orthogonal if rJp;q is equal to zero. On the other
hand, if rJp;q is equal to one then the two rows are said to be
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linearly dependent (coherent). The proposed method relies on
this approach to determine the incoherent measurements from
the given Jacobian (J2) matrix [from Eq. (4)]. It is amply
clear in order to choose the incoherent measurements the
value of rJp;q should be close to zero, closer the value to one

indicates their dependency on each other. Now, a coherence
matrix (C) is defined, which is used to identify the dependent
measurements, given by

C ¼ jJNJTN j (7)

here, JN represents the normalized Jacobian (J2) matrix with
respect to its length, which is the l2-norm of the corresponding
row. The coherence matrix has the following characteristic,

Cij ¼
�
1 i ¼ j
pij i ≠ j where 0 ≤ pij ≤ 1

: (8)

The diagonal values of C is equal to one as every measure-
ment is coherent with itself and the off diagonal elements re-
present the coherence between i’th and j’th measurement.

The resulting methodology to predict the incoherent mea-
surements of the Jacobian (J) is given in Algorithm 1. The first
step starts with calculating J and for analysis only the J2 part is
considered [see Eq. (4)]. The initial guess is obtained using the
calibration procedure,20 which assumes that the imaging domain
is either semi-infinite or infinite as analytical solutions for these
domains are explicitly available. This initial guess obtained
using the calibration procedure tends to be close to the back-
ground optical properties of the tissue of interest. The iterative
procedure used to estimate the optical properties (D, μa) also
make use of the same initial guess to compute the Jacobian
(J) matrix.

Once the indices (ind) are found, the corresponding phase
components are also considered and only the incoherent mea-
surements of the Jacobian (J) and data-model misfit (δ) are con-
sidered, given as

Ji ¼ Jðind; ∶Þ and δi ¼ δðindÞ; (9)

where Ji and δi represent the reduced Jacobian and data-model
misfit, respectively and the dimension of Ji is ð2 � NIÞ×

Algorithm 1 Algorithm for determining incoherent (independent)
measurements.

Calculate Jacobian (J2) using uniform initial guess and set threshold (th)
to be between 0.7 and 1.

Determine the coherence matrix, C ¼ jJNJTN j.

Initialize inc ¼ onesðS × D;1Þ.

for i ¼ 1;2; : : : : : : ; ðS � DÞ

if incðiÞ ¼ 1 then

a. x ¼ Cði; ∶Þ

b. Find coherent measurements indices (coh)

for j ¼ 1;2; : : : : : : ; ðS � DÞ Index values (j) in x (excluding the i’th
column) for which xðjÞ > th

end

c. incðcohÞ ¼ 0

else

go back to step: 4

end.

Indices of incoherent measurements, ðindÞ ¼ indices corresponding to
incð∶Þ ¼ 1.

0.01 0.012 0.014 0.016 0.018 0.02

Standard Data Resolution
Target th=1, NI=240 th=1, NI=240 th=1, NI=240 th=0.9, NI=181

(a) (b) (c) (d) (e) (f) (g)

(h) (i) (j) (k) (l) (m) (n)

1 1.2 1.4 1.6 1.8 2 2.2

Fig. 1 An example case showing the dependence of data-resolution matrix on regularization parameter
(λ) for independent measurement selection. The target distributions of μa and μ 0

s is given in (a) and (h),
respectively. Panels (b)–(d) and (i)–(k) show the reconstructed distributions of μa and μ 0

s, respectively,
using all measurements (NM ¼ 240) for a given λ (indicated on top of each distribution). Panels (e)–(g)
and (l)–(n) show the reconstructed results obtained using independent measurements selected via data-
resolution matrix approach. The minimum, mean, and maximum value of the diagonal of the Hessian
were the three choices of λ (indicated on the top of each image).
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ð2 � NNÞ, with NI being the number of incoherent/independent
measurements. Now, the new update equation becomes

ðΔDi;ΔμiaÞ ¼ JTi ½JiJTi þ λI�−1δði−1Þi . (10)

It is important to note that the retained measurements in the
reduced Jacobian (Ji) and data-model misfit (δi) correspond to a
source–detector map, which indicates the highly influential
source–detector configuration. As with the data-resolution
matrix approach,11 the ind were determined in the first iteration
and utilized for subsequent iterations as there was no consider-
able variation in ind between the iterations.

