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Abstract. Diffuse photon density wave (DPDW) methodology is widely used in a number of biomedical appli-
cations. Here, we present results of Monte Carlo simulations that employ an effective numerical procedure based
upon a description of radiative transfer in terms of the Bethe–Salpeter equation. A multifrequency noncontact
DPDW system was used to measure aqueous solutions of intralipid at a wide range of source–detector sep-
aration distances, at which the diffusion approximation of the radiative transfer equation is generally considered
to be invalid. We find that the signal–noise ratio is larger for the considered algorithm in comparison with the
conventional Monte Carlo approach. Experimental data are compared to the Monte Carlo simulations using
several values of scattering anisotropy and to the diffusion approximation. Both the Monte Carlo simulations
and diffusion approximation were in very good agreement with the experimental data for a wide range of
source–detector separations. In addition, measurements with different wavelengths were performed to estimate
the size and scattering anisotropy of scatterers. © 2015 Society of Photo-Optical Instrumentation Engineers (SPIE) [DOI: 10.1117/1.

JBO.20.10.105006]
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1 Introduction
The diffuse photon density wave (DPDW) methodology, devel-
oped in the mid-nineties,1–5 consists of probing tissue with fre-
quency modulated near-infrared (IR) light and continues to be of
great interest due to its biomedical applications. The ability to
determine the depth and degree of cutaneous and subcutaneous
tissue damage is critical for medical applications such as diag-
nosis and classification of pressure ulcers, deep tissue injury,
and burns. In practice, it is difficult to differentiate the superfi-
cial stage of pressure ulcers from deep tissue injury that origi-
nates at the bone-soft tissue interface, especially in patients with
darker skin tones, because both conditions manifest themselves
as intact skin with redness or discoloration.6 When diagnosing
burn injury, the depth of tissue damage determines the course of
treatment, yet clinical assessment of burn depth is currently
based on qualitative evaluation of the tissue surface appearance.7

Previously, we have demonstrated the ability to determine the
degree of tissue damage at depths of 3 to 6 mm in acute and
diabetic wounds.8,9 We have reported preliminary results10

obtained within the frequency-domain DPDW methodology
for noninvasive measurements of reduced scattering and absorp-
tion coefficients at the depths of several millimeters. A multi-
frequency (50 to 400 MHz) noncontact DPDW system with
one light source and one detector was constructed so that inci-
dent light is focused onto the tissue surface. The ability to dig-
itally control source–detector separation permits obtaining the
precise intensity and phase data for a virtually unlimited number
of source–detector separations, including small separations,
beyond the verified applicability of the diffusion approximation

of the radiative transfer equation generally used for interpreta-
tion of measurements.

Presently, we apply a novel Monte Carlo procedure reported
previously11 and based on the stochastic simulation of iterative
terms of the Bethe–Salpeter equation in scattering orders for cal-
culating DPDW signals.

Monte Carlo modeling has been widely used to simulate
photon migration in tissue and tissue phantoms,12–16 and is
most often performed using the Monte Carlo modeling of light
(MCML) method described in Ref. 17. This method requires
quite a large sampling size due to the fact that a very small
share of the incident photons is detected. In the approach pre-
sented here, every photon contributes to the detected signal,
thus greatly diminishing the number of modeled photons and
reducing the run-time by order, enabling the simulations to be
performed using commonly available personal computers.

Let a trajectory be simulated using the conventional MCML
algorithm.17 Contributing to the detected signal, the photon
packet is to escape the tissue. Thus, in the conventional
approach, including implementations that use parallel algo-
rithms,18,19 only those trajectories containing escaped photons
contribute to the signal. We use the same procedure for the tra-
jectory evolution. However, within our approach, a trajectory
containing n vertexes produces n inputs into the signal com-
pared with the sole input in the conventional approach. Thus,
we obtain a greater efficiency as compared with the conven-
tional method, since in our approach, we do not wait until a
photon crosses the boundary. It permits to reduce the sampling
volume and computation time by at least an order, while
obtaining plots of the same quality. We generalized our scheme,
alternatively calculating a DPDW signal as a number of photons
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escaping the medium, which is the main feature of a conven-
tional approach. We have shown that the developed algorithm
exhibits a signal-to-noise ratio much higher than the algorithm
based on the count of escaped photons for the same sampling
volume.

Here, we present results of the Monte Carlo calculations,
based upon the Bethe–Salpeter equation for the scattering inten-
sity, and compare them with the measurement data for intralipid
aqueous solutions, as well with the diffusion approximation. We
perform measurements of phase and amplitude of DPDW for
intralipid solutions of different concentrations. Studying param-
eters of the DPDWas functions of the source–detector distance,
we obtain an excellent quantitative agreement between experi-
mental data, and numerical simulations, accounting for the
Fresnel reflection at the boundary in form of the known extrapo-
lated boundary conditions,20 and the diffusion approximation for
a half-space geometry.

