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Abstract. Over two decades, the Monte Carlo technique has become a gold standard in simulation of light
propagation in turbid media, including biotissues. Technological solutions provide further advances of this tech-
nique. The Intel Xeon Phi coprocessor is a new type of accelerator for highly parallel general purpose computing,
which allows execution of a wide range of applications without substantial code modification. We present a
technical approach of porting our previously developed Monte Carlo (MC) code for simulation of light transport
in tissues to the Intel Xeon Phi coprocessor. We show that employing the accelerator allows reducing computa-
tional time of MC simulation and obtaining simulation speed-up comparable to GPU. We demonstrate the per-
formance of the developed code for simulation of light transport in the human head and determination of the
measurement volume in near-infrared spectroscopy brain sensing. © 2015 Society of Photo-Optical Instrumentation Engineers

(SPIE) [DOI: 10.1117/1.JBO.20.8.085002]

Keywords: photon transport; simulation; Monte Carlo technique; scattering; many-integrated core architecture; Intel Xeon Phi.

Paper 150267R received Apr. 21, 2015; accepted for publication Jul. 6, 2015; published online Aug. 7, 2015.

1 Introduction
Monte Carlo (MC) simulations have become a gold standard
tool in biomedical optics since presentation of classical MC
modeling of light (MCML) code developed by Wang et al.1

The simulations can be efficiently employed in situations
where application of theoretical approaches, such as diffusion
theory, is limited. This occurs when studying light propagation
at comparatively small distances in biotissues, which are char-
acterized by high anisotropy factor (g > 0.8).

The MCML code provides modeling of light transport in
multilayered heterogeneous tissues with plane-parallel geometry
of layers.1 Later Boas et al. created an MC modeling system
called “tMCimg” to address complex geometry of layers based
on cubic voxelization of the considered medium;2,3 however,
such approaches do not provide an accurate account of photon
refraction at the layers boundary. A similar approach with cubic
voxelization was proposed by Berrocal et al., when simulating
light transport in sprays.4 Li et al. described an MC code
“MOSE” for light propagation in complex geometry media
based on a triangle mesh model.5

Various efforts have been made to reduce simulation time,
such as algorithm modification and the use of different hardware
accelerators. Several modifications were proposed to enhance
the MC algorithm. Zolek et al. applied approximate calculation
of logarithmic and trigonometric functions,6 Wang et al. pro-
posed a hybrid model of MC method and diffusion theory,7

and Alerstam et al. employed a “white MC model” for time-
resolved photon migration.8 However, all these acceleration
techniques are applied at the expense of the precision or the flex-
ibility of the MC simulation method.

An alternative approach consists in employing potential of
different accelerators. Luu et al. developed an MC modeling
algorithm based on the MCML code for field-programmable
gate array (FPGA)9 for the case of plane-parallel geometry.
The increase in speed was about 28 times relative to a single
threading CPU. However, employment of FPGA as a simulation
accelerator has one significant drawback: high complexity of the
development process. Thus, a reported rough estimate of job
complexity measured in personal effort is 12 person-months
(1 person-year). Alerstam et al. created MC code with the
help of compute unified device architecture (CUDA) technology
for a GPU10 for simulation of photon migration in semi-infinite
homogeneous scattering media. Presented GPU implementation
is about 1080 times faster than the conventional CPU code. The
GPU code “gpu-MOSE” developed by Li et al.11 is an improved
version of “MOSE”5 based on a triangle mesh model. The
increase in speed is about 10 times relative to a single threading
processor. As one can see, the efficiency of GPU use for the MC
simulation in case of complex geometry is much less compared
to a simple case of semi-infinite homogeneous media. Note that
for achieving such acceleration, one should significantly recon-
struct the code according to GPU optimization rules. A more
complex approach, which employs a peer-to-peer network of
CUDA GPUs for performing MC simulation, is presented by
Doronin and Meglinski.12 Using both distributed computing
and GPU acceleration allows a significant reduction in simula-
tion time.

In this paper, we present a technical approach of porting MC
simulation code to Intel many-integrated core (MIC) architec-
ture. The CPU and cluster versions of the MC code considered
are previously described in this paper13 and were employed for
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simulation of optical diffuse spectroscopy signal in noninvasive
brain sensing. In brief, this code is based on principles of stan-
dard MCML implementation and can be used for modeling of
light transport in heterogeneous turbid media with complex
geometry of layers. A boundary of a layer is described with
a triangulated surface (or surfaces). An intersection search algo-
rithm employs a bounding volume hierarchy (BVH) tree as
accelerating structure. In our code we avoid using a classical
Russian roulette approach, setting a minimal photon weight
threshold instead. Additionally, we input a class of detectors
and store information about the photons passed through it.
For storing photon trajectories, a data rectangular grid in the
three-dimensional (3-D) space is employed.

