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Abstract. Remodeling of the extracellular matrix has been implicated in ovarian cancer. To quantitate the
remodeling, we implement a form of texture analysis to delineate the collagen fibrillar morphology observed
in second harmonic generation microscopy images of human normal and high grade malignant ovarian tissues.
In the learning stage, a dictionary of “textons”—frequently occurring texture features that are identified by meas-
uring the image response to a filter bank of various shapes, sizes, and orientations—is created. By calculating a
representative model based on the texton distribution for each tissue type using a training set of respective
second harmonic generation images, we then perform classification between images of normal and high
grade malignant ovarian tissues. By optimizing the number of textons and nearest neighbors, we achieved clas-
sification accuracy up to 97% based on the area under receiver operating characteristic curves (true positives
versus false positives). The local analysis algorithm is a more general method to probe rapidly changing fibrillar
morphologies than global analyses such as FFT. It is also more versatile than other texture approaches as the
filter bank can be highly tailored to specific applications (e.g., different disease states) by creating customized
libraries based on common image features. © The Authors. Published by SPIE under a Creative Commons Attribution 3.0 Unported
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1 Introduction
According to the American Cancer Society, in 2013 about
22,000 new cases of ovarian cancer were diagnosed and
about 15,000 women died because of this disease.1 The survival
rate for ovarian cancer has not significantly improved over the
last two decades. With current screening and diagnostic abilities,
about 70% of women who are detected with ovarian cancer are
diagnosed in later stages,2,3 leading to a low 5-year survival rate
of about 25%. The major problem of current diagnostic methods
is the lack of reliable screening/imaging tools to detect early
malignancies in the ovary. CA125 is currently the best serum
biomarker, however, the sensitivity/specificity are both low.4 For
example, about 20% of women with ovarian cancer do not
have elevated CA125.2 The achievable resolution of clinical
modalities (computed tomography, positron emission tomogra-
phy, ultrasound, magnetic resonance imaging) is limited (only
∼0.5 to 3 mm) and is not sufficient for imaging microscopic
disease. This is especially important for ovarian cancer as meta-
stasis can occur during early stages of tumor growth.3

Because of these limitations in detection and the high mortal-
ity rate, there is a compelling need for new technologies that can

image ovarian cancers with better resolution and specificity and
improve the accuracy of diagnosis and prognosis. Although tra-
ditional pathology focuses on cellular architecture, many recent
studies have demonstrated that there is a close correlation
between cancer initiation/progression and remodeling of the
extracellular matrix (ECM) in the tumor microenvironment
(TME).5–9 For example, changes in collagen composition and
morphology in the ECM have been documented for many can-
cers, including those of the ovary, breast, and colon.7,10–12 It
would then be advantageous to further develop collagen specific
microscopic imaging modalities such as second harmonic gen-
eration (SHG) imaging microscopy13 for this purpose.

SHG microscopy has already emerged as a highly sensitive/
specific probe of collagen architecture changes in several dis-
eases, including many cancers,10,11,14–18 connective tissue disor-
ders,19,20 and fibroses.21,22 All these diseases are characterized
by changes in alterations of collagen density, fibrillar organiza-
tion, collagen isoform distribution, and combinations thereof.
We previously utilized three-dimensional (3-D) imaging in
combination with the measurement of bulk optical properties
and Monte Carlo simulations to differentiate normal ovarian
stroma and high grade serous carcinomas.10 Collectively, the
results indicated an increase in organization in the collagen
organization at both the fibril (subresolution) and fiber levels
of assembly.
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Although successful in elucidating detailed structural
differences, the method is labor intensive and requires several
independent measurements. It would be desirable to have a
quantitative, objective measurement that can classify the state
(or class) of tissues and is easy to perform. A measure based
on fibrillar architecture, i.e., fiber size and organization, is
attractive in this regard in general, and particularly for ovarian
cancer. This is because a profound remodeling occurs in the
stroma.10,18 As an example, single-SHG optical sections from
ex vivo normal stroma (b) and high grade serous cancer (a) tis-
sues are shown in Fig. 1, where these are characterized by
shorter mesh-like and longer curvy fibers, respectively. By
inspection, we noted that these respective overall patterns are
seen throughout tissues of each type and also between patients
in each group.10 This similarity suggests the development of a
reliable image analysis approach toward a system for automated
classification of these images. Still, classification is challenging
because there are large stochastic variations with no highly
defined fiber organization within the image.

