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Abstract. Fluorescence lifetime imaging (FLIM) aims at quantifying the exponential decay rate of fluorophores to
yield lifetimemaps over the imaged sample. When combined with Förster resonance energy transfer (FRET), the
technique can be used to indirectly sense interactions at the nanoscale such as protein–protein interactions,
protein–DNA interactions, and protein conformational changes. In the case of FLIM-FRET, the fluorescence
intensity decays are fitted to a biexponential model in order to estimate the lifetime and fractional amplitude
coefficients of each component of the population of the donor fluorophore (quenched and nonquenched).
Numerous time data points, also called temporal or time gates, are typically employed for accurately estimating
the model parameters, leading to lengthy acquisition times and significant computational demands. This work
investigates the effect of the number and location of time gates on model parameter estimation accuracy. A
detailed model of a FLIM-FRET imaging system is used for the investigation, and the simulation outcomes
are validated with in vitro and in vivo experimental data. In all cases investigated, it is found that 10 equally
spaced time gates allow robust estimation of model-based parameters with accuracy similar to that of full tem-
poral datasets (90 gates). © 2014 Society of Photo-Optical Instrumentation Engineers (SPIE) [DOI: 10.1117/1.JBO.19.8.086023]
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1 Introduction
Optical molecular imaging techniques based on fluorescence
signals provide an invaluable tool to probe the cell and tissue
biochemistries. Fluorescence lifetime imaging (FLIM), in par-
ticular, is increasingly useful over a broad range of applications
spanning from fundamental biology to clinical diagnosis.
Lifetime is an intrinsic property of a fluorophore and, there-
fore, does not typically depend on the method of measurement
employed, fluorophore concentration, or fluorescence inten-
sity.1–3 Lifetime, however, is dependent on the fluorophore
structure and external factors such as temperature, viscosity,
and polarity.2 This makes fluorescence lifetime a complemen-
tary method to traditional fluorescence intensity measurements
that can provide additional information to distinguish fluoro-
phore species and/or to noninvasively monitor a microenviron-
ment.4,5 Moreover, when coupled with Förster resonance
energy transfer (FRET), FLIM enables the sensing and quan-
tifying of protein–protein interactions, cell signaling proc-
esses, and other nanometer-range events.6–12 FRET relies on
the nonradiative transfer of energy from an excited “donor”
fluorophore to that of an “acceptor” when the two are within
close proximity (2 to 10 nm).13 The energy transfer results in a
measureable reduction in the fluorescence lifetime of the donor
fluorophore.14 It is possible to obtain a quantitative estimate of
the FRET efficiency in a sample by measuring the fluorescence
lifetime of the donor fluorophore, which provides insight into
the cellular processes being investigated. However, FRET

based on FLIM is still mainly confined to microscopy appli-
cations with visible fluorophore FRET pairs and long acquis-
ition times. In order to translate FRET assays to high-
throughput in vitro and in vivo applications for drug discov-
ery,15,16 it is critical to identify strategies that will decrease
measurement acquisition times without compromising quanti-
tative FLIM-FRET analysis.

FLIM relies on the quantitative estimation of the fluores-
cence lifetime of a fluorophore from collected fluorescence
intensity decays. Various methods exist for measuring the fluo-
rescence lifetime of a fluorophore, though they generally fall
into one of two major categories: frequency domain or time
domain. Each works on the same basic principle of exposing
the fluorophore to light within its excitation spectrum and
then recording the resulting light the fluorophore emits.
Frequency-domain FLIM uses a temporally modulated (often
sinusoidal) excitation light and works at high intensities
where time-domain methods are difficult to implement.17

Conversely, for applications with low concentrations and/or
dim fluorescence signals, time-domain approaches should be
favored, as they provide better signal-to-noise ratios.18