The measured DPDWamplitude and phase delay are the fre-
quency-domain parameters. There are two methods for their
determination, as is discussed in Ref. 16: the Fourier transfor-
mation of the time histogram and the short-cut method of
obtaining the frequency-domain parameters,21 based on a solu-
tion of the radiative transfer equation (RTE) in the frequency
domain. Our approach also presents a direct method of calcu-
lation in the frequency domain based on the field-theoretical
approach, applied to the actual experimental setup.22

Further, we model intralipid solutions as suspensions of
monodisperse hard spheres with a given diameter, and we suc-
cessfully fit experimental data obtained at two wavelengths, λ ¼
685 and 830 nm, with the same sphere diameter value. This has
the potential to provide additional information on the size of
inhomogeneities in tissue when performing measurements
with multiple wave lengths. Our simulated numerical results
for multiple concentrations, modulation frequencies, and
wave lengths, supplemented with calculation of scattering coef-
ficients within the Born approximation, are in agreement with
the experimental measurements, and do not require the use of
a fitting parameter.

The paper is organized as follows. In Sec. 2, the system used
for the frequency-domain DPDW measurements is described.
Section 3 contains the formalism of the radiative transfer theory
in terms of the Bethe–Salpeter equation; in Sec. 4, the MC algo-
rithm based upon the simulation of the Bethe–Salpeter equation
is outlined. Section 5 contains the results of simulations and in
Sec. 6, we evaluate the spatial dimensions of scattering inhomo-
geneities compared to the measurements obtained for different
wavelengths of radiation. Section 7 contains our conclusions.

2 DPDW Instrumentation
Our device is capable of measuring a virtually unlimited number
of source–detector separations by using a digital actuator
(resolution ¼ 0.025 mm) to move the incident light across
the surface of the probed medium and a fixed detector fiber
(2.5-mm ferrule diameter). The ability to select the frequency
of modulation up to 400 MHz allows for better determination
of a phase shift at small source–detector separations, where
the shift of the phase becomes difficult to detect using smaller
frequencies. The ability to digitally control the source–detector
separation enables precise selection of the volume and depth of
tissue that will be characterized. We can analyze the experimen-
tal data to extract information from more precise depth ranges
within the overall penetration range of 2 to 10 mm. As

mentioned above, the determination of optical properties at
very small source–detector separations is not possible using a
diffusion-based model. Monte Carlo simulations would enable
the extraction of tissue optical properties at depths where the
diffusion approximation is no longer valid. The setup schematic
is shown in Fig. 1.

Conventional diffusive near-infrared spectroscopy (DNIRS)
utilizes relatively large-sized probes to secure multiple optical
fibers at known distances. One assumption used in conventional
DNIRS when solving the diffusion equation is that the measure-
ment geometry is semi-infinite, i.e., there are no scattering or
reflection events outside of the medium. This assumption is vio-
lated when light is reflected from the surface of the probe back
into the medium, allowing for additional light to reach the detec-
tor and making measurements of optical properties less accurate.
Our modified instrument utilizes lenses for light delivery and
a single detector fiber for the collection of backscattered
light, creating a practically ideal semi-infinite geometry that
is less susceptible to surface reflections. Variations in the
amount of pressure applied during probe placement are also
minimized with our set up. Lastly, correction coefficients are
needed during conventional DNIRS measurements to compen-
sate for discrepancies in optical transmission of different fibers
as well as differences in phase shift within different light source
channels. Our single source, single detector interface eliminates
the need for correction coefficients to adjust measured param-
eters, reducing system variability and minimizing error.

Let the light modulated with frequency ω be incident upon
a medium; the intensity of scattered radiation turns out to be
the sum of DC and AC terms. Let the AC component which
is dependent on time t in the form IAC ∼ cosðωtþ θÞ, where
θ is a displacement of the phase due to the optical path traveled
by light in a medium, be mixed with the reference signal,
Iref ∼ cosðωtÞ. Thus, assuming that the high frequency part is
cut off, there appear two frequency-domain DPDW signals:

EQ-TARGET;temp:intralink-;e001;326;136I ∼ cosðωtþ θÞ cosðωtÞ → cos θ; (1)

if the phase of the reference signal coincides with the phase of
incident modulation, and

Fig. 1 Schematic of the probe assembly. The digitally controlled
actuator allows multiple source–detector separations for better
depth of measurement resolution.
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EQ-TARGET;temp:intralink-;e002;63;478Q ∼ cosðωtþ θÞ cosðωt − π∕2Þ → sin θ; (2)

if it is shifted in phase by a quarter period.
Figure 2 presents the measurement scheme of signals in the

near-IR range in the frequency domain. In our setup, the optical
radiation from a laser diode, which can be modulated with a
frequency from 50 to 400 MHz, is focused onto the surface
of a tissue or a tissue phantom. The light scattered backward
is multiplied in a demodulator by a reference radio signal
(LO signal). As a result, after passage through a low frequency
filter, two DC signals are measured: the I-signal, produced in
D1 demodulator mixing the useful signal with the reference
one with the phase coinciding with the incident modulation
phase, and the Q-signal, for which the phase of the reference
signal is shifted by a modulation wave quarter. The signals

