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Abstract. We introduce a metric in graph search and demonstrate its application for segmenting retinal optical
coherence tomography (OCT) images of macular pathology. Our proposed “adjusted mean arc length” (AMAL)
metric is an adaptation of the lowest mean arc length search technique for automated OCT segmentation. We
compare this method to Dijkstra’s shortest path algorithm, which we utilized previously in our popular graph
theory and dynamic programming segmentation technique. As an illustrative example, we show that AMAL-
based length-adaptive segmentation outperforms the shortest path in delineating the retina/vitreous boundary
of patients with full-thickness macular holes when compared with expert manual grading. © 2016 Society of Photo-

Optical Instrumentation Engineers (SPIE) [DOI: 10.1117/1.JBO.21.7.076015]
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1 Introduction
Optical coherence tomography (OCT) is widely utilized for
many medical imaging applications, especially for diagnosing
retinal diseases.1 The thickness of individual layers in the retina
is an important quantitative biomarker for diagnosis, manage-
ment, and prognosis of ocular and neurodegenerative diseases.
As manual segmentation of retinal layer boundaries visualized
on OCT images is often too time-consuming and subjective for
utilization in a clinical setting, several automated segmentation
algorithms have been developed.2–24 Despite progress and devel-
opment of algorithms applicable to images for normal eyes and
for eyes with limited pathology, segmentation of retinal layers
with significant pathology is still a challenging problem. In
addressing the problem of dealing with diseased retinas with
severe deformation, graph-based segmentation frameworks have
been among the most promising.7,11–16,20

Finding the shortest path through a graph, often implemented
via Dijkstra’s algorithm,25 is the core engine behind many
graph-based automated segmentation methods, including our
popular graph theory and dynamic programming (GTDP)
framework.2,7,11 For healthy retinas [Fig. 1(a)]26 with layers that
cross each A-scan only once the shortest path metric works well.
However, the shortest path metric cannot faithfully represent
certain classes of pathology in retinal images. An example is
the case of a full-thickness macular hole, which is defined as
a lesion with interruption of all layers of the neurosensory retina
that develops in the fovea27 [Fig. 1(b)]. In these pathologic eyes,
the retina/vitreous boundary can cross an A-scan more than
once, negating the applicability of Dijkstra’s algorithm (Fig. 2).

The main contributions of this paper are to

1. demonstrate the shortcomings of the popular shortest
path metric and the importance of utilizing length-
adaptive metrics in design of graph-based layer seg-
mentation algorithms,

2. introduce a new length-adaptive graph search metric,
applicable to a wide variety of layer segmentation
problems in medical images,

3. introduce an algorithm for implementing this metric in
the graph-search framework, and

4. show, as a practical example, how this metric can be
utilized in an automatic algorithm for segmenting the
retina/vitreous boundary in OCT images of eyes with
full-thickness macular holes.

2 Methods
When applying a general graph search technique to image boun-
dary segmentation, each pixel in the image is converted to a
node in the graph. Nodes in our graph are connected to their
surrounding eight neighbors via a positive weighted edge.
Edge weights between neighbors are assigned based on a feature
between the two nodes (pixels) the edge connects. This feature is
then converted into a weight via a mapping function. The cost of
traversing an edge expresses how likely this edge corresponds to
a boundary.28 Examples of features include, but are not limited
to, pixel intensity and the gradient between the neighboring pix-
els. Once the graph of nodes and edges is constructed, bounda-
ries (layers) can be found by searching for paths through the
graph. In order to find a path through the graph, search algo-
rithms seek paths that minimize a cost metric (e.g., sum of
the edge weights in a path also known as the total path length).
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2.1 Length-Adaptive Graph Search

In the shortest path problem, given a graph with a set of vertices
(nodes) and positive weighted edges, the goal is to find a path
that connects a start vertex to an end vertex by minimizing the
total path length

EQ-TARGET;temp:intralink-;e001;63;253Path Length ¼
XN−1

i¼1

wi; (1)

where N is the total number of nodes and wi is the i’th edge
weight in the path. Following the principle of mean arc length29

and normalized cuts,30 in our proposed length-adaptive method
the goal is to find a path that minimizes the following metric,
which we call the AMAL,

EQ-TARGET;temp:intralink-;e002;63;148AMAL ¼ 1

N − 1

 XN−1

i¼1

wi

!
x

; (2)

where x is a constant. In the case where x is one, Eq. (2) sim-
plifies to the mean arc length of the path.