Several image processing techniques have been employed
for quantitative analysis of the collagen morphology observed
in SHG microscopy. The simplest approach is to use segmenta-
tion methods. For example, Schanne–Klein used a thresholding
process of image segmentation of collagen fibers for scoring fib-
rosis in a mouse model of kidney disease.23 Similarly, Tai et al.24

applied Otsu’s segmentation to score liver fibrosis in both
mouse and human tissues. However, segmentation is most sen-
sitive to brightness and the collagen area covered in the image
and is not as sensitive to fibrillar alignment and organization,
which are often more important markers of diseased states.
To help alleviate this limitation, several researchers have
explored the use of other signal processing concepts. For exam-
ple, FFT analysis has been used in several studies for analysis of
SHG images.25–28 Although this is simple to implement and has
been successful in some cases, it is a global approach, analyzing
the frequency components that are present in the entire image.
However, perceptually the morphology that often discriminates
one type of tissue from another is composed of predominately
rapidly changing “local” features. Other transforms, such as
wavelets and their variants, are more powerful for local analysis
of the fibrillar morphology within such images. For example, we
previously used wavelets to examine the length of sarcomeres in
normal and optically cleared skeletal muscle and calculated the
entropy as a measure of organization.29 More recently, we used
two-dimensional (2-D) wavelet transforms to delineate normal
lung tissue from that diseased with idiopathic pulmonary fibro-
ses.30 In a different approach, Keely et al. used curvelets, which
are highly sensitive to edges,31 to delineate tumor boundaries in
different stages of breast cancer.32 Although more applicable
than FFT these transforms, in their simplest implementation,
still lack the ability to analyze more random patterns of collagen
that are representative of the stroma of most ECM tissues (nor-
mal and diseased). For example, 2-D wavelet transforms were
not successful in accurately classifying the ovarian tissues stud-
ied here (unpublished results).

To solve this problem for ovarian cancer, we utilized a form
of texture analysis of SHG images as a classification tool. In
computer vision, texture is an image property based on repetitive
patterns with slowly varying local statistical propertues. Texture
analysis has the strong advantage of being insensitive to inten-
sity and not requiring long range orientation (e.g., tens to hun-
dreds of microns). Rather, it probes the environment around
small individual regions in the image, and using computer
vision, extracts common features that are present. Our imple-
mentation applies the method developed by Varma and
Zisserman.33,34 Specifically, we focused on collagen fiber distri-
bution of the image by convolving filter patches in different
directions and scales. Instead of extracting visually apparent fea-
tures like angular distribution, fiber length, or area covered, as
has been more commonly done, we trained on large sets of
cancer and normal SHG images by clustering the filter responses
within small groups of pixels using statistical methods to find
common features among each tissue type. This is an important
distinction, as in real tissues it is often difficult to discretize all of
the individual fibers, which leads to a loss of information.

2 Materials and Methods

2.1 Tissues

We conducted an institutional review board-approved study of
ex vivo ovarian tissues from 5 normal patients and 5 patients
with high-grade serous ovarian cancer from the University of
Connecticut Health Center. The diagnoses for all tissues
were confirmed by pathological analysis of biopsied tissues.
Tissues were fixed in 4% formalin for 24 h, transferred to phos-
phate buffered saline, and sliced into 100 to 200-μm-thick

Fig. 1 Representative SHG single-optical sections of malignant (a)
and normal (b) human ovarian tissues. Scale bar ¼ 50 μm.
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sections with a vibrating microtome (Vibratome, Buffalo Grove,
Illinois).