measured give the amplitude A ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
I2 þQ2

p
and phase θ ¼

arctanðQ∕IÞ of the DPDW.
Our device consists of two separate parts: (1) a “module

assembly” containing the opto-electronic components and
(2) an optical probe assembly containing a lens-coupled source
fiber mounted on a digital actuator to carry light from the mod-
ule assembly to the optical system being assessed, and a fixed
detector fiber to carry light from the medium to the module
assembly. The module assembly is enclosed within a standard
12-in. rack with six shielded NIM box modules. The first mod-
ule contains the power supply, which provides four specific DC
voltages (3.3, 5, 12, and 15 V) to adequately power the different
components of our device. The second module contains a lock-
ing programmable sine wave generator (Novatech Instruments,
LPO400A) that can produce sinusoidal radio frequency (RF)
signals ranging from 200 kHz to 400 MHz with 1-Hz steps.
During measurements, frequencies from 50 to 400 MHz were
used. As the modulation frequency changes the impedance of
our electrical components varies, causing inconsistent modula-
tion depths (VPk-Pk/VRMS) across different frequencies. To
compensate for this difference, a digitally controlled variable

gain amplifier (Analog Devices, AD8375) is used to maintain
a constant modulation depth of laser radiation.

The RF signal coming from the variable amplifier modulates
the intensity of the semiconductor laser diodes (685 or 830 nm)
inside the third module. Custom laser drivers are used to mix the
DC bias of our laser diodes with the AC signal from our RF
generator in order to obtain intensity modulated light; using
an integrated circuit (SHARP Microelectronics, IR3CO7) and
bias-tee (Mini-Circuits, TCBT-2R5G+). In the fourth module,
a 4 × 1 MEMs optical switch (DiCon Fiberoptics, Inc.) allows
us to cycle between the two laser diodes and an offset (no light)
position for each individual distance/frequency.

The RF signal coming from the variable amplifier modulates
the intensity of two semiconductor laser diodes (685 or 830 nm)
inside the third module. Custom laser drivers are used to mix the
DC bias of our laser diodes with the AC signal from our RF
generator in order to obtain intensity modulated light, using
an integrated circuit (SHARP Microelectronics, IR3CO7) and
bias-tee (Mini-Circuits, TCBT-2R5G+). In the fourth module,
a 4 × 1 MEMs optical switch (DiCon Fiberoptics, Inc.) allows
us to cycle between the two laser diodes and an offset (no light)
position for each individual distance/frequency. Variable optical
attenuators (Oz Optics, Ltd.) are connected between each laser
diode output and the corresponding optical switch input to pro-
vide control over the intensity of light delivered to the tissue. A
62.5∕125 micron multimode optical fiber is used to transport
light from the optical switch to a lens assembly which first col-
limates and then focuses the laser light onto the medium. The
lens assembly is attached to a digital actuator, which allows the
position of the focused light to be digitally controlled by the user
with source–detector separations ranging from 2 to 20 mm.
Light that is backscattered to the surface is collected by a detec-
tor fiber (1-mm core) directly touching the medium and is trans-
ported to an avalanche photodiode (APD) module (Hamamatsu
C5658) inside the fifth module. Figure 2 shows the optical probe
assembly and set up.

The electrical signal from the APD is passed through two
fixed amplifiers (Mini-Circuits, ZFL-500LN and Mini-Circuits,

DM

0 90

cos( t)

cos( t)
M

DM

cos( t+ ) 0 90

sin( t)
M

RF generator
Laser
diode

photodiode, amp
and

(50 to 400 MHz)

amplifier

under test

board

Q

acquisition

Fig. 2 Schematic setup for measuring signals of photon density waves in the frequency domain.
Amplitude-modulated light from a laser diode is delivered to the system under test through a lens
that can be moved using a digitally controlled actuator. Backscattered light is delivered to an APD
using an optical fiber. The amplified APD signal enters an IQ demodulator (DM) where it is compared
to the reference signal. The I and Q signals are send to a data acquisition board and personal computer.
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ZFL-500HLN). Then the signal is fed to an in-phase/quadrature
(I∕Q) demodulator (MERRIMAC IQM-9B-500), which com-
pares the detected backscattered signal to a reference signal
from the RF generator. The outputs of the I∕Q demodulator
are the cosine and sine low frequency components of amplitude
and phase shift relative to the reference signal. In the sixth and
final module, a data acquisition board (National Instruments,
USB-6251) is used to digitize the output from the IQ demodu-
lator and to control all digital components (RF generator, var-
iable amplifier, optical switch, and actuator driver). A personal
computer equipped with LabVIEW and MATLAB software
provides10 the control interface for the overall system and analy-
sis/fitting of the experimental data to calculate optical properties
and hemoglobin concentrations within tissue.