To demonstrate the effect of varying the value of exponent in
Eq. (2), we have segmented the same image with four different
values of x, shown in Fig. 3. Utilization of a graph search metric
which is completely independent of path length [i.e., x ¼ 1,
Fig. 3(a)] may result in erroneously long paths. Increasing
the value of x causes the length-adaptive algorithm to become
more sensitive to the total distance of the path. This results in a
shorter overall path length of the segmentation, which, when
segmenting the retina/vitreous boundary of a full-thickness mac-
ular hole, reduces the accuracy. Searching for a path with an
AMAL calculated with an exponent greater than 1 in Eq. (2)
provides a balance between the total distance of the path and
the mean arc length of the path.

2.2 Implementation of the Adjusted Mean Arc
Length Metric

Unfortunately, unlike the classic shortest path-based segmenta-
tion, which can be implemented efficiently using Dijkstra’s
algorithm,2 implementation of length-adaptive graph search
using the AMAL metric is more challenging. Wimer et al.29

developed two methods for finding the path with the lowest
mean arc length in weighted graphs: an iterative approach

Fig. 1 (a) Comparison of a macular OCT image centered at the fovea in a healthy retina; (b) to a retina
with a full-thickness macular hole.

Fig. 2 Comparison of the shortest path and length-adaptive graph search. The function in (a), which may
represent a normal retinal layer boundary, crosses each A-scan only once. Thus, the shortest path per-
fectly matches the contour of the target object, as this path goes through theminimum number of vertices,
which have the lowest weights (b). However, the nonfunction in (c), which may represent retina vitreous
boundary in a full-thickness macular hole case, crosses some A-scans more than once. In this case, the
shortest path metric does not match the contour of the object (d), because the alternative path going
through a fewer number of vertices, even though they may have higher weights, has a lower overall
path length. On the other hand, due to path length normalization, the length-adaptive search is less sen-
sitive to the geometric path length, and correctly segments both features (e and f).
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that finds an approximation to the solution and an exact solution.
These two methods could potentially be modified to find the
path with the lowest AMAL, but they both assume the graph
is acyclic, where the search space prevents visiting a vertex
more than once. Because we want to segment arbitrary shapes
(Fig. 4), edges between neighboring nodes must be bidirec-
tional, which creates cycles in the search space. Without cycles,
the segmentation would only be able to search in one direction
along the horizontal axis of the image, either left-to-right or
right-to-left. Thus, in order to segment arbitrary shapes, our
overall graph search space, but not the final segmentation,
must contain cycles.

In this paper, to find an estimate of the path with the lowest
AMAL in a graph, we created a priority queue sorted by the
AMAL value of visited nodes. For each node in the graph,
we recorded the number of neighbor nodes, the edge weights
to the neighbor nodes, the mean arc length of the path up to
that node, the previous node, the number of previous nodes
in the path, and the AMAL of the path up to that node. The
priority queue was initialized with the start node, which had
an AMAL of zero, and we set the AMAL value of all other
nodes to infinity. We then modified the iterative Dijkstra’s
method outlined by Chen et al.31 to greedily search for the
path with the lowest AMAL. At every iteration, we removed

Fig. 3 Illustration of the effect varying x in Eq. (2) has on retina/vitreous boundary segmentation in a
patient with a macular hole. (a) Segmentation with x ¼ 1.0 (i.e., the mean arc length of the path).29

(b) Segmentation with x ¼ 1.02 (value used in validation). (c) Segmentation with x ¼ 1.25.
(d) Segmentation with x ¼ 1.75.