In time-domain FLIM, fluorophores are excited by short-
light pulses, and the resulting fluorescence photons emitted
are measured over time at different time delays (usually on
the picosecond or nanosecond time scale). The resulting mea-
surements correspond to the number of photons emitted,
grouped into time bins. Photon counting or time-gated intensi-
fier systems are primarily used to acquire these time-resolved
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intensity measurements. Fluorescent lifetime can then be esti-
mated through a variety of fitting or estimation methods applied
to the experimental decay curves. Depending on the population
of the sample or the number of states of the fluorophores in
the sample, monoexponential or biexponential models are
employed as models. In all cases, the measured fluorescence sig-
nals via time-domain systems are a combination of the pure
fluorescence decay of the sample and the instrument response
function (IRF) of the imaging system. The most common
approach, which takes into account the temporal effect of the
imaging system characteristics, consists of fitting the measure-
ment to an exponential-decay model convolved with an exper-
imental IRF using a least-squares (LSQR) method.19 An
alternate method to exponential fitting is rapid lifetime determi-
nation (RLD). Originally developed for single-exponential
decays,20 RLD has been expanded and applied to double-expo-
nential decays21 for applications such as FRET. RLD uses inte-
grated areas underneath the decay curve to calculate model
parameters. As this approach relies on simple algebraic equa-
tions, it is considerably faster than iterative fitting methods.
A major drawback, however, is that RLD assumes the IRF of
the system to be negligible.19 This assumption can hold for
some visible FRET pairs that exhibit lifetimes of a few nano-
seconds compared with the typical ∼250- to 300-ps widths
of experimental IRFs. However, this is not the case when
using FRET pairs that are red shifted. These FRET pairs are
critical for in vivo applications, as the near-infrared (NIR) spec-
tral window corresponds to the lowest attenuation of photons in
biotissues.22,23 For NIR FRET pairs, the lifetime reduces to a
nanosecond or below, with the short-lifetime component asso-
ciated with the FRETing donor being in the 250- to 350-ps24

range. For such applications, RLD is not expected to provide
accurate results, and biexponential fitting is required.

Numerous investigations have focused on efficient acquisi-
tion and fitting processes for both single-20,25,26 and multiexpo-
nential21,27 decay applications. However, when a sample
consists of multiple populations, such as in FRET, it can be par-
ticularly difficult to resolve parameter estimates for each popu-
lation. Dense temporal sampling is therefore required to
accurately estimate the multiexponential model parameters.
Acquiring dense temporal and spatial information comes at
the cost of increased acquisition times and potential photo-
bleaching. For instance, acquisition time in time-gated fluores-
cence imaging is linearly related to the number of images, or
time gates acquired; high rates of sampling, therefore, directly
increase the time necessary to image the sample.28,29 This draw-
back is especially relevant to high-throughput and in vivo tomo-
graphic platforms, where lengthy acquisition times can prevent
their widespread adoption due to hour-long imaging sessions.
Hence, there is a need to identify strategies that estimate param-
eters for biexponential fitting based on temporal data reduction.
In this study, we investigate the estimation accuracy of the frac-
tional amplitude coefficients and their respective lifetimes of a
biexponential model when employing a limited set of temporal
data points. It will be shown that the number of time gates can be
decreased by almost an order of magnitude with only minimal
loss of accuracy. The study is framed within a NIR FRET appli-
cation where the short-lifetime component is on the same time
scale as the IRF. In silico experiments are performed to establish
a strategy of time-point selection that preserves the parameter
accuracy and results are validated with in vitro and in vivo im-
aging experimental data.

2 Materials and Methods

2.1 Time-Domain Wide-Field Gated Imaging

Generally, there are two main experimental techniques
employed to acquire time-domain fluorescence decay curves
over the typical range of fluorophore lifetimes employed in bio-
imaging: time-correlated single-photon counting and time-gated
detection. Time-gated techniques are preferred, especially when
large field of views and fast acquisition times are desired. In this
work, we used a wide-field time-gated imaging platform work-
ing in the NIR range30 and employed an active illumination
module.31–33 This system has been designed to quantitatively
image FRET donor fractions in vitro, ex vivo, and in vivo.29,31,34

Briefly, the system uses a Maitai laser as a source and is coupled
to a digital micromirror unit (DLP Discovery 4100 Kit and D2D
module, Texas Instruments Inc., Dallas, Texas) to obtain a spa-
tially controllable wide-field excitation [or active wide-field illu-
mination (AWFI)]. The fluorescence signals are collected in
transmittance geometry via an ultrafast-gated, intensified
CCD (ICCD) camera (Picostar HR, LaVision GmbH,
Goettingen, Germany) which has a 12-bit CCD and a resolution
of 1376 × 1040 pixels. For all experiments herein, the gate
width size was set to 300 ps, the step size between gates to
40 ps, and the camera integration time to 800 ms. These settings
were kept constant for both high-throughput FRET imaging in
well plates and in vivo FRET imaging described in Secs. 2.4 and
2.5, respectively.