3 Bethe–Salpeter Equation
The Bethe–Salpeter equation for the product of a pair of spectral
components of complex-conjugated scalar fields, responsible
for the AC part of scattering, can be presented as

EQ-TARGET;temp:intralink-;e003;63;542

Γωðr2; r1jkf; kiÞ ¼ k40G̃ðkf − kiÞδðr2 − r1Þ

þ k40

Z
dr3G̃ðkf − k23ÞΛω

× ðr2 − r3ÞΓωðr3; r1jk23; kiÞ: (3)

The propagator Γωðr2; r1jkf; kiÞ describes a transfer of radia-
tion, incident into point r1 and outgoing at r2, with ki and
kf being the input and output, or final, wave vectors; kij is
the wave vector along ri − rj between two scattering events
in ri and rj, k0 ¼ 2π∕λ is the vacuum wave number, and λ is
the wavelength; function G̃ðqÞ describes the differential cross
section; the single-scattering propagator

EQ-TARGET;temp:intralink-;e004;63;388ΛωðrÞ ¼ Λ0ðrÞ expðiωr∕cÞ; (4)

with Λ0ðrÞ ¼ r−2 expð−μrÞ, is the product of two complex-
conjugated Green’s functions of scalar field, up to the factor
k40, μ ¼ μs þ μa is the extinction coefficient, and c is the
light velocity in the medium.

The optical theorem relates the reciprocal of the scattering
length, or the scattering coefficient μs, and the scattering
cross section; for the scalar field, it takes the form

EQ-TARGET;temp:intralink-;e005;63;280μs ¼ k40

Z
dΩfG̃ðkf − kiÞ: (5)

For the electromagnetic field in the integrand of Eq. (5) an extra

factor ð1þ cos2 θfÞ∕2, should be inserted.
Defining the phase function as the normalized cross section

of scattering

EQ-TARGET;temp:intralink-;e006;63;189pðcos θfÞ¼pðkfkiÞ¼ G̃ðkf −kiÞ∕
Z

dΩfG̃ðkf −kiÞ; (6)

where θf is the angle between kf and ki, i.e., the angle of scat-
tering, we present the Bethe–Salpeter equation as follows:

EQ-TARGET;temp:intralink-;e007;326;752

Γωðr2; r1jkf; kiÞ ¼ μspðkfkiÞδðr2 − r1Þ

þ μs

Z
dr3pðkfk23ÞΛω

× ðr2 − r3ÞΓωðr3; r1jk23; kiÞ: (7)

For pðtÞ, dependent on the angle of scattering, with
t ¼ cos θ, we use the Henyeye–Greenstein phase function.

Let z be the Cartesian coordinate, r ¼ ðr⊥; zÞ, normal to the
boundary of a semi-infinite medium, z > 0. For the normal inci-
dence of a pencil-like beam in the vicinity of r1 ¼ 0 upon the
boundary z ¼ 0 and pencil-like normal backscattering in a small
area σ at source–detector separation ρ ¼ jr1⊥ − r2⊥j, the DPDW
intensity can be defined as

EQ-TARGET;temp:intralink-;e008;326;596

JωðρÞ ¼ σ

Z
∞

0

dz1

Z
∞

0

dz2Γωðr2; r1jkf; kiÞ

× exp½−μðz2 þ z1Þ� þ c:c: (8)

For the point-like radiation source at point rs in form of the
spherical wave, detected at rd also as the spherical wave, the
integrals over z1 and z2 should be changed to

EQ-TARGET;temp:intralink-;e009;326;503σ

Z
∞

0

dz1

Z
∞

0

dz2 exp½−μðz2 þ z1Þ�

→
Z

dr1

Z
dr2Λωðrs − r1ÞΛωðr2 − rdÞ: (9)

Iterating the Bethe–Salpeter equation, one presents the scatter-
ing intensity as a series in scattering orders
EQ-TARGET;temp:intralink-;e010;326;410

JωðρÞ ¼
X∞
n¼2

μns

Z
∞

0

dz1

Z
dr2: : :drnpðt1Þ

×
Yn
j¼2

Λωðrjj−1ÞpðtjÞexp½−μðznþ z1Þ�þ c:c:; (10)

where rj j−1 ¼ jrj − rj−1j, t1 ¼ k̂21k̂i, t2 ¼ k̂32k̂21, and tn ¼
k̂fk̂nn−1 are the cosines of the scattering angle at the first, sec-

ond, and n’th events, k̂i, k̂j j−1, and k̂i are the unit wave vectors,
integrals are taken over the half-space, and the last integration
over transversal coordinates, rn⊥, is performed in the small area
in the vicinity of the detector. The contribution of the single scat-
tering, described by the first term of Eq. (7), is omitted; it
becomes zero for any separation with divided areas of incidence
and detection.