4.3 Estimating Regularization Parameter using
Generalized Cross-Validation (GCV)

The proposed incoherence method to estimate the independent
measurements were compared with a random-based measurement
selection approach. In order to have an unbiased comparison

between these methods, the GCV method was used to estimate
the optimal regularization parameter (λ) to compute the solution
given by Eq. (10). The GCV method is a popular approach for
estimating the regularization parameter (λ) and this is obtained
by minimizing a function GðλÞ defined as21

GðλÞ ¼
PrankðJiÞ

k¼1

�
uTk δi
σ2kþλ2

�
2

hPrankðJiÞ
k¼1

1
σ2kþλ2

i
2
: (11)

If Ji¼ UΣVT represents the singular value decomposition of
the Jacobian matrix then uk in the above equation denotes the
k’th column of the matrix U and σk, the singular values of the
Jacobian matrix. A computationally efficient simplex method is
used to solve Eq. (11) to estimate the regularization parameter
(λ) and in turn this is used in Eq. (10) to estimate the optical
properties for all the studies presented in this method. A detailed
description of this method can be found in Ref. 21.

Incoherent Random
Target th=1, NI=240 th=0.9, NI=118 th=0.7, NI=71 th=0.61, NI=49 NI=118 NI=71 NI=49

(q) (r)

0.01 0.012 0.014 0.016 0.018 0.02

1 1.2 1.4 1.6 1.8 2 2.2

(i) (j) (k) (l) (m) (n) (o) (p)

(a) (b) (c) (d) (e) (f) (g) (h)

Fig. 2 Reconstructed μa and μ 0
s distributions using incoherent and random-based measurement selec-

tion with 1% data noise level. Panels (a) and (i) correspond to μa and μ 0
s target distributions and (b) and (j)

show the reconstructed distributions using all measurements (NI = 240). Panels (c)–(e) and (k)–(m) cor-
respond to the reconstructed distributions obtained for incoherent measurement selection and similarly
panels (f)–(h) and (n)–(p) correspond to random-based measurement selection, the number of measure-
ments (NM) (and corresponding threshold (th) for incoherence-based selection) being indicated above
each reconstructed image. (q) and (r): The one-dimensional (1-D) cross-sectional plots along the dashed
line in (a) and (i) for various reconstructed images.
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All computations were performed on a Linux workstation,
which had 2.4 GHz Intel Quad core processor along with 8-
GB RAM. The details of simulation and experimental studies
performed as part of this work is presented in Sec. 5.

5 Simulation and Experimental Evaluation

5.1 Numerical Experimental Data

For the simulation and experimental evaluation of the proposed
method, the reconstruction problem was solved using nonlinear
iterative method [Levenberg–Marquardt (LM) minimization
scheme]. In order to show the dependency of regularization
parameter (λ) on the data resolution matrix, an irregular-shaped
breast mesh was considered. Two finite element breast meshes
were used, one for experimental data generation and another for
reconstruction scheme. A fine mesh containing 4876 nodes with
9567 triangular elements was used for experimental data gener-
ation purpose, and for the reconstruction scheme a coarser mesh
with 1969 nodes with 3753 triangular elements was considered.
The background optical properties of the breast mesh were μa ¼
0.01 mm−1 and μ 0

s ¼ 1 mm−1. The target distribution mimicking
a tumor had the following optical properties, μa ¼ 0.02 mm−1

and μ 0
s ¼ 2 mm−1 and was placed at x ¼ 20 mm and

y ¼ 0 mm having a radius of 10 mm. The data collection

setup had 16 fibers arranged in an equispaced fashion along
the boundary of the imaging domain, where, when one fiber
acted as a source, rest acted as detectors, resulting in 240
(16 × 15) measurement points.14 The source was positioned
at one mean transport length inside the boundary and were mod-
eled as having a Gaussian profile with full width half maximum
(FWHM) of 3 mm to mimic the experimental conditions.14 The
numerically generated data had 1% Gaussian noise to replicate
the experimental case. The target distribution (μa and μ 0

s) for this
case is shown in Figs. 1(a) and 1(h) labeled as “Target.”