To ensure the acquisition of optimal fluorescence decay
curves in terms of signal-to-noise ratio, an active illumination
strategy was employed for all experimental data employed
herein. In this approach, the illumination spatial distribution
is actively and iteratively optimized to yield time fluorescence
decay curves with maximum photon counts near the saturation
level of the ICCD (3600 counts). Overall, this method allows for
enhanced accuracy in lifetime-based imaging at high acquisition
speed over samples with large fluorescence intensity distribu-
tions. We previously demonstrated that AWFI is able to accu-
rately estimate lifetimes from a multiwell plate sample with
concentrations ranging over 2 orders of magnitude, resulting
in estimation error in quenched donor fraction of less than
6% (compared with optimally acquired, one-by-one analysis)
over 18 well samples.33

2.2 Biexponential and Noise Model

In the case of a population of two fluorophores with distinct
lifetimes, the fluorescence decay curves can be accurately mod-
eled using a biexponential model convolved with the IRF of the
system.35,36 In such cases, the model is expressed as

IðtÞ ¼ IRFðtÞ ⊗
�
A1e

− t
τ1 þ A2e

− t
τ2

�
; (1)

where IðtÞ is the fluorescence decay, IRFðtÞ is the instrument
response function, ⊗ is the convolution operator, and A1 and
A2 are the fractional proportions of the lifetimes τ1 and τ2,
with A1 þ A2 ¼ 1. To estimate the main parameters of interest
based on experimental data, this model is iteratively fit to the
data using the LSQR method. The goodness-of-fit parameter,
χ2, was used as a comparison and is defined as
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χ2 ¼
Xn
k¼1

½IðtkÞ − ICðtkÞ�2
ICðtkÞ

; (2)

where IðtkÞ is the fluorescence measurement at tk, ICðtkÞ is the
fit value at the same time point, and n is the number of time
points. Theoretically, four model parameters should be esti-
mated when using the model of Eq. (1). However, this number
of parameters can be reduced to A1 and τ1 for NIR FRET im-
aging. Owing to the relation A1 þ A2 ¼ 1, only one fractional
amplitude needs to be estimated. Moreover, as the donor lifetime
under no FRET condition is known a priori, either from the
manufacturer data sheet or from the calibration experiments,
it can be set as a constant in our model. Hence, herein, two
parameters were fitted: A1 and τ1.

This model was used to fit experimental data as well as to
generate synthetic data to investigate the impact of the number
and location of time gates on the estimation of the above-men-
tioned fitted parameters over a large range of functional values.
To derive synthetic fluorescence measurements closely mimick-
ing experimental data, the model in Eq. (1) was augmented via
additive noise. Background noise, dark noise, and photon (shot)
noise are generally the primary sources of noise in time-domain
measurements.37 Background noise can be limited by reducing
the amount of ambient light incident on the system. All back-
ground noises are unlikely to be eliminated, and it must be mea-
sured and accounted for during the fitting process (usually via
subtraction). Dark noise is kept to a minimum via active cooling
of the ICCD. Shot noise follows a Poisson distribution and is
due to the nonconstant absorption and emission of photons in
response to a mean excitation signal. Though time-gated sys-
tems are not strictly shot noise limited, McGinty et al.6 have
shown that the shot noise-like behavior is present when using
common gain voltages. In practice, when modeling these sys-
tems, Poisson noise is usually the only added noise.38–40

Hence, an absolute Poisson noise was used as a good model
for experimental noise in this study. As our experimental imple-
mentation benefits from active illumination, it yields homo-
geneous fluorescence time decay curves with maximum
photon counts ∼3600; all simulated data were normalized to
this absolute count number. The Poisson noise was calculated
at each gate and added to the pure fluorescence decay after con-
volution with the IRF to yield the synthetic data. Note that for
the sake of comparison, RLD was also applied in certain cases
with the formulation defined by Elangovan et al.41

2.3 In Silico Experimental Design

When acquiring in vitro and in vivo time-gated FLIM-FRETs, a
few temporal parameters need to be specified a priori. First, the
gate size and the step between gates need to be defined.
Conventional gated systems based on gated ICCDs allow for
a gate size between 200 and 1000 ps. Two-hundred-picosecond
time gates are generally unstable, whereas large time gates, even
if they lead to significantly faster acquisitions,42 oversmooth the
fluorescence decays, leading to loss of accuracy in fitting.43