One of the highest computational-cost applications of MC
technique in biomedical optics is simulation of near-infrared
spectroscopy (NIRS) brain sensing.2,3,11,13–15 Usually, simula-
tion of photon transport to distances of several centimeters is
required for this problem, resulting in hundreds of scattering
events to be simulated for each trajectory. In this respect, early
papers (see, for example, Ref. 2) considered elementary photon
movement as a movement for a transport length instead of
movement for a free path length, which allowed reduction in
the number of processed scattering events for a factor of
1∕ð1 − gÞ. For head tissues, the g value varies between 0.8
and 0.99 in accordance with different literature,16 which may
result in speed increase up to 100 times when applying this
approach. However, this approach may provide incorrect results
when calculating radiation parameters close to the point of inci-
dence of probing radiation. Additionally, application of this
approach is incorrect when the layer thickness is smaller than
the transport length. For example, cerebral spinal fluid (CSF)
is characterized by relatively small scattering coefficient, and
thus a diffuse regime cannot be reached within it. An accurate
account of each scattering event offer the ability to overcome
these problems, while modern achievements of computational
hardware allow achievement of acceptable calculation times.
The latter approach was employed in our simulations to generate
photon trajectory maps, which enable an evaluating distribution
of probing radiation reaching detector within the human head,
thus determining measurement volume.

2 Many-Integrated Core Implementation of
Monte Carlo Technique

Intel MIC architecture (or Intel MIC) is a multiprocessor com-
puter architecture that combines many Intel x86 CPU cores onto
a single chip. Prototype products were announced and released
to developers in 2010. Commercial products named Intel Xeon
Phi coprocessor are now available. Like a GPU, Intel Xeon Phi
can be used as a hardware accelerator for traditional programs,
and it was initially designed for that purpose. The key advantage
of this architecture is that any developer can build and run
source code on a coprocessor using standard existing program-
ming tools and methods, such as OpenMP and MPI. The same
program code written for Intel MIC products can be compiled
and executed on a standard Intel Xeon processor. Familiar pro-
gramming models remove training barriers, allowing the devel-
oper to focus on the problems rather than software engineering.
This is especially important for research teams in applied fields.

However, only programs with a high degree of parallelism
can be efficiently accelerated with the Intel Xeon Phi copro-
cessor. Code vectorization is an additional advantage. Note that
these requirements are also actually for efficient acceleration of

code execution with GPU. MC simulation fits these require-
ments, and so is an appropriate example for porting to an Intel
MIC coprocessor.

There are several programming modes employed for code
development for coprocessors. The first one, so-called offload
mode, allows use of the Intel Xeon Phi as an additional accel-
erator for CPU. This mode is similar to CUDA employment
while programming for GPU. The main code is executed on
a processor, and some critical parts of it are sent to the copro-
cessor and executed there. In this mode, one needs to control
data transfers between CPU and Xeon Phi, and therefore the
source code should be modified. The second mode allows exe-
cution of the program on a coprocessor only, without using a
CPU. A special compilation procedure for using this mode is
required. The third available mode, called symmetric mode,
consists of simultaneous employment of both CPU and Xeon
Phi. In this mode, the same code is executed on both devices,
while communication between them is performed by means of
MPI commands. If the code is already optimized for execution
on a cluster, it can be used in this mode without any modifica-
tions. In all modes, for getting parallel code within the scope of
each device, OpenMP technology can be employed.

Modern Intel MIC coprocessors contain nearly 60 cores with
x86 architecture; each core can simultaneously execute four
threads (nearly 240 threads in general). Moreover, 64 KB L1
and 512 KB L2 cache memory are located on each core. An
accelerator also has several gigabytes (6 or 8) GDDR5 on-
board memory, but the latency for this memory is much greater
compared to CPU RAM.

There are at least two significant differences between the
CPU and the coprocessor. First, an accelerator has many more
threads that can be simultaneously executed. Consequently, the
program for a coprocessor should be more parallel, and one
should employ synchronization much carefully. Second,
memory access time for an accelerator is significant; therefore,
it is important to efficiently use facilities of hardware caches
to reduce memory access time. Another useful feature of
Intel Xeon Phi is support of long vector instructions. How-
ever, in MC algorithm, there are no significant facilities for
vectorization.

3 Model Parameters
In simulations, we employed a human head model consisting of
six layers, namely scalp, fat, skull, CSF, gray matter, and white
matter. The boundaries of these layers are adopted from real
head geometry obtained from magnetic resonance imaging
(MRI) data. A total of 2,186,446 triangles were employed to
describe the layer boundaries. This approach allowed us, on
the one hand, to create model geometry close to that of a real
head and, on the other head, to avoid consideration of numerous
small areas with varying optical properties that could signifi-
cantly increase computational time. Layer boundary geometries
employed in simulations are shown in Fig. 1. The optical proper-
ties of the layers adopted from the literature were stated earlier in
this paper13 and are summarized in Table 1, together with layer
thicknesses.