In order to effectively assess the proposed technique in terms
of determining the independent measurements based on incoher-
ence, a numerical experiment with the same breast mesh and
optical properties as described earlier was considered. The target
distribution (μa and μ 0

s) for this case is shown in Figs. 2(a) and
2(i) labeled as “Target.” To evaluate the performance of the pro-
posed method with complex shaped inclusions (targets), a rec-
tangular-shaped target with length ¼ 16 mm and breadth ¼
6 mm was placed at x ¼ −15 and y ¼ 0 and a diffused tumor
with radius ¼ 6.5 mm was placed at x ¼ 18 and y ¼ 0. The
optical properties of these targets and the noise level in the
data remained the same as described earlier. The target distribu-
tion (μa and μ 0

s) for this case is shown in Figs. 3(a) and 3(g)
labeled as “Target.”

Incoherent Random
Target th=1, NI=240 th=0.94, NI=150 th=0.9, NI=101 NI=150 NI=101

(m) (n)

(a) (b) (c) (d) (e) (f)

(g) (h) (i) (j) (k) (l)

0.01 0.011 0.012 0.013 0.014 0.015 0.016 0.017 0.018 0.019 0.02

1 1.2 1.4 1.6 1.8 2

Fig. 3 (a)–(l) Similar effort as Fig. 2 except for two complex targets (rectangular and diffusive). (m) and
(n) The 1-D cross-sectional plot along the dashed line given in the target image [(a) and (g)] for various
reconstructed images presented.
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As a third numerical experiment, the proposed method was
tested on a reflection-mode configuration. A rectangular mesh
with width ¼ 80 mm and breadth ¼ 40 mm was considered. A
fine mesh containing 4981 nodes with 9088 triangular elements
was used for experimental data generation purpose and a coarser
mesh containing 3321 nodes with 6400 triangular elements was
used for the reconstruction scheme. The data collection setup
had 13 fibers arranged in an equispaced fashion along the boun-
dary of the imaging domain (i.e., along y ¼ 20) resulting in 169
(13 × 13) measurement points14 to mimic the reflection mode
imaging setup. The source was positioned at one mean transport
length inside the boundary and were modeled as having a
Gaussian profile with FWHM of 3 mm to mimic the experimen-
tal conditions.14 The background optical properties of the rec-
tangular mesh were μa ¼ 0.01 mm−1 and μ 0

s ¼ 1 mm−1. The
target distribution mimicking an absorption site had the follow-
ing optical properties, μa ¼ 0.02 mm−1 and μ 0

s ¼ 2 mm−1 and
was placed at x ¼ 2 mm and y ¼ 7 mm having a radius of
4.5 mm. The numerically generated data had 1% Gaussian
noise to replicate the experimental case. The target distribution
(μa and μ 0

s) for this case is shown in Figs. 4(a) and 4(i) labeled as
“Target.”

5.2 Experimental Phantom Data

Finally to assess the capability of the proposed method, an
experimental phantom data-set was considered. In this case, a
multilayered gelatin phantom of diameter 86 mm and height
25 mm was fabricated with heated mixtures of water (80%),
gelatin (20%), India Ink was used for absorption and for scatter-
ing, TiO2 (titanium oxide powder) to obtain different optical

properties. Three distinct layers of gelatin were constructed
by repeatedly hardening gel solutions to contain different
amounts of ink and TiO2 for varying optical absorption and scat-
tering, respectively.22,23 To mimic a tumor, a cylindrical hole of
diameter 16 mm and height 24 mm was filled with liquid. The
region marked as “0” represents the fatty layer with μa ¼
0.0065mm−1 and μ 0

s ¼ 0.65 mm−1. The region marked as “1”
represents the fibro-glandular layer with μa ¼ 0.01 mm−1 and
μ 0
s ¼ 1.0 mm−1. Finally, the region marked as “2” represents the

tumor region with μa ¼ 0.02 mm−1 and μ 0
s ¼ 1.2 mm−1 as the

optical properties. These optical properties were chosen based
on the reported values in the literature24,25 for these regions.
The 2-D cross section (μa and μ 0

s) of the phantom with three
different regions labeled as “1,” “2,” and “3” is shown in
Figs. 5(a) and 5(i).

This data was calibrated using a reference homogenous
phantom to obtain the initial guess for optical properties (μa,
μ 0
s).