Herein, as described in Sec. 2.1, the gate size was set to
300 ps and the step size between gates to 40 ps in all simulations
to replicate optimal experimental conditions for FRET imaging.
To avoid the confusion between gate numbers and their temporal
locations, only gate numbers will be referenced in the remainder
of this work. Because the step size is consistent, the temporal
position of any time gate can be found by multiplying the

gate number by 40 ps (e.g., gate 10 is temporally located at
approximately 400 ps after the peak of the decay). A total of
115 gates with equal step spacing were simulated to generate
full fluorescence decay curves over a 4.6-ns temporal window.
Second, when considering sparse temporal datasets, two param-
eters need to be defined: number of gates acquired and location
of the gates. Herein, a brute-force approach based on large ran-
dom trials is performed to investigate the impact of these two
parameters on the estimation of FRET quantities.

First, a simulation is used to assess the information content of
each individual time gate as quantified by the χ2 value. To limit
this investigation to a workable range of parameters, synthetic
decay curves were created with model parameters set to
A1 ¼ 0.3, A2 ¼ 0.7, τ1 ¼ 300 ps, and τ2 ¼ 1200 ps. These
fractional amplitudes are frequently encountered in FRET appli-
cations, whereas the two lifetimes correspond to the lifetimes of
the two states of the donor in the NIR FRET pair Alexa Fluor
700–Alexa Fluor 750 (see Sec. 2.4). Decay curves were
generated using these model parameters convolved with an
experimental IRF and with additive Poisson noise. After convo-
lution, approximately 90 of the original 115 time gates fall
within the decay portion of the curve and may be employed
for fitting. For each simulated decay curve, four time gates in
the decaying portion of the curve were randomly selected to
constitute an initial dataset. This dataset was used to fit the
curve and to retrieve the two FRET parameters identified
above. As a merit function, the χ2 value was saved and used
as the starting reference. Then, the dataset was augmented by
one time gate (five time gates total) and a new fitting procedure
was carried out. The fitting procedure was carried out for all
possible gates besides the initial four. The χ2 values for all
these fits were saved for postprocessing. The fifth gate
among all remaining 86 gates that yielded the lowest χ2

value was selected to create a new reference five time-gate data-
set. Expectedly, this additional time gate provided the most sig-
nificant additional information content to the original four time
gates. This process was repeated to assess which remaining
gates most increased the fitting quality when augmenting the
dataset from five gates to a total of 14 gates, one gate at a
time. Then, as the original four time-gate datasets were ran-
domly selected, they were removed to yield the optimal 10
time-gate dataset. The process was not carried over 10 additional
time gates to keep the simulation tractable. This complete proc-
ess was repeated 1000 times to minimize the bias from the
random selection of the four initial gates and additive random
noise. A flowchart is provided in Fig. 1(a). Typical examples of
initial datasets and additional temporal points are provided in
Figs. 1(b)–1(e).

Second, we investigated the effect the number of time gates
used had on the accuracy of model parameter estimation.
Another randomized trial was performed using the same pro-
cedure to generate the synthetic data. Based on the findings
in the previous study (see Sec. 3), the selected time gates
were evenly spaced on the decaying part of the curve after
IRF convolution. Overall, datasets consisting of 90 (all), 45,
23, 10, six, or four time gates were investigated herein.
Using the same model parameters as the previous experiment
(A1 ¼ 0.3, A2 ¼ 0.7, τ1 ¼ 300 ps, and τ2 ¼ 1200 ps), param-
eter estimation accuracy was evaluated for each set of time
gates over 1000 runs, to avoid the bias caused by the noise gen-
eration process. Then, the model parameter range was expanded
to encompass the entire range of likely parameter values under
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experimental conditions. A1 and A2 were varied from 0.1 to 0.9
by increments of 0.1 (keeping the relationship A1 þ A2 ¼ 1),
while τ1 was varied from 250 to 450 ps in increments of
25 ps. The lifetime of the unquenched donor (τ2) was kept at
1200 ps throughout the simulation. To keep the computational
burden manageable, 100 decay curves per set of time gates and
model parameters were generated as synthetic data. The fitting
procedure was applied to each of these 48,600 synthetic curves.