2.2 SHG Imaging

Tissues were imaged by the SHG microscopy as previously
described.13 The excitation used 890-nm, 100-fs pulses from a
commercial Ti:sapphire oscillator (Mira, Coherent, Santa Clara,
California). The SHG laser scanning microscope was a modified
Fluoview300 (Olympus, Center Valley, Pennsylvania) mounted
on a fixed stage upright stand (Olympus BX61). All imaging
was performed with a 40× (0.8 NA) water immersion objective
lens with an average power of 20 to 50 mWat the focal plane. To
excite all orientations equally, circularly polarized light was
used throughout. This was achieved at the focal plane using
the combination of a quarter wave plate and a half wave
plate as a compensator.13 The SHG was collected in the forward
direction by a 0.9-NA condenser, isolated with a 20-nm band-
width 445-nm bandpass filter (Semrock, Rochester, New York)
and detected by a single photon counting photomultiplier tube
module (Hamamatsu 7421, Hamamatsu City, Japan). Images
were acquired at three times zoom with a field-of-view of
170 μm by 170 μm and a field size of 512 by 512 pixels to
sample at the Nyquist frequency.

3 Texture Analysis Method

3.1 Training Images Selection

Machine learning is required for the texture analysis method to
obtain a statistical distribution of repetitive collagen structure
patterns. This is acquired from training images of both normal

and cancer tissues. For the training image set, we randomly
chose single-optical sections that had at least 60% collagen
coverage from each image stack. Altogether, there were 1100
selected training images (550 images each from cancer and nor-
mal tissues). We normalized the overall image intensity of each
optical section to the full 12-bit dynamic range to compensate
for any artifacts arising from depth dependent attenuation intro-
duced by scattering within the tissue slice. This also compen-
sates for the increased brightness of the SHG from the tumor
specimens relative to the normal tissues.10

3.2 Filter Selection and Image Model Construction

In the learning stage, we convolved all training images with the
rotationally invariant filter bank MR8 [elements are shown in
Fig. 2(a)]. This bank has 38 filters and consists of Gaussian
and a Laplacian of Gaussian filters, which are rotationally sym-
metric. It also includes edge filters and bar filters at 3 different
scales. Both the edge and bar filters are oriented at 6 orientations
at each scale. Measuring the maximum response only across
these orientations reduces the number of responses from 38
(6 orientations at 3 scales for 2 oriented filters, plus 2 isotropic)
to 8 (3 scales for 2 filters, plus 2 isotropic). This provides rota-
tion invariant behavior.34 This is important as we do not know
the orientation of the tumor relative to its point of removal and
thus have no fiducial markers for placement on the microscope.
Each pixel then generates an eight-dimensional vector response
after convolution with this subset of the MR8 filter bank.

We randomly chose 10,000 pixel responses from each train-
ing image [see e.g., Fig. 2(b)] to keep the computational cost
feasible. These were analyzed in small “patches,” with each

Fig. 2 Demonstration of the learning stage, (a) the 38 element MR8 filter bank, (b) representative training
images (here cancer); and (c) K -means clustering center-texton demonstration in three-dimensional filter
response space; and (d) histogram models generated from the training images using 40 texton bases.
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composed of 49 × 49 pixels. The frequency of occurrence of
individual patterns in an image (here histogram of textons)
will then provide a so-called topic model for the image. But
since the predominant filter responses (i.e., textons) are not
known a priori, the standard approach in machine learning is
to group the responses via a K-means clustering [Fig. 2(c)].
These were then used to build an overall texton dictionary.

Finally, we built the classification model using the texton
distribution histogram obtained for each training image [as rep-
resented in Fig. 2(d)]. Through this process, we identified rep-
resentative structural features in normal and malignant tissues
based on prelearned models of the respective SHG images.