The simulation of the NIRS system consisted of simulation
of photon transport from a source to detectors situated on the
surface of a human head. Simulation was performed for two
wavelengths of NIR range corresponding to different values
of absorption coefficients of oxy- and deoxyhemoglobin similar
to operation of real NIRS systems.17 The source–detector
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separation was chosen as 20, 30, and 40 mm, which corresponds
to typical distances used in experiments.

4 Results and Discussion

4.1 Efficiency of Many-Integrated Core
Implementation of Monte Carlo

As mentioned above, there are several ways to port the parallel
program to a coprocessor without modifications. However, as

any hardware device, Intel Xeon Phi has its own specifics.
Therefore, to obtain high-performance results, one should take
into account the accelerator’s architecture features in the course
of code adaptation.

We implement several optimized versions of our code in
order to reduce computational time (Figs. 2 and 3). For the
experiments, we employ a test system with two Intel Xeon
X5680 (6 cores, 3.33 GHz, 32 GB RAM, )and an Intel Xeon
Phi SE10X coprocessor (60 cores, 240 threads, 1.1 GHz, 8 GB
RAM).

Our previously described code13 (original version) was used
as a reference. To compare the efficiency of the same code
executed at the accelerator, we chose the coprocessor-only
mode.

The MC method is initially highly parallel, so the main aim
of the optimizations was to reduce memory latency. Our first
optimization was changing the data structure for storing photon
trajectories. Initially, the total number of photon trajectory nodes
in each grid cell was stored in a 3-D grid array. However, this
approach required large memory size for each thread, which was
unacceptable for Intel MIC with hundreds of threads; instead,
the photon trajectory nodes were stored as an array of grid coor-
dinates for each thread (list version).

In the version of the code for CPU, we tried to avoid any
thread synchronization by the use of copies of shared arrays
that resulted in employing additional memory. To reduce

Fig. 1 Triangulated shapes of human head layer boundaries employed in simulations: (a) skin, (b) skull,
(c) gray matter.

Table 1 Optical properties of human head layers at λ ¼ 830 nm.

Head layer l (mm) μs (mm−1) μa (mm−1) n g

Scalp 2.1 14.3 0.025 1.4 0.86

Fat 3.2 10 0.1 1.4 0.9

Skull bone 6.9 25 0.02 1.55 0.94

Cerebral spinal fluid 2.5 1 0.004 1.33 0.99

Gray matter 5.8 25 0.02 1.4 0.96

White matter 60 26.7 0.02 1.4 0.85

Fig. 2 Execution time of the different versions of Monte Carlo (MC)
simulation code (105 photons) at CPU.

Fig. 3 Execution time of the different versions of MC simulation code
(105 photons) at Intel Xeon Phi coprocessor.
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memory requirements, we returned to synchronization scheme
as the second optimization. It should be noted that employing
synchronization can cause reduced performance efficiency,
especially in the case of hundreds of simultaneous threads.
However, in MC simulations, synchronization events happen
at different moments in time for different threads due to the sto-
chastic base of the method, and this does not significantly affect
performance.

The third optimization was directed to reduce memory access
time by intersection search. A BVH tree structure was updated
to store vertex data as a single continuous memory region. The
aim of this optimization was to more effectively employ hard-
ware cache.

As a result, after implementation of all optimizations, the
code performance was 1.8 times faster for the CPU version
and 3.4 times faster for MIC version.

If we compare performance of the single-threading CPU
version and MIC version (240 threads) in the test simulation
for a real human head geometry based on MRI data,13 the latter
is 11 times faster. If we compare results for the multithreading
CPU code and the code for Intel Xeon Phi (Fig. 4), the MIC
program is nearly two times faster than the program, which
is executed on a 6-core CPU. Therefore, if we had an optimized
version of code for multicore CPU initially, we would obtain
two times acceleration by using Intel Xeon Phi just after code
recompilation.

Additionally, we implemented the symmetric version of our
code, which can be executed on both CPU and coprocessor at
the same time. The version that employs all available computa-
tional resources (two Intel Xeon CPUs and Intel Xeon Phi)
simultaneously was expected to provide maximal acceleration.
Employing a coprocessor with two CPUs simultaneously pro-
vides nearly two times faster performance compared to two
CPUs only, without significant code modifications. An addi-
tional advantage of the symmetric version is that it can be
executed on a heterogeneous cluster with Intel coprocessors
at its nodes without modifications.

Another important issue is the efficiency of the considered
MIC architecture against the widely employed GPU. For perfor-
mance comparison, we developed the GPU version of our code.
As a base, we took the last optimized version and rewrote
it employing CUDA technology with an additional optimiza-
tion—overlapping computations and CPU–GPU memory trans-
fers. For testing purposes, NVidia Tesla M2070 was employed.
As seen from Fig. 5, the GPU version is slightly faster than the
version for Intel Xeon Phi, but this difference is inconsiderable
(nearly 9% for 107 photons).