4 Monte Carlo Procedure
Within the stochastic method, the scattering intensity is pre-
sented as a statistical average over a sampling of Nph incident
photons

EQ-TARGET;temp:intralink-;e011;326;169JωðρÞ ¼
1

Nph

XNph

i¼1

JðiÞω ðρÞ; (11)

where the random contribution of the i’th photon JðiÞω ðρÞ is pre-
sented as a sum in scattering orders
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EQ-TARGET;temp:intralink-;e012;63;752JðiÞω ðρÞ ¼
X
n

wðiÞ
n pðtðiÞn Þ expð−μzðiÞn Þ

×
�
cos½c−1ωRðiÞ

n þ θ0�
sin½c−1ωRðiÞ

n þ θ0�
: (12)

Here, wðiÞ
n and zðiÞn are the non-normalized weight and the dis-

tance to the boundary from the point rðiÞn of the n’th scattering

event, respectively, RðiÞ
n ¼ zðiÞ1 þP

j≥2r
ðiÞ
j j−1 þ zðiÞn is the optical

path traveled by the i’th photon suffering n scattering events,
and θ0 ¼ 0 is the initial phase. The upper line yields the I-signal
of the DPDW and the lower one yields the Q-signal.

The weight wðiÞ
n arises from a random value of the integrand

of the multifold spatial integral which is the n’th-order iteration
of the Bethe–Salpeter equation [Eq. (10)]. Calculating it one
simulates a stochastic sequence, or trajectory, of scattering

points r1; : : : rn. The weight w
ðiÞ
n also accounts for the bounded-

ness of a medium and guarantees the observation point to be in
the vicinity of the detection.

Note that studying the photon migration in the time-domain
technique, one must calculate the Fourier transform of a time
histogram12,16 for determining the frequency-domain DPDW
signal. Equation (12), used previously in our work,22 yields
the DPDW signals immediately in the frequency domain.

Using the well-known algorithm of radiative transfer simu-
lation, the relative distance r 0 ¼ jrj − rj−1j is changed to ran-
dom variable ξ ¼ expð−μr 0Þ and cosine t ¼ cos θ of the
scattering angle is changed to χ ¼ 2π∫ t

−1pðt 0Þdt 0; thus, one
transforms the three-dimensional spatial integral over relative
coordinate r 0 ¼ rj − rj−1 in its own coordinate frame for vector
rj−1 as
EQ-TARGET;temp:intralink-;e013;63;397Z

dr 0Λ0ðr 0ÞpðtÞFðr 0Þ ¼ ð2πÞ−1μ−1
Z

1

0

dξ

Z
1

0

dχ

Z
2π

0

dϕF

½−μ−1 ln ξ; tðχÞ;ϕ�; (13)

where Fðr 0Þ ¼ Fðr 0; t;ϕÞ is an arbitrary function of variable r 0
in spherical coordinates, and t ¼ tðχÞ is the inverse transform of
function χ ¼ χðtÞ; afterward the integral is calculated as an aver-
age over a sampling of variables ξ, χ, distributed uniformly in
unit intervals, and azimuth ϕ.

Accounting for the boundedness of the medium, one returns
a photon into the medium if it reaches the boundary due to the
reflection law multiplying the weight factor by the Fresnel

reflection coefficient.23 Thus, the weight wðiÞ
n is the product

of the reflection coefficients and factor ðμs∕μÞn; it turns out
to be unit for μa ¼ 0 and no reflection.

The calculation time depends strongly on the number of
terms nsc in sum [Eq. (12)], as well as on the sampling volume
Nph; in Ref. 14, the number of scattering events was traced up to
nsc ¼ 105. At fixed transport length ltr ¼ 1∕μ 0

s, the number of
scattering events to be taken into account increases for smaller
scattering length ls ¼ ltrð1 − gÞ, i.e., for larger scattering
anisotropy g. Evaluating the argument of the oscillating factor

in Eq. (12) as c−1ωRðiÞ
n ∼ c−1ωnls ∼ 1 we obtain an esti-

mate n ≈ ω−1μ 0
scð1 − gÞ−1.

To compare the present approach with the conventional
approach, we generalize the code and alternatively calculate
the signal of the scattering intensity, as the number of photons
escaping the medium within the lines of the MCML method.17

Namely, we change Eq. (12) to

EQ-TARGET;temp:intralink-;e014;326;752JðiÞMCMLðρÞ ¼
X
n

wðiÞ
n Θ½−zðiÞnþ1�Θ½cos θðiÞnþ1 − cos θmax�;

(14)

where ΘðzÞ is the Heaviside step function; it guarantees that the
n’th-order scattering term will contribute to the signal only if the

photon would escape the medium, zðiÞnþ1 < 0, at the next point.

Function Θ½cos θðiÞnþ1 − cos θmax� guarantees the signal will be

detected within the polar angle θðiÞnþ1 less than θmax in the back-
ward direction. We perform simultaneous calculations for both
definitions of random intensities, in Eq. (12) for the approach
based upon the Bethe–Salpeter equation, and in Eq. (14), for
a conventional approach. We consider the steady-state radiation,
ω ¼ 0.

In Fig. 3, we present the simulation flow chart, describing the
two ways of signal accumulation, either with Eq. (12), or with
Eq. (14), for steady-state radiation, ω ¼ 0. For brevity, we
neglect the inner reflection and adsorption. The calculation
yields two two-dimensional arrays of the n’th scattering
order inputs for a series of discrete values of the source–detector
distances.