20 For the reconstruction, a mesh of 1785 nodes correspond-
ing to 3418 linear triangular elements was used.

6 Results and Discussion
First, an illustration of dependence of data-resolution matrix-
based choice of independent measurements on the regularization
parameter (λ) and the standard (Levenberg–Marquardt) method
with a noise level of 1% in the simulated data was taken up and
is shown in Fig. 1. Figures 1(a) and 1(h) correspond to the μa
and μ 0

s target distribution, respectively. Figures 1(b)–1(d) and
1(i)–1(k) represent the standard reconstruction result (without
any reduction in the number of measurements) obtained for
λ corresponding to the three different values namely the

Incoherent Random
Target th=1, NI=169 th=0.95, NI=104 th=0.9, NI=86 th=0.8, NI=52 NI=104 NI=86 NI=52

(q) (r)

0.01

0.8 1 1.2 1.4 1.6 1.8

0.012 0.014 0.016 0.018

(a) (b) (c) (d) (e) (f) (g) (h)

(i) (j) (k) (l) (m) (n) (o) (p)

Fig. 4 (a) to (p) Similar effort as Fig. 2 except that the imaging geometry being rectangular and data
acquisition being done in reflection mode. (q) and (r) The 1-D cross-sectional plot along the dashed
line given in the target image [(a) and (i)] for various reconstructed images presented.
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minimum, mean, and the maximum value of the diagonal ele-
ments of the Hessian (JJT) matrix were considered. The corre-
sponding λ values are mentioned at the top of each reconstructed
image. The reconstruction result obtained with the application of
data-resolution-based independent measurement selection are
correspondingly given in Figs. 1(e)–1(g) and 1(l)–1(n). The
number of independent measurements (NI) and threshold
value (th) are indicated along with the regularization parameter
(λ) at the top of each reconstructed distribution. The results of
Fig. 1 indicate that the data-resolution–based method is sensitive
to λ in choosing the independent measurements. Note that the
threshold (th) was kept constant (th ¼ 0.9, similar to the thresh-
old chosen in Ref. 11) across different λ’s to show the relation
between λ and the number of independent measurements (NI).
As the number of independent measurements and reconstructed
image quality varies with different choice of λ in data-resolu-
tion-based approach, this approach is more prone to biased
results and hence might not be the best method to provide
high level of data-collection optimization. Also note that the
automated optimal choice of λ is not an easy task.21,26

To evaluate the performance of the proposed method, a fair
comparison was made with randomly selected measurements
using an irregular imaging domain (breast mesh) as discussed in
Sec. 5. The reconstructed results obtained using measurements
selected by the incoherence property for various thresholds

(Algorithm 1), indicated by th, are given in Figs. 2(c)–2(e)
and 2(k)–2(m). Similarly, Figs. 2(f)–2(h) and 2(n)–2(p) give
the reconstruction results obtained by random selection of
same number of measurements, indicated by NI, mentioned in
the top-row. Note that the reconstruction result obtained using
all measurements is given in Figs. 2(b) and 2(j) (corresponding
to th ¼ 1 and NI ¼ 240). A one-dimensional (1-D) cross-sec-
tional plot for the reconstructed distributions shown in Figs. 2(q)
and 2(r) along the dashed line shown in the target image is given
in Figs. 2(a) and 2(i). From the results, it is evident that the
random selection of measurements provides inferior reconstruc-
tions compared with the proposed method of selection of inde-
pendent measurements. Among the threshold values used, the
result corresponding to th ¼ 0.9 (NI ¼ 118) is identical to the
result obtained using all measurements (NI ¼ 240). More
importantly, these results also indicate the capability of the pro-
posed method in terms of providing the high level of optimiza-
tion required in terms of finding the independent measurements
without compromising the reconstructed image quality.

A similar effort using the same mesh was made to demon-
strate the ability of the proposed method to reconstruct complex-
shaped inclusions such as a rectangular and diffused targets.
The target distributions of these complex-shaped inclusions are
given in Figs. 3(a) and 3(g). The corresponding reconstructed
distributions using the incoherence and the random selection-

Incoherent Random
Target th=1, NI=240 th=0.95, NI=147 th=0.75, NI=72 th=0.7, NI=43 NI=147 NI=72 NI=43

(q) (r)

(a) (b) (c) (d) (e) (f) (g) (h)

(i) (j) (k) (l) (m) (n) (o) (p)

0.004 0.006 0.008 0.01 0.012 0.014 0.016 0.018 0.02 0.022 0.024

0.3 0.4 0.5 0.6 0.7 0.8

0

0.9 1 1.1 1.2 1.3

Fig. 5 Similar effort as Fig. 2 except for the case of experimental gelatin phantom data case.
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based methods are shown in Figs. 3(c)–3(f) and 3(i)–3(l).
Figures 3(b) and 3(h) represent the images obtained using all
the measurements. The GCV method (Sec. 4.3) is deployed
for all the cases for choosing λ. From the reconstructed distri-
butions and the 1-D cross-sectional plot reveal, the superior
nature of the proposed method to identify the influential mea-
surements using the proposed scheme.