2.4 Cell Assay Data

An in vitro FRETassay experiment was used to validate the out-
come of the in silico study. More precisely, we employed a NIR
FRET transferrin (Tfn) assay in 96-well plate settings. Tfn has
been used as a carrier for anticancer drugs or other therapeutic
agents44–46 to enhance the internalization specificity into neo-
plastic tissues. The Tfn receptor (TfnR) is homodimeric, i.e.,
two molecules of Tfn bind within 2 to 10 nm, which allows
the use of FRET-based imaging techniques.47 By detecting
FRET between a FRET pair labeled with Tfn molecules, we
are able to quantitatively determine whether Tfn is bound to
TfnR at the plasma membrane and along the endocytic pathway
(FRET positive signals).48–52 As we are focusing on macro-
scopic in vitro and/or in vivo assays, the data collected by
our system at each pixel are a mixture of quenched (FRET pos-
itive signals) and unquenched (FRET negative signals) fluores-
cence signals of the donor. Hence, they exhibit a typical
biexponential decay as modeled by Eq. (1). If the short-lifetime
component is represented by τ1 (FRET positive signals), then
the parameter of particular interest is A1, as it represents the
quenched fraction of the FRET donor, or in our application,
the internalized amount of Tfn.29,31,33,34

Here, human Tfn molecules labeled with a NIR FRET pair
(Alexa Fluor 700–Alexa Fluor 750) were added to Madin–
Darby canine kidney (MDCK) cells and T47D cells (human

ductal breast epithelial tumor cell line), both lines expressing
human TfnR.34,48,49 This specific FRET pair was chosen due
to the significant spectral overlap and Forster distance
(≈7.76 nm). Furthermore, it was found to perform the best
for this application compared with five other FRET pairs.24

Six different acceptor to donor (AD) ratios (0:1, 1:3, 1:2,
1:1, 2:1, and 3:1) were employed to establish FRET parameter
estimation accuracy versus temporal data sparsity. The configu-
ration of the multiwell plate and fluorescence intensity (at peak
maximum) is provided in Fig. 2(a). By design, a linear

Fig. 1 (a) Workflow of the in silico study. First, noisy synthetic data are generated over a 4.6-ns temporal
window and χ2 is estimated using four random time gates as the measurement dataset. Then, best addi-
tional gates are estimated iteratively until the dataset is comprised of 14 gates. The overall process is
reproduced 1000 times. (b) A representative experimental IRF and synthetic fluorescence decay curve
are shown; the solid area corresponds to the temporal range of 90 time gates that may be used for fitting.
(c–e) A representative decay at several iterations in the gate selection process.

Fig. 2 (a) Example results of photon counts at the maximum of the
decay curve with different cell lines and AD ratios over the 12 wells.
The counts are close to the maximum photon counts that can be
acquired by the gated ICCD thanks to AWFI. (b) Example of model
parameter estimation over row 1 (MDCK) of the sample. Here only
A1 is depicted, as it is the parameter of interest for the application.
(c) Quenched donor fraction (A1) estimation over the whole sample.
Mean values for each well with standard deviation are reported when
estimated with the full temporal dataset.
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relationship between quenched donor fraction and AD is
expected for these two cell types over the range of AD ratios
used. The estimation using all available time points serves as
our benchmark when comparing results obtained with sparse
temporal datasets [cf. Figs. 2(b) and 2(c)].

2.5 In Vivo Data

An athymic nude female mouse (6- to 12-week-old—
BALBBNU-F Taconic, Rensselaer, New York) was used for
in vivo validation. The mouse was injected with Tfn-labeled
AF750 (AF750-Tfn) and Tfn-labeled AF700 (AF700-Tfn) in
RPMI 1640 media at molar ratios of 2:1 (keeping the donor
amounts constant at 40 μg∕ml of Tfn) via the tail vein using
a sterile 1-mL syringe and 27.5-gauge needle.34 The mouse
was imaged 2 h postinjection using the system described by
Venugopal et al.29 The technique uses transmitted light via fluo-
rescence molecular tomography, adaptive wide-field tomogra-
phy, and Monte Carlo–based propagation models to perform
three-dimensional (3-D) reconstruction of FRET activity. The
live animal imaging was performed under vapor anesthesia
(EZ-SA800 System, E-Z Anesthesia, Palmer, Pennsylvania)
using isofluorane and monitored using a physiological monitor-
ing system (MouseOx Plus, STARR Life Sciences Corp.,
Oakmont, Pennsylvania). Body temperature was maintained
by an air warmer (Bair Hugger 50500, 3M Corporation, St.
Paul, Minnesota) during the entire imaging session. All animal
protocols were conducted with approval by the Institutional
Animal Care and Use Committee at both Albany Medical
College and Rensselaer Polytechnic Institute.