3.3 Classification

In the classification stage, we built a model for testing images
[Figs. 3(c) and 3(d)] based on the statistical distribution of the
histogram of the texton distribution for each, as was performed
for the training set [Figs. 3(a) and 3(b)]. Then, we adopted a χ2

nearest neighbor (NN) classification to determine the identity of
the testing image based on the image model. We applied differ-
ent thresholds for both the cancer and normal images based on
the Gaussian weighted [expð−d2∕2σ2Þ] distribution of NN dis-
tances for each case, where σ is the width of the distribution and
d is the χ2 distance between training and testing images. We

determined σ from the fitted Gaussian distribution of all NN dis-
tances from all the training images, which afforded the classi-
fication of each test image by comparison with the most similar
training images around it. We then used standard 10-fold cross
validation, where we randomly divided the total number of
images (550 cancers and 550 normal) into 10 groups (each
group then had 110 images). In the cross validation procedure,
each group serves as the test set once whereas the remaining
nine are the training set. This is repeated for each group, i.e.,
10 times in all. The summary scores reflect the mean over all
folds. In this calculation, we held out a group of images to opti-
mize the number of NNs and achieved the highest accuracy by
applying NN ¼ 10.

We diagram the classification scheme in Fig. 3(e), where
purely for demonstration purposes, we assumed that 2 textons
were selected to construct the image model. In the demonstra-
tion, the yellow circle represents the testing image models; the
blue squares and red triangles are the normal and cancer image
models, respectively; the x and y axes are the count numbers of
each of the 2 textons in the model. The distances of different
image models are evaluated by the χ2 distance, which reflects
the similarity of their respective statistical distributions, i.e.,
images that are more similar to each other will have a smaller
χ2 distance. In this particular example, we chose six nearest
training images away from the testing image. Then, the

Fig. 3 Demonstration of the classification stage (a) representative training images; (b) the resulting histo-
gram model generated from K -means clustering of the training images; (c) representative testing image;
and (d) the histogrammodel generated from testing images; (e) demonstration of the χ2 nearest neighbor
(NN) classification using two textons (x and y axes), where we chose six NNs around the testing images
presented as yellow circles, where the normal and cancer training images are presented as blue squares
and red triangles, respectively.
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classification of the testing image is decided by the sum of all six
weights around it.

4 Results of Classification Accuracy
We use the receiver operating characteristic (ROC) curve for-
malism35,36 of true positives versus false positives (or sensitivity
versus 1-specificity) to determine the accuracy of the classifica-
tion, where the accuracy is defined as the area under the ROC
curve (AUROC). We applied the optimized NN ¼ 10 from held
out samples (determined in Sec. 3.3), and systematically
changed the texton number to best represent the features in
each tissue type. Figure 4 shows the resulting ROC curves
that were generated using a range of 5 to 400 textons. The dis-
crimination threshold is crucial for ROC curve generation, and
this was chosen by summing up the weighting of the 10 NNs
around the testing images. Using 40 textons and NN ¼ 10, we
achieved a high accuracy with AUROC ¼ 0.974. We found that
if we chose 100 textons, the accuracy of classification decreased
slightly to 0.963, since the frequency for each base is then so low
that there were insufficient counts for a sufficient statistical dis-
tribution to construct the imaging model. As a more extreme
example of this result, 400 textons resulted in yet a significantly
worse discrimination (0.805). On the other hand, when the tex-
ton number is lower than 20, the accuracy of classification also
decreases due to the lack of features differentiating normal and
cancer tissues. For example, 5 textons yielded a significantly
lower AUROC (0.919) than the optimal value of 40.