Fig. 4 Illustration of a graph that prevents cycles in the search space.
Black arrows represent attempted segmentation and the white
squares represent the image to be segmented. Because the graph
search space does not contain cycles, there cannot be bidirectional
edges between neighboring nodes. Therefore, correct segmentation
of nonfunctional shapes becomes impossible (red circle). To prevent
this problem, we allow our graph search space to contain cycles.
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the node with the lowest adjusted mean arc length from the top
of the queue and made it the current node (Fig. 5 line 4). We
generated a new AMAL for each neighbor of the current
node (Fig. 5 line 6) using the equation

EQ-TARGET;temp:intralink-;e003;63;438AMALnew ¼ ðNiw̄i þ wijÞx
Ni þ 1

; (3)

where w̄i is the mean arc length of the path up to the current
node, wij is the weight between the current node and the neigh-
bor node, Ni is the current node’s number of previous nodes,
and x is the exponential factor. We then checked each neighbor
node to see if it satisfied one of four conditions. If the new
AMAL was lower than the old AMAL, the mean arc length,
AMAL, previous node, and number of previous nodes were
all updated and the neighbor node was placed in the queue
(Fig. 5 lines 7 to 8). If the new path to the neighbor superseded
its stored path, we updated the mean arc length, AMAL, pre-
vious node, number of previous nodes and placed the neighbor
node in the queue (Fig. 5 lines 9 to 16). If the new path to the end
node (used for automatic endpoint initialization, see below)
superseded its stored path, we looked at all the nodes connected
to the end node, found the one that produced the lowest AMAL
for the end node, and updated the end node accordingly (Fig. 5
lines 17 to 21). The algorithm terminated when there were no
more nodes left in the queue. To determine the path with the
lowest AMAL, we started at the end node and traced backward
through previous nodes until the start node was reached.

2.3 Representative Application in Retinal Optical
Coherence Tomography Layer Segmentation

The length-adaptive graph search algorithm described is general
and applicable for segmenting virtually any layered feature.
Indeed, optimal utilization for specific applications requires cus-
tomization. One such application of this new graph search algo-
rithm is segmentation of the retina/vitreous boundary in OCT

images of patients with full-thickness macular holes, which is
detailed in the following.

We began the segmentation process by denoising the 8-bit
grayscale OCT images using a previously described sparsity-
based denoising technique.32 Next, we calculated three gradient
images, two horizontal gradient images, and one vertical
gradient image by convolving the image with [1;1; 1;1; 1;0;
−1;−1;−1;−1;−1], [−1;−1;−1;−1;−1;0; 1;1; 1;1; 1], and
[1; 1; 1; 1; 1; 0;−1;−1;−1;−1;−1] (MATLAB notation) filters.
We then linearly normalized the pixel values in these three gra-
dient images to be between 0 and 1. We performed nonmaxi-
mum gradient suppression along each column for the vertical
gradient image and each row for the horizontal gradients images
using the following equation:

EQ-TARGET;temp:intralink-;e004;326;328Gi ¼
�
Gi if sgnðGiþ1 − GiÞ − sgnðGi − Gi−1Þ < 0;
−1 otherwise;

(4)

whereGi is the gradient at index i in the column/row. Finally, we
computed the edge weights between adjacent nodes in the graph
as2

EQ-TARGET;temp:intralink-;e005;326;237wij ¼ 2 − ðGi þ GjÞ þ 1e−5; (5)

where wij is the edge weight between nodes i and j, Gi is the
gradient at node i, and Gj is the gradient at node j. If node jwas
above node iwe used the [1;1; 1;1; 1;0;−1;−1;−1;−1;−1] gra-
dient, if node j had the same y-coordinate as node i we used the
[1; 1; 1; 1; 1; 0;−1;−1;−1;−1;−1] gradient, and if node j was
below node i we used the [−1;−1;−1;−1;−1;0; 1;1; 1;1; 1]
gradient.

In order to not erroneously segment the bright hyperreflec-
tive retinal pigment epithelium (RPE) layer in place of our target
retina/vitreous boundary, we performed an additional prepos-
sessing step before running the length-adaptive graph search.
We began by creating a binary image to isolate the nerve
fiber layer (NFL) and RPE using the technique described by

Fig. 5 Pseudocode for the length-adaptive graph search algorithm (left). Functions which are called in
the algorithm (update_neighbor and find_low_AMAL) are described in pseudocode on the right.
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Chiu et al.7 Next, we divided each binary image horizontally
into two equal halves and processed them separately. We
obtained pilot estimates of the RPE and NFL layers by using
Dijkstra’s algorithm to segment each halved section twice.
We performed a third segmentation if over 80% of the columns
in the binary image contained more than two black to white tran-
sitions. This third segmentation was put in place to account for
posterior hyaloids (Fig. 6), which in a binary image can appear
like another retinal layer. We removed segmented nodes from
the graph after finding each layer, and the remaining graph
was segmented again. The NFL was chosen to be highest
layer in the image if two layers were detected, or the middle
layer if three layers were detected.