3 Results and Discussion

3.1 In Silico

First, the 10 best time gates defined as the ones leading to the
best χ2 value when fitting the synthetic data were identified.
Due to the large number of datasets investigated, we report
only the number of occurrences in which a specific time gate
has been identified in the optimal 10-time-gate dataset. This
information is reported as a histogram in Fig. 3(a). Overall,
the data are skewed toward the first time gate (peak maximum).
Selection frequency decreases as moving to the right of the
histogram. This result suggests that the early time components
are especially important for fitting accuracy in biexponential fit-
ting. This agrees with intuition, as the beginning of the biexpo-
nential decay has the greatest slope rate of change and thus

would benefit more from frequent sampling than the later por-
tions. To test this theory, uneven sampling sets of 10 time gates
were evaluated against even sampling sets in addition to the
complete set of time gates. Figure 3(b) shows a representative
example of fitting parameter results for even versus uneven
temporal samplings. The uneven sampling set consisted of
the following time gates: 1, 2, 3, 4, 5, 10, 30, 50, 70, and 90.
In all three cases, fitting accuracy of the model parameters was
within 6% of the expected values and the differences between
them were not significant. Note that many uneven sampling sets
were evaluated with similar outcomes, indicating that an even
temporal sampling may work similarly well compared with a
set of unevenly spaced time gates chosen based upon a priori
knowledge of the system. This is a significant result in terms of
experimental implementation. Without a priori knowledge of
the fluorophores’ exact fractional distribution and location in
tissue, it is difficult to know the position of the main temporal
features of the fluorescence data (maximum count position, for
instance). Hence, it is difficult to implement the nonlinear tem-
poral sampling as no temporal references are known. However,
acquisition based on even temporal distribution of time gates
can be easily and efficiently implemented without prior knowl-
edge. Based on these results, evenly spaced time gates are
employed exclusively in the remainder of this work.

Second, the effect of the number of time gates on fitting accu-
racy was investigated using the same model parameters and with
1000 runs. The errors associated with the two estimated model
parameters are provided in Fig. 4. For comparison, we provide
both estimation errors for LSQR and RLD methods. As
expected, at the nominal parameter values of A1 ¼ 0.3 and
τ1 ¼ 300 ps, the error increases as fewer time gates are consid-
ered, error being defined as the difference between simulated
and mean of the estimations. The error between the estimate
and model for A1 was within 6% and for τ1 was within 4%
(11 ps) in the case where all time gates are used. The error
in the estimation of parameters when using full datasets can
be attributed to the ill-posedness of the biexponential fits and
Poisson noise. Similar levels of uncertainty are maintained
using up to 10 gates for fitting. When reducing the number
of time gates further, the errors increase up to 22% when
using only four gates. A similar trend can be observed when
focusing on the standard deviation for the error estimation,
based on the 1000 trials. Hence, these results suggest that fitting
with 10 equally spaced gates yields similar results as using full
temporal datasets (90 gates). Note that RLD is generally unsta-
ble with a short lifetime of size similar to that of the IRF. The

Fig. 3 (a) Histogram of the number of occurrences that a specific time gate position (#) is present in the
1000 optimal temporal datasets. (b) Parameter estimates over 1000 runs using 10 evenly spaced (10E)
time gates and 10 unevenly spaced (10U) time gates compared with using all available time gates.
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average error for A1 was about 90%, and the average error for τ1
was 2% over 1000 runs, but with a standard deviation of more
than 100 ps.