5 Discussion
The current image analysis methods utilized in SHGmicroscopy
(summarized in Sec. 1) all probe the fiber organization either
globally or relative to specific features, and are not completely
general in their applicability. Texture based methods may be
superior in this regard. The simplest form of texture, the gray
level co-occurrence matrix, compares the brightness of adjacent
pixels and has been used for SHG image analysis.25,37 However,
it is also not a general approach as it is not as sensitive to mor-
phology. As an alternate, and more versatile form of texture
analysis, Wang et al.38 applied spectral moments to quantify
intervertebral disk damage in a mouse model and successfully
developed a linear discriminate classifier to differentiate loaded
and sham-loaded tissues. This approach determines the 2-D fre-
quency response and is independent of scale and orientation. As
a result, this approach is a fairly general approach used for
image classification. Textons, on the other hand, may have
some advantages as spectral moments may be “too general;”
for instance, in our application, we expect that having a depend-
ence on orientation (as could be probed using the full set of fil-
ters in the MR8 filter bank) may actually result in an additional
discriminatory capability of the statistical model. For example,
one may want to be able to record the orientation of the maxi-
mum response when this is relevant, as there is some clear align-
ment of fibers in the malignant tissues. This will yield higher
order co-occurrence statistics on orientation dependent “topics”
within the model and such information may be critical in dis-
criminating textures that may seem similar in an orientation-
independent spectral moment analysis. Further, topic models
based on textons are known to yield better discrimination (at
least for photographic images of naturally occurring objects)34

than those based on the formulations where the algorithm trans-
forms the data to a 2-D frequency space, where the latter loses
potentially meaningful orientation information.

The texture analysis algorithm here successfully recognized
the repetitive collagen fiber patterns by convolution with a stan-
dard filter bank composed of many shapes, sizes, and orienta-
tion. As a result, this approach also affords the classification and
comparison of essentially any morphology present in image
data, as long as unique features can be assigned to each
class. This criterion was satisfied with normal and high grade
malignant ovarian tissues. By optimizing the number of textons
and NNs we obtained an excellent classification accuracy of
∼97%. We stress that the tumors were all high grade serous
malignancies and were not representative of all ovarian cancer
types. Still, excellent discrimination was achieved with a small
sample set because of the large change in morphology. We note
that our previous analysis using 3-D SHG imaging, measure-
ment of optical properties, and Monte Carlo simulations delin-
eated normal stroma and high grade malignancies using a small
sample size.10 Although that study provided insight into subre-
solution structural changes in the latter, the method requires
many measurements and simulations. The routine developed
here can now be readily implemented on the SHG images of
new tissues in a straightforward manner, as the dictionaries
from training sets are already created.

Although the result of the feature extraction is sensitive to the
original filter selection, it is straightforward to change the filter
set until common features are located which can differentiate the
tissues being compared. The drawback for this method is the
large number of images required for the algorithm to extract
the common features in each class. It is also not possible to
directly visually associate textons with specific visual features
such as fiber length and alignment. Still, our approach of com-
parison to a filter bank affords the specific tailoring of the
feature selection to the desired application. For example, even
using limited single-optical sections as inputs, the texture analy-
sis employed here showed great potential for ovarian cancer
classification.

6 Summary
We applied a texture analysis algorithm to evaluate the ECM
structural changes in normal ovarian stroma and high grade

Fig. 4 Receiver operating characteristic curves for classification with
five textons (pink pentagons) with 91.9% accuracy; 20 textons (tur-
quoise diamonds) with 96.4% accuracy; 40 textons (black squares)
with 97.4% accuracy;100 textons (red circles) with 96.6% accuracy;
and 400 textons (green stars) with 80.5% accuracy.
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ovarian serous cancer observed in SHG images. By optimizing
the number of textons and NNs, we achieved high accuracy
(97%) for classifying high grade cancer tissue and normal ovar-
ian tissue using an ROC curve analysis. The classification
algorithm is a relatively general method based on prelearned
SHG images and is well suited for analysis of rapidly changing
fibrillar features typical of most tissues. The application here
was for the discrete case of normal and high grade serous malig-
nancies, but the approach could be extended to other cases such
as low grade and borderline tumors.
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