To provide a cost-efficiency comparison of GPU and Intel
Xeon Phi, we should mention that the launch price of NVidia
Tesla M2070 in 2011 was nearly $4000 and for Intel Xeon Phi
SE10X in 2012 it was nearly $2500. Currently, both accelerators
are no longer manufactured but accelerators with comparable
performance from Intel and NVidia show comparable prices
(from $2000 to $5000).

Another option for achieving two times acceleration is either
employing 2 CPUs with 6 cores or 1 CPU with 12 cores. How-
ever, both cases are not cost-efficient, because the price of one
Intel Xeon X5680 (3.33 GHz, 6 cores) is near $1600 and the
price of a 12-core CPU, such as Intel Xeon E5-2697 v2
(2.7 GHz), is more than $2600.

4.2 Monte Carlo Simulations of Near-Infrared
Spectroscopy Brain Sensing

Determination of measurement volume is an important problem
of NIRS brain sensing. Unfortunately, it is impossible to accu-
rately determine the measurement volume in experiment
because it requires knowledge of photon trajectories, which
travel from source to detector. The photon average trajectory
approach can provide solutions for so-called “banana-shaped”
photon trajectories (see, for example Ref. 18); however, they
can be obtained only for simple geometries. Finite-difference
techniques (for example, widely used NIRFAST code)19 can
be a solution for complex geometry cases; however, they cannot
provide the opportunity to trace individual trajectories, provid-
ing only intensity distribution within a medium. In this connec-
tion, MC technique appears to be the most suitable for aims of
NIRS brain sensing.

In this framework, we simulated photon trajectories for
selected human head geometry, and probing wavelengths of
830 and 900 nm usually employed in NIRS brains sensing.
A typical 3-D photon trajectory map for source–detector sepa-
ration of 40 mm and wavelength of 900 nm is presented in
Fig. 6.

Unfortunately, 3-D presentation of the map is not suitable for
accurate analysis. For demonstration of abilities of NIRS brain
sensing in selected geometry, we built two-dimensional cross
sections of the map in the plane based on radiation incidence
vector and source–detector vector for different separations and
wavelength (Fig. 7). Cross sections of layers boundaries shown
in the same figure allow evaluation of the penetration depth of
probing radiation, thus determining the measurement volume of

Fig. 4 Execution time of the MC simulation code at different
hardware.

Fig. 5 Speed-up of the MC simulation code for GPU (NVidia Tesla
M2070, 448 threads) and MIC (Intel Xeon Phi SE10X, 240 threads)
against CPU (Intel Xeon X5680, 6 threads).
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the NIRS system. This figure shows that probing radiation
reaches the gray matter layer, thus proving the ability of the
simulated NIRS system to monitor brain activity. On the other
hand, one can see that for smaller source–detector separations,
the majority of trajectories do not reach gray matter, so increas-
ing this distance leads to in-depth shift of measurement volume.

Here, we demonstrated the abilities of the developed tech-
nique in simulation of NIRS brain sensing for complex geom-
etry based on diagnostic MRI data. Accurate quantitative study
of the measurement volume is the subject for our future work.

5 Conclusion
In this paper, we discuss the details of hardware acceleration of
simulation of photon migration in complex-shape medium by
means of modern technology solutions. In particular, we show
that the Intel Xeon Phi allows one to increase the efficiency of
MC simulation with arbitrary geometry of layers, providing 11
times increase in speed over traditional single-thread CPU code.
While this result is comparable with GPU, the key advantage of
developing software for Intel MIC architecture in contrast to
GPU is the ability to develop an executable version with min-
imal modifications of the original source code optimized for a
multicore CPU. Furthermore, to work with the Intel Xeon Phi
one needs to know only “standard” technologies for program-
ming on multicore CPUs (such as OpenMP and MPI) and does
not require learning new ones, unlike CUDA for GPU.

We demonstrated the abilities of the developed simulation
product for solution of the problem of determination of meas-
urement volume in NIRS brain sensing. The study was per-
formed for MRI-based multilayer geometry that allowed, on
the one hand, accounting for anatomical features and, on the
other hand, avoiding computational-cost consideration of small

Fig. 6 Three-dimensional (3-D) photon trajectory map for source–
detector separation of 40 mm and wavelength of 900 nm.

Fig. 7 Two-dimensional (2-D) photon trajectory maps for source–detector separations of 20 (top), 30
(middle), and 40 (bottom) mm for (a) 830 and (b) 915 nm.
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optical inhomogeneities. Simulations allowed us to demonstrate
in-depth shift of measurement volume with increase in source–
detector separation.
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