To assess if these findings were dependent on the model
parameters, these error functions were estimated over a full
functional range of values that can be encountered in biexponen-
tial applications. Results are given in Fig. 5. The trend is similar
when the experiment is expanded across the entire parameter
space. Average error in A1 across all parameter combinations
using all time gates was within 5% and increased to 19%
(with local peak errors approaching 60%) using four time
gates. Again, a large increase in the average error across all com-
binations occurs when the number of time gates is reduced from
10 (6%) to 6 (14%). For small fractional amplitudes (A1 ∈ [0.1
to 0.2]), the error in A1 using six and four time gates signifi-
cantly increases for all values of τ1, ranging from 40% to
60%. Overall, these simulations establish that using 10 time
gates results in similar estimation accuracy as using full tempo-
ral data for the parameter range of τ1 ∈ [250 to 450] ps and A1 ∈
[0.1 to 0.9]. The average error in estimating A1 across the entire
parameter space was increased by only 1% when sampling down
the temporal data from 90 gates to 10 gates. A reduction in
time-gate acquisition of this magnitude would result in almost

a 10-fold decrease in acquisition time required, while yielding
the same biological insights based on model parameters fitted.

3.2 Validation In Vitro and In Vivo

In order to validate the results obtained from in silico simula-
tions, the findings are applied to cell-based assay and in vivo
experiments. Experimental results were originally acquired
using 120 time gates, approximately 90 of which fall in the
asymptotic part of the measurements. Parameter estimation is
performed using the entire set of available time gates in addition
to using reduced subsets of time gates. Of particular interest
in each of these experimental procedures is A1, the quenched
donor fraction, which represents the fraction of Tfn bound
donor that underwent cellular internalization. Data were
acquired using wide-field excitation and acquisition, as
described in Sec. 2.4. A comparison of estimation errors in
A1 for a subset of the data is made in Table 1 and Fig. 6.
Table 1 shows a subset of the results for both cell lines compared
with previous simulation results. The data agree well with the
results from simulations with a similar trend occurring in all
three datasets. In both cell lines, the error is approximately
the same when using 90, 45, 23, or 10 time gates in addition

Fig. 4 Average and standard error associated with parameter estimation when using sparse temporal
datasets and RLD for model parameters (a) A1 and (b) τ1. The expected values are 0.3 and 300,
respectively.

Fig. 5 Percent error in A1 estimation when using different numbers of gates (90, 45, 23, 10, six, and four)
for τ1 ∈ [250 to 450] ps and A1 ∈ [0.1 to 0.9].
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to having similar standard deviations. Like the in silico experi-
ments, there is also a large increase in error between using 10
and 6 time gates. Figure 6 shows the A1 estimates from the T47D
cell line across all AD ratios using several subsets of gates.
Results using all or 10 time gates have similar mean estimates
and standard deviations, whereas the results using four time
gates tend to have larger standard deviations and different
means. Note, however, that in all cases, the linear trend with
increasing AD ratio is present and is similar to the result in
Fig. 2(c).

In vivo data were collected as described in Sec. 2.5. The data
were fitted using the complete (90) set of time gates as well as

the reduced sets of 10 and four time gates. The quenched donor
fraction (A1) was estimated in the tumor of the mouse in addition
to the bladder as shown in Fig. 7. The mean A1 estimates in the
tumor are greater than in the bladder using each set of time gates
(cf. Table 2). In each case, using 10 time gates results in similar
mean estimates and little or no difference in standard deviation
compared with using 90 time gates. The means vary by an aver-
age of approximately 4%, but because there is no ground truth
information available, the total difference in error is not meas-
urable. Using four time gates results in a higher average differ-
ence in mean of approximately 7% in addition to a larger
standard deviation compared with using 90 time gates. Note
that these results are consistent with the expected physiological
results. The tumor model employed herein overexpresses TfnR,
whereas minimal FRET Tfn is expected in the bladder. Hence, it
is expected that the tumor would exhibit a larger mean A1 as
higher values of A1 represent a larger portion of Tfn on the endo-
cytic pathway.