Note that the scattering intensity calculated with Eq. (12) can

be interpreted as an average of exponentials exp½−μzðiÞn �, which
describe the extinction of the radiation returning from the
medium to the boundary after the n’th act of scattering, and

Fig. 3 Flow chart for Monte Carlo simulation for a normal backscat-
tering from a half-space; BS denotes the calculation based on the
present approach and MCML-like denotes the calculation based on
the count of escaped photons.
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with Eq. (14) we calculate the mean number of photons escaping
the medium also after n scattering events.

To evaluate statistical noise inherent in the two approaches,
we calculated the coefficient of variation cv, or the relative
standard deviation, for distributions of two random variables,
either JðiÞ0 ðρÞ or JðiÞMCMLðρÞ. We found that the cv value for var-
iables [Eq. (14)] significantly exceeds the value for variables
[Eq. (12)]. Thus, we conclude that the commonly used approach
based upon the calculation of the number of escaping photons
requires much larger sampling than that for the approach based
on the Bethe–Salpeter equation.

For comparison, we calculated the DPDW parameters using
alternative definitions [Eqs. (12) and (14)]. We found that plots
obtained with Eq. (14) for sampling Nph ¼ 106 exhibit the same
level of noise as those obtained within the present approach,
Eq. (12), for sampling Nph ¼ 105. Thus, we conclude that for
the same noise, the MCML-like approach will require about
a 10 times longer run-time than the considered one.

5 Simulation Results
We performed measurements of the phase and magnitude of
DPDW in dependence on the source–detector separation for
intralipid–water solutions, varying the concentration from 0.5
to 2 vol. %, for two modulation frequencies, ð2πÞ−1ω ¼ 100
and 200 MHz, and for two wavelengths of incident radiation,
λ ¼ 685 and 830 nm.

Simulating, we varied the water absorption coefficient from
μa ¼ 0.0045 cm−1 to μa ¼ 0.01 cm−1 for λ ¼ 685 nm with no
noticeable effect, and took μa ¼ 0.04 cm−1 for λ ¼ 830 mn, due
to known data.24

First, we discuss the data for λ ¼ 685 nm. Adjusting diffu-
sion approximation curves, we have varied μ 0

s values in a wide
range; fitting data for the lower concentration, c ¼ 0.5%, with
μ 0
s ¼ 5.5 cm−1 we consider further scattering coefficients to be

proportional to the concentration within the studied range. The
same values of μ 0

s were used for the Monte Carlo simulation.

The model based upon the Bethe–Salpeter equation contains
the scattering length ls as the starting parameter. Thus, with μ 0

s
being fixed, we need to preset the mean cosine g for the deter-
mination of the scattering coefficient, using the definition
μ 0
s ¼ μsð1 − gÞ. We present simulation plots for two mean

cosine values. As is seen, the plots for a fixed value of the
reduced scattering coefficient do not differ noticeably for differ-
ent scattering anisotropy parameters, in line with the diffusion
approximation, within the simulation error. Calculating the
amplitude and phase of the DPDWwithin the diffusion approxi-
mation, we used the closed equation derived in Ref. 23 account-
ing for the boundedness of the medium with the extrapolated
boundary conditions.

In Fig. 4, we present the DPDW phase shift as a function of
separation ρ, in comparison with simulations and with diffusion
approximation results, for modulation frequency ð2πÞ−1ω ¼
100 MHz. The measurement data are shown for two solutions,
with concentrations c ¼ 0.5 or 2%, which are simulated as
media with μ 0

s ¼ 5.5 cm−1 and μ 0
s ¼ 22 cm−1, correspondingly.

The simulation plots are shown for two anisotropy parameters,
g ¼ 0.5 or 0.8.

As a whole, we admit an excellent agreement of measure-
ments, diffusion approximation, and numerical simulations. As
is seen, the Monte Carlo curves as well as the diffusion approxi-
mation quite perfectly follow the experimental data, up to the
range of small separations of order of several transport lengths.
We also admit that when using the transport length as the spatial
scale, one does not observe a noticeable dependence of the stud-
ied DPDW parameter on the scattering anisotropy.

Comparing statistical errors, defined as the standard
deviations related to the diffusion approximation values, we
calculated, as an example, two plots of phase shift for
source–detector separations from 2 to 10 mm and μ 0

s¼1.1mm−1,
using two algorithms [Eqs. (12) or (14)]. We found relative
errors 2.2% and 8.4% with the sampling volume Nph ¼ 104,
and relative errors 0.25% and 0.65% with Nph ¼ 106,
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Fig. 5 Diffuse photon density wave (DPDW) intensity function,

F ðρÞ ¼ lgðρ2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
I2 þQ2

p
Þ against the source–detector separation ρ,

in intralipid solution with concentration open circle—c ¼ 0.5% in com-
parison with the Monte Carlo data for μ 0

s ¼ 5.5 cm−1: closed circle
—g ¼ 0.8 and times—g ¼ 0.5; solid line presents diffusion approxi-
mation for μ 0

s ¼ 5.5 cm−1. Modulation frequency ð2πÞ−1ω ¼ 200 MHz,
λ ¼ 685 nm.
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respectively. As is seen, the errors are significantly smaller for
our algorithm.