After determining the estimate for the NFL, we increased
edge weights in the graph that were above and below the
NFL estimate proportional to their vertical distance from the
NFL estimate using

EQ-TARGET;temp:intralink-;e006;63;404wx;y ¼ wx;y þ absðy − NFLxÞ × 0.05; (6)

where wx;y represents the non-zero edge weights for all vertices
connected to the node (x; y) and NFLx represents the y-location

of the NFL estimate in column x. We only increased the edge
weights of nodes that were in the left and right third of the
image, as we assumed the macular hole was in the center
third of the image.

We added two more nodes to the graph for automatic end-
point initialization, a start node and an end node. The start node
was defined to be neighbors with every pixel in the first column
of the image, and every pixel in the last column of the image was
neighbors with the end node. The weights between the start/end
node and its neighbors were set to the minimum weight value of
1e−5. A flow chart of the segmentation process is shown
in Fig. 7.

Based on testing performed with our training data set, we set
the exponential parameter x of our AMAL metric in Eq. (2) to
1.02. For the specific application of retinal layer segmentation,
we added two extra conditions in the implementation of the
length-adaptive graph search algorithm to decide whether or
not to add a neighbor node to the priority queue. If the neighbor
node’s new AMAL was lower than its stored AMAL, we also
checked to see if one of the following constraints was violated
before updating corresponding parameters and placing the
neighbor node in the queue:

• the neighbor node was already in the path, or

• the neighbor node was closer than the lateral or axial pixel
resolution to a set of nodes already in the path.

We evoked the first constraint to prevent cycles in the final
result [Fig. 8(a)]. As noted, it is important that the graph search
space is able to contain cycles for representing arbitrary shapes,
but no cycles are desired in the final segmentation. The second
constraint was evoked to prevent adding unnecessary nodes to
the segmentation, e.g., to prevent the segmentation from folding
back on itself [Fig. 8(b)]. If neither of these constraints were
violated, the appropriate properties of the node were updated
and this node was placed in the queue. Otherwise, the node
was not added to the queue.

Fig. 6 Image of full-thickness macular hole with posterior hyaloid,
denoted by orange arrows, in the vitreous.

Fig. 7 Graphical representation of the segmentation process. The original image is shown in (a), which is
denoised to create image (b). We then obtain a rough estimate of the location of the nerve fiber layer (top
white band) and retinal pigment epithelium (bottomwhite band) using the binary image (c) as described in
Sec. 2.3. From (b) we also create the gradient images (d). Next, we create the graph (e) from the gradient
images and modify the edge weights based on the pilot estimation of the nerve fiber layer location from
(c). Finally, we perform the length-adaptive graph search (green) and shortest path search (magenta) to
segment the retina/vitreous boundary (f).
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2.4 Dataset

This study was approved by the Duke University Health System
Institutional Review Board in accordance with Health Insurance
Portability and Accountability Act regulations and the standards
of the 1964 Declaration of Helsinki. Ten different patients with
full-thickness macular holes were imaged with a Heidelberg
Spectralis (Heidelberg Engineering, Heidelberg, Germany)
OCT system using a radial scan pattern centered on the
fovea. Twenty-four images were collected from each patient.
Nine of the 10 sets of images were 512 × 496 (width and height)
pixels, with pixel resolution 11.06 to 11.65 μm laterally and
3.87 μm axially. The other set of images was 1024 × 496
with a lateral pixel resolution of 5.73 μm and an axial pixel res-
olution of 3.87 μm. Five images from each patient were ran-
domly selected to segment. These images were manually
segmented by a clinical retina specialist and compared with
the previous shortest path segmentation and our length-adaptive

segmentation. We derived all algorithm parameters from a sep-
arate training set of images from subjects with full-thickness
macular holes. None of the training images were used in vali-
dation. For a fair comparison, all preprocessing steps were per-
formed for both shortest path and length-adaptive techniques.