As last part of the numerical experiment, a rectangular im-
aging domain with reflection-mode configuration was taken up.
Note that in this case the sources and detectors were fixed at
only one end of the mesh representing the reflection-based data-
collection configuration. The target distributions of both μa and
μ 0
s are shown in Figs. 4(a) and 4(i), respectively. The recon-

structed images using all the measurements is shown in
Figs. 4(b) and 4(j). The reconstructed distributions using the
proposed scheme and the random-based measurement selection
methods are given in Figs. 4(c)–4(h) and Figs. 4(k)–4(p). The
reconstructed results along with the 1-D cross-sectional plot for
the reconstructed distributions [Figs. 4(q) and 4(r)] reveal the
efficacy of the proposed scheme even with a reflection mode
configuration to identify the independent measurements as com-
pared with random-based selection. Even in this case, the GCV
method was deployed to obtain the corresponding regularization
parameter (λ).

Next, the reconstructed μa and μ 0
s distributions using the

experimental phantom data are presented in Fig. 5, again the
proposed method was compared with randomly selected mea-
surements. The target distributions is as shown in Figs. 5(a)
and 5(i). The reconstruction result obtained using all measure-
ments, corresponding to th ¼ 1, is given in Figs. 5(b) and 5(j).
The thresholds (th) of 0.95, 0.75, and 0.7 were used to select the
incoherent measurements, which resulted in 147, 72, and 43
measurements, respectively, and the resulting reconstructed μa
and μ 0

s images are shown in Figs. 5(c)–5(e) and 5(k)–5(m),
respectively. The random selection of the same number of mea-
surements resulted in reconstructed μa and μ 0

s images as shown
in Figs. 5(f)–5(h) and Figs. 5(n)–5(p), respectively. A 1-D cross-
sectional plot along the dashed line shown in the target images
has also been plotted in Figs. 5(q) and 5(r) for various recon-
structed images shown in Figs. 5(a)–5(p). It is evident from
the results of Fig. 5 that the incoherence-based selection with
threshold being 0.95 was able to provide the same kind of
reconstruction as with usage of all measurements. It is important
to note that for the random selection of same number of mea-
surements (NI ¼ 147) corresponding to th ¼ 0.95 resulted in
a highly distorted target, thus indicating that the proposed
method (incoherence-based selection) is capable of providing
independent measurements. Note that, the optimal selection
only enables the required sensitivity without compromising the
reconstructed image quality with an added advantage of making
the reconstruction process computationally efficient. The ran-
dom selection enables the computational efficient part, but
compromises the reconstructed image quality (the same is illus-
trated in all numerical and experimental cases shown here). The
random selection that was chosen here was purely random,
resulting in almost same image quality irrespective of the
choice.

This study (Fig. 5) also shows the reliability of the presented
method, where the layered tissue model is adapted, mimicking
the inhomogenous background. The threshold for obtaining sol-
ution that is close to the one obtained by using all measurements
in this case is 0.95, leading to number of required measurements

as 147. The achievable optimization is in the same order even for
the other cases presented in this work, making it evident that the
proposed method provides the high-level information about the
independent measurements.

Finally, a normalized mean square error (NMSE) was used as
a figure of merit in order to determine a good criterion for choos-
ing the value of threshold (th). The NMSE essentially measures
the degree of similarity between two images. The NMSE is
defined as27

NMSE ¼ MSE

σ2xtrue
; (12)

where σ2xtrue denotes the variance of the true image (xtrue) and
MSE represents the mean square error between the true image
(xtrue) and the reconstructed image (xrecon), given by27

MSE ¼ 1

N
kxtrue − xreconk2; (13)

here, N represents the length of the image. The NMSE for the
various reconstructed images (Figs. 2–5) is presented in Table 1.
Note that the notation, NMSE denotes the average quantity of
NMSE (μa) and NMSE (μ 0

s) to ease the task of selecting an

Table 1 The normalized mean square error (NMSE) of results pre-
sented in this work for varying thresholds (given in parenthesis of sec-
ond column) along with the number of independent measurements
(NI) with respect to the target image in each case. The corresponding
random-based measurement selection NMSE is given in the last
column.