In Fig. 5, the measurement data, diffusion approximation
plot, and Monte Carlo simulation results for function FðρÞ ¼
lgðρ2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
I2 þQ2

p
Þ for a modulation frequency of ð2πÞ−1ω ¼

200 MHz, which are usually exploited for presentation of an
intensity decrease with the source–detector separation for a
half-space geometry, are also presented. Experimental data
are given for concentration c ¼ 0.5%, in comparison with the
numerical result for a model with μ 0

s ¼ 5.5 cm−1. Plots with
anisotropy parameters g ¼ 0.5 and g ¼ 0.8 are practically iden-
tical; it means that for the fixed transport length the light scat-
tering does not depend on the scattering anisotropy, beyond
the relationship μ 0

s ¼ μsð1 − gÞ.
We admit once more an illustrative agreement for data

obtained with measurements, simulations, and with the diffusion
equation. Some deviations are observed at quite small separa-
tions, where the determination of local intensity itself becomes
uncertain, both experimentally and theoretically.

The similar plots on the source–detector separation have
been obtained earlier18 using parallel computing successfully
comparing the Monte Carlo simulation and the diffusion
approximation, presenting results for isotropic scattering and
zero modulation frequency. Here, we presented a demonstrative
agreement between the Monte Carlo simulation, the diffusion
approximation, and measurements, simultaneously, for different
scattering anisotropies.

6 Optical Parameters of Intralipid Suspension
Let the water–intralipid solution be described as a suspension of
N identical intralipid spherical particles with diameter D ran-
domly distributed in points R1; : : : ;RN in a uniform medium.
The local permittivity εðrÞ of such a suspension can be pre-
sented as

EQ-TARGET;temp:intralink-;e015;63;107εðrÞ ¼ ε0 þ δε
XN
i¼1

θ

�
D
2
− jr − Rij

�
; (15)

where δε ¼ εs − ε0 is the permittivity mismatch, εs is the intra-
lipid permittivity, ε0 is the solvent permittivity, and θðD∕2 − rÞ
is the Heaviside step function.

Within the Born approximation, the scattering cross section
G̃ðqÞ is the Fourier transform of a pair correlator of random local
permittivity

EQ-TARGET;temp:intralink-;e016;326;686G̃ðqÞ ¼ ð4πÞ−2
Z

drhΔεð0ÞΔεðrÞi expðiqrÞ; (16)

where ΔεðrÞ ¼ εðrÞ − ε0 and the angular brackets denote the
statistical average. For the hard-sphere suspension model
[Eq. (15)], one can easily calculate the Fourier transform of
the permittivity correlator as

EQ-TARGET;temp:intralink-;e017;326;599G̃ðqÞ ¼ ð4πÞ−2ρsδε2Θ̃2ðqÞSðqÞ; (17)

where ρs ¼ NV−1 is the number density of intralipid spheres, V
is the volume of the solution, and Θ̃ðqÞ ¼ 4πq−3½sinðqD∕2Þ −
ðqD∕2Þ cosðqD∕2Þ� is the Fourier transform of the Heaviside
step function. The structure factor SðqÞ originates from the
hard-sphere correlations; for dilute suspensions, with intralipid
concentrations from 0.5 to 2%, one can certainly put
SðqÞ ¼ 1. The density ρs determines the concentration c ¼
ð4π∕3ÞðD∕2Þ3ρs.

Thus, the optical theorem permits to present the scattering
coefficient in the closed form

EQ-TARGET;temp:intralink-;e018;326;457μs ¼ ð4πÞ−2k40ρδε2
Z

dΩfΘ̃2ðkf − kiÞð1þ cos2 θfÞ∕2:
(18)

A similar relationship is valid for the reduced scattering coef-
ficient
EQ-TARGET;temp:intralink-;e019;326;379

μ 0
s ¼ ð4πÞ−2k40ρδε2

Z
dΩfΘ̃2ðkf − kiÞ

× ð1 − cos θÞð1þ cos2 θfÞ∕2: (19)

Equations (18) and (19) present the scattering coefficients in the
Rayleigh–Gans approximation, which turned out to be a reason-
able estimate even for solutions with a larger permittivity mis-
match and smaller wavelength.25,26

Given the refractive indices of water n0 ¼ 1.33 and intralipid
ns ¼ 1.47, we get δε ¼ 0.39 for the permittivity mismatch, and
calculate within the Born approximation the scattering and
transport lengths for varying sizes of scatterers. The results
are given in Table 1. The last line with close values of scattering
coefficients presents the extrapolation of data27 obtained for the
10% intralipid solution using the Mie equation.