3 Results
A qualitative comparison of the two segmentation methods is
shown in Fig. 9. The top row shows the original images,
from four separate patients with full-thickness macular holes,
and the bottom row shows the segmentation for the length-adap-
tive (green) and shortest path (magenta) segmentations. These
results show that the length-adaptive method more closely fol-
lows the contours of the macular holes, while the shortest path
algorithm misses them entirely.

For each B-Scan, we calculated the mean distance between
each pixel location on the manual segmentation and the closest
point on the automatic segmentations. Then, we computed the
average, standard deviation, and median of these mean pixel dis-
tances for all 50 B-Scans as a measure of error. The mean, stan-
dard deviation, and median of the error for the length-adaptive
and shortest path algorithms are shown in Table 1.

The mean, standard deviation, and median of the time needed
to segment the macular hole images with the shortest path
method were 0.043, 0.013, and 0.039 s, respectively. The
mean, standard deviation, and median of the time needed to seg-
ment the images with the length-adaptive method were 4.53,
10.47, and 2.65 s, respectively. Timing results were obtained
on a 64-bit desktop computer with an Intel Core i7-4930K
3.4 GHz CPU. Our implementation of the length-adaptive algo-
rithm was not optimized to run quickly and we expect the exe-
cution time could be reduced by applying parallel processing

Fig. 8 Illustration of when neighbor nodes were not added to the prior-
ity queue in the length-adaptive graph search algorithm. (a) Node
circled in red that would not be added to the priority queue because
it causes a cycle. (b) Node that would not be added to the priority
queue because it is too close to other nodes in the segmentation.

Fig. 9 Segmentation of the retina/vitreous boundary of four patients with full-thickness macular holes
using shortest path length and length-adaptive algorithms. The top row are the original images and
the bottom row are the segmented images. Magenta denotes the classic shortest path segmentation
and green denotes the proposed length-adaptive segmentation. Where the magenta is not visible
the two methods segmented the same line. The far right image shows an example where the length-
adaptive algorithm failed to successfully segment the retina/vitreous boundary in the lower-left part of
the macular hole.
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techniques. We could also use segmentation results from images
in the same volume to limit the search region to reduce the
processing time and improve segmentation accuracy. A similar
method was used by Xu et al.33

Further, as an illustrative example, to qualitatively demon-
strate that the length-adaptive method can also be used on non-
pathological images, we segmented the retina/vitreous boundary
with x ¼ 1.02 in a normal subject from the dataset distributed by
Srinivasan et al.26 This image was not part of our training data-
set. Results of this segmentation are shown in Fig. 10 with the
original image on the left and the segmented image on the right.
As expected, the results of these two techniques for segmenting
such simple features are virtually identical.

As a demonstrative example of how the length-adaptive
graph search can be used to segment other layers in retinal
OCT images, we have segmented the inner aspect of the
RPE in two separate patients with age-related macular degener-
ation (AMD) (Fig. 11). In order to segment these images, we
obtained an estimate of the RPE using the same method
described earlier. We then increased the weights between
edges above the RPE estimate to prevent the segmentation of
the NFL. When creating the gradient images, we used
[1;1; 1;0;−1;−1;−1], [−1;−1;−1;0; 1;1; 1], and [1; 1; 1; 0;
−1;−1;−1] filters. Finally, we changed the exponent from
Eq. (2) to be 1.4. Optimization of an AMAL-based drusen seg-
mentation algorithm and careful validation is outside the scope
of this preliminary paper and will be addressed in our future
publications.

4 Discussion
We have demonstrated the utility of a new metric in graph search
called AMAL. Applications of this metric are general and it can
be potentially applied to virtually any layer (or closed contour
feature that can be converted to a layer34) segmentation problem
including segmentation of intravascular,35 esophageal wall,36

epithelium,37 or epidermal38 OCT images. In this first report,
we demonstrate its application for segmentation of the retina/

Fig. 10 Segmentation of the retina/vitreous boundary of a normal subject without a full-thicknessmacular
hole. The left image is the original and the right image is the segmented image. Magenta denotes the
shortest path segmentation and green denotes the length-adaptive segmentation. Where the magenta is
not visible (most of the pixels in this case) the two methods segmented the same line.