Case Incoherence based Random based

NI (th) NMSE NI NMSE

Breast mesh (Fig. 2) 240 (1) 0.18349 — —

118 (0.9) 0.18357 118 0.21230

71 (0.7) 0.19225 71 0.25166

49 (0.61) 0.23579 49 0.44265

Breast mesh (Fig. 3) 240 (1) 0.45229 — —

150 (0.94) 0.45641 150 0.48490

101 (0.9) 0.48919 101 0.56841

Rectangular
mesh (Fig. 4)

169 (1) 0.49015 — —

104 (0.95) 0.49912 104 0.55058

86 (0.9) 0.53257 86 0.58409

52 (0.8) 0.60818 52 0.72009

Experimental
phantom (Fig. 5)

240 (1) 2.24150 — —

147 (0.95) 2.32010 147 2.69570

72 (0.75) 2.655215 72 2.73401

43 (0.7) 2.71612 43 2.82175
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optimal threshold (th). For the simulation and experimental cases,
the optimal threshold is chosen such that the obtained NMSE is
within 5% of the original NMSE (using all measurements).

To systematically study the effect of threshold (th) on the
reconstructed μa and μ 0

s distributions, different threshold values
and the resulting NMSE and independent measurements have
been plotted in Fig. 6(a) for the case of experimental phantom
(Fig. 5). Note that the NMSE (μa, μ 0

s) corresponding to th ¼ 1

uses all measurements (240). The results show that the NMSE
increases with decreasing threshold and an optimal value exists,
which provide the reconstructed image quality being same as
with the usage of all measurements. For all the cases discussed
in this work, the optimal threshold value is 0.9 or above as the
NMSE is within 5% with respect to the image obtained using all
the measurements.

In order to show the computational advantage of the pro-
posed method, Fig. 6(b) shows the computation time for the
results presented in Fig. 5 with varying values of threshold
(th) from 0.1 through 1 in steps of 0.05. The x-axis corresponds
to the varying values of thresholds and correspondingly the y-
axis denotes the computational time in time (in seconds) to
reconstruct the image, which includes calculating the Jacobian,
overhead-time for estimating the incoherent measurements and
estimating the regularization parameter until the data-model
misfit (kδk2) did not improve by more than 2% when compared
with previous iteration. The number of measurements corre-
sponding to each threshold is also mentioned above each bar.

A key contribution of this work is the establishment
of a procedure to identify the influential/incoherent measure-
ments. Such procedure is highly desirable in cases where the

Fig. 6 (a) NMSE [Eq. (12)] for both μa and μ 0
s for quantitatively selecting the optimal threshold in the

experimental phantom case (Fig. 5) using varying thresholds (th) corresponding to independent mea-
surements (indicated on the top) with respect to the target image. (b): The computation time (in seconds)
for varying thresholds (th) and the corresponding independent measurements for each threshold is indi-
cated above each bar.
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measurement set-up is expensive there by enabling to reduce the
cost involved in the measurement set-up, other than the obvious
computational time reduction [Fig. 6(b)]. One of the potential
uses of the proposed method is in the case of dynamic diffuse
optical imaging,12,13 where the measurement time (increasing
the frame-rate) and the cost of the set-up can be reduced by
reducing the number of sources and detectors.

7 Conclusions
The image reconstruction problem in the diffuse optical imaging
is typically rank-deficient, indicating that all the measurements
do not provide the independent information. Determining the
independent measurements among the available measurements
is extremely beneficial in terms of faster data-collection and
instrumentation associated with it. In this work, we have pro-
posed a simple, yet novel, efficient method that can provide the
specific information about particular measurement being inde-
pendent or not, using the incoherence property of the sensitivity
matrix. The proposed method was also shown to overcome the
inherent limitation of regularization parameter dependency in
choosing the independent measurements selection using the
existing state of the art, data-resolution-based approach. The
proposed method was validated to estimate both optical absorp-
tion and scattering coefficients using irregular-shaped (breast),
rectangular (reflection-mode) imaging domain cases, and exper-
imental gelatin phantom case. The corresponding computer
code is made available as open-source for the usage of biomedi-
cal optical imaging community.28
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