3.3 Discussion

Overall, these results suggest that by reducing the total number
of time gates acquired from 90 to 10, FLIM-FRET acquisition
time can be reduced by approximately an order of magnitude
without greatly sacrificing the estimation accuracy. This is a sig-
nificant result, especially for in vitro and in vivo platforms where
FLIM-FRET techniques have yet to be widely adopted because
of lengthy imaging times. Imaging platforms designed for drug
discovery applications have recently been described by Talbot
et al.53 and Alibhai et al.54 to take 30 and 46 min., respectively,
to acquire a 96-well plate. By applying the methods described
herein, a 96-well plate could be imaged in less than 1 min. These
short acquisition times are particularly attractive for high-
throughput FRET assays. Not only will such a platform be
able to greatly increase the number of wells imaged in one ses-
sion, but it will also permit increased multiplexing to signifi-
cantly increase the number of processes studied. This will

Table 1 A subset of the A1 estimates (error % in parenthesis) using in vitro data and different sets of time gates compared with simulation results.
In vitro data are from wells with an AD ratio of 0:1.

Number of time gates All 45 23 10 6 4

Simulation (6) (6) (7) (7) (14) (18)

T47D 18.9� 5 (5) 18.8� 5 (4) 18.9� 5 (5) 19.0� 5 (6) 15.8� 5 (12) 14.2� 6 (21)

MDCK 18.8� 7 (4) 18.8� 7 (4) 18.7� 7 (4) 19.0� 7 (6) 16.1� 7 (10) 13.9� 8 (23)

Fig. 6 Estimation of A1 using in vitro experimental data (T47D cell
line) and all, 10, or four time gates. The linear relationship in AD
ratio is retained in all cases; however, using 10 time gates more accu-
rately tracks the linear relationship.

Fig. 7 Comparison of in vivo estimations of A1 in the bladder and the
tumor (larger circle) of a mouse using (a) all time gates, (b) 10 time
gates, and (c) four time gates. The estimations have been overlaid on
a bright field image to provide the context. Results are largely similar
with the bladder having a lower average A1 estimate than the tumor,
as expected.

Table 2 A comparison of in vivo A1 estimates using different sets of
time gates. Using 10 time gates to fit the data results in similar esti-
mates with similar standard deviations to the case of using all time
gates. Using four time gates results in larger standard deviations
and less accurate estimations, especially in the tumor.

Number of time gates All 10 4

Bladder 0.22� 0.07 0.23� 0.07 0.23� 0.08

Tumor 0.32� 0.04 0.33� 0.04 0.35� 0.07
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prove critical in enabling the design and optimization of new
therapies using in vitro FLIM-FRET platforms.

Moreover, we have recently demonstrated that our novel
wide-field imaging FLIM-FRET approach offers the possibility
to employ well-characterized quantitative metrics used in FRET
microscopy, but with the additional benefit of a seamless tech-
nological platform to perform in vivo quantitative assays. Based
on wide-field patterned time-resolved illumination and gated
detection,55 we demonstrated that it was possible to retrieve
in 3-D the quantitative biodistribution of the quenched donor
fraction within 5% of in vitro data. However, as multiple pro-
jections are required to resolve the depth information based on
an optical inverse problem,56–58 the imaging protocols typically
take around 45 min for whole-body imaging. In comparison,
current time-resolved tomography platforms typically are able
to image only cross-sections (two dimensional) of the animal
and require imaging acquisition times of between 30 and
45 min.59,60 Similar to in vitro data, temporal data reduction
can lead to reduced acquisition times. Based on the findings
of this work, we expect to be able to perform the whole-
body 3-D FLIM-FRET in live animals in less than 5 min.
Such fast acquisition speed will enable investigation of locally
resolved fast pharmacokinetics studies in vivo, imaging multiple
FRET pairs sequentially in reasonable time frames, and an
increase in overall imaging throughput. These developments
will be critical to establish FLIM-FRET as a reliable and attrac-
tive quantitative assay to the biomedical community for in vivo
applications.

4 Conclusion
The in silico experiments performed herein suggest that acquir-
ing an even distribution of time gates throughout the decay curve
results in maximal information content of the curve.
Additionally, it has been shown that using 10 time gates results
in essentially no increase in average estimation error of A1 com-
pared with using 90 time gates. Results were then validated in
both in vitro and in vivo settings by performing the parameter
estimation using a reduced set of acquired time gates. By reduc-
ing the number of time gates acquired to 10, acquisition times
can be reduced by almost 10-fold. This reduction in acquisition
time for time-gated FLIM-FRET will open the door for the
implementation of FLIM-FRET methods in high-content analy-
sis and high-throughput screening. Usage of equally spaced time
gates ensures that this is immediately implementable on time-
gated systems for in vitro, ex vivo, and in vivo applications.
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