Fig. 11 Segmentation of the inner aspect of the RPE in patients with age-related macular degeneration
using shortest path length and length-adaptive algorithms. The top row are the original images and the
bottom row are the segmented images. In the segmented images, magenta denotes the classic shortest
path segmentation and green denotes the proposed length-adaptive segmentation. Where the magenta
is not visible the two methods segmented the same line.

Table 1 Error comparison of shortest path and length-adaptive seg-
mentation to expert manual grader for 50 images.

Method
Mean
(pixels)

Standard Deviation
(pixels)

Median
(pixels)

Shortest path 39.98 10.85 42.31

Length-
adaptive

3.40 5.74 1.31
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vitreous boundary in patients with full-thickness macular holes.
The data obtained from the length-adaptive segmentation could
be used to estimate parameters such as macular hole height and
base width. Our new method outperformed our popular GTDP
method,2 which is based on the shortest path metric, when com-
pared to expert manual grading.

The length-adaptive algorithm we have presented is similar
in theory to other graph search algorithms like Dijkstra’s short-
est path and Wimer’s lowest mean arc length path in that we are
searching through a graph for a path that minimizes a cost met-
ric. As we explained in Sec. 2, what separates our algorithm
from these two algorithms is the utilization of AMAL that is
a compromise between total path length and mean arc length
metrics. Moreover, since neither Dijkstra’s or Wimer’s tech-
niques can utilize this new metric, we proposed a new graph
search algorithm. This algorithm is an extension of the algo-
rithm used by Chen et al.,31 which is only applicable for the
shortest path metric, modified to find the path with the lowest
AMAL (Fig. 5) and account for cycles in the search space
(Fig. 8). Because our algorithm performs a greedy search, it
is not guaranteed that the solution produced is globally optimal.
However, as demonstrated in our experiments, this shortcoming
does not limit utilization in practical applications.

We note that although the length-adaptive method performed
better than the shortest path algorithm in our experiments on
pathologic eyes, it is not able to successfully segment every fea-
ture or image. For example, in the far right image in Fig. 9 the
segmentation line does not perfectly adapt to the contour of the
macular hole in the region with very weak gradient, suggesting
that there is still room for improvement. The length-adaptive
algorithm spans a significantly larger search space as compared
with the shortest path algorithm because of its insensitivity to
path length. In many cases, such as segmenting smooth struc-
tures like the ganglion cell layer in normal eyes, it is not rea-
sonable to replace the shortest path method, which can be
implemented efficiently via Dijkstra’s algorithm, with an
AMAL-based method. Thus, we expect that comprehensive
software for segmentation of different anatomic and pathologic
features in the retina will utilize both of the shortest path and
AMAL metrics in its algorithm. In this framework, AMAL is
only used for segmenting pathologic structures representing
nonfunction features [e.g., Fig. 2(b)], while other structures
are segmented using the shortest path method. This is an attain-
able goal because algorithms for detecting diseased eyes26 or
deformed or missing layers39 from retinal OCT image have
already been developed.

We also note on the reliance of our algorithm on a few empir-
ically selected algorithmic parameters. We should emphasis that
since selection of the algorithm’s parameters is based on a data-
set completely separate from the dataset in which the perfor-
mance of the algorithm is evaluated upon, the results of this
study are generalizable. We should also note that such empirical
selection of segmentation parameters is explicitly or implicitly
utilized in most of the other OCT layer segmentation
algorithms.2,13,14,40 Alternatively, automated algorithms pre-
sented in previous work15 can be utilized to pick the parameters
that reduce the error between manual and automatic segmenta-
tion boundaries in the training dataset.

In conclusion, we expect the AMALmetric to become a stan-
dard component of future graph-based automated segmentation
methods. While efficient algorithms for implementing graph
search using the shortest path metric are available online,

there is a significant need for an algorithm to perform graph
search using the AMAL metric. Thus, we have distributed freely
online a general application open source software package
coded in C++ for segmenting graphs using the length-adaptive
algorithm. This software can be found in Ref. 41. Extending the
test dataset and application to other types of pathology in oph-
thalmic images is part of our ongoing work.
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