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Abstract. We present an approach for automatic diagnosis of tissue biopsies. Our methodology consists of
a quantitative phase imaging tissue