Performing simulations for λ ¼ 685 nm, we took μ 0
s ¼

11 cm−1 and g ¼ 0.8; as seen from Table 1, these values corre-
spond to the monodisperse 1% suspension of intralipid particles
0.5 μm in diameter, in agreement with the manufacturer’s
specifications. In its turn, in the case of longer wavelength,
λ ¼ 830 nm, for the same 0.5-μm diameter intralipid particles,
we get μ 0

s ¼ 8.73 cm−1 for the same 1% concentration. These
results permit us to fix also the anisotropy parameter g.

In Figs. 6 and 7, the simulation data on the DPDW phase and
intensity obtained for the IR radiation with λ ¼ 830 are pre-
sented; for the reduced scattering coefficient, we took μ 0

s ¼
4.37 cm−1 for concentration c ¼ 0.5% and μ 0

s ¼ 8.74 cm−1

Table 1 Scattering and reduced scattering coefficients, in cm−1, and
scattering anisotropy g ¼ cos θ of intralipid-water 1% suspension for
different scatterer diameters D. Permittivity mismatch Δε ¼ 0.39.

D (μm)

λ ¼ 685 nm λ ¼ 830 nm

μs μ 0
s cos θ μ 0

s cos θ

0.3 27.4 12.7 0.53 10.45 0.38

0.4 40.4 10.6 0.74 9.95 0.61

0.5 55.5 11.1 0.80 8.73 0.75

0.6 70.4 10.6 0.85 9.16 0.80

0.7 84.4 9.5 0.89 9.04 0.84

0.8 99.7 9.4 0.90 8.07 0.88

0.9 114 8.7 0.92 7.81 0.90

1.0 129 8.2 0.93 7.69 0.80

Van Staveren et al.27 40 10.2 0.74 8.3 0.67
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for c ¼ 1% concentration, calculated for the suspension model
of the 0.5-μm diameter intralipid spheres within the Rayleigh–
Gans approximation. For absorption, we took μa ¼ 0.04 cm−1

due to Ref. 24.
Thus, for λ ¼ 830 nm, we obtain a fair agreement of mea-

surements, Monte Carlo simulations, and diffusion approxima-
tions, without any fitting parameters; we determine the value of
the reduced scattering coefficient using the knowledge of the
scatterer size, obtained in the experiment with λ ¼ 685 nm.

7 Conclusion
Thus, we performed the Monte Carlo simulations using the
developed approach, varying the parameter of scattering
anisotropy and comparing the results with measurements as
well as with the diffusion approximation predictions. We
observed a fair agreement across all three methods.

The Bethe–Salpeter equation, which is a microscopic justi-
fication of the radiative transfer equation, contains well-known
assumptions, such as the scalar field model, ladder diagram
approximation, and artificial phase function. Thus, the demon-
strated agreement between experimental data and plots of the
DPDW phase and amplitude calculated on the basis of the
Bethe–Salpeter equation once more reaffirms these assumptions.

The diffusion approximation equations indicate that if one
scales the extinction in terms of the transport length, the descrip-
tion of radiative transfer becomes universal and does not have
any dependence on the scattering anisotropy. Comparing Monte
Carlo simulation data, diffusion approximation results, and
measurement data, we have shown that this is true well beyond
the expected applicability of the diffusion approximation with
proper accounting for the boundary conditions, at least for
a half-space. We performed simulations for mean scattering
cosine g ¼ 0.5 and g ¼ 0.8, and did not find a noticeable differ-
ence between corresponding phase and intensity plots, apart the
well-known universal dependence on g contained in the relation-
ship between scattering and reduced scattering coefficients.

We performed measurements and simulations for two differ-
ent near-IR wavelengths. We find that both measurements and
calculations yield supplemental information on the size of scat-
tering inhomogeneities. Given the size of scatterers, we achieved
a fair agreement between measurements and simulations with-
out the use of fitting parameters.

In our modeling scheme, every scattering event contributes to
the detected signal. This makes our approach much more effi-
cient as compared to the commonly used Monte Carlo algorithm
wherein one simulates the migration of an incident photon until
it reaches the detector. Performing comparative simulations for
the two approaches, we have shown that the conventional
approach based on a count of photons escaping the medium
requires a sampling volume that is an order larger than the
one required for our approach based upon the Bethe–Salpeter
equation.

Simulating the series over scattering orders, one must satisfy
rigid requirements on the number of scattering orders taken into
account. Calculating one plot of the DPDW parameters depen-
dent on the source–detector separation distance takes about
10 min for several thousand scattering events and sampling
volume of 105 photons. The procedure presented permits calcu-
lation of the DPDW parameters by means of a commonly avail-
able personal computer in a run-time which gives our method
the potential for real-time monitoring of biomedical practices.

Our approach, based upon the theoretical-field Bethe–
Salpeter equation, may be very appropriate for simulation of
light migration while accounting for the electromagnetic nature
of radiation, i.e., polarization effects and optical anisotropy of
tissues. Our approach can also be readily applied for various
geometries of tissues, and in the future a multilayer medium
model may be implemented for studying the optical properties
of multilayer tissues. We hope the considered MC algorithm
may also be useful for tissue studies with the temporal domain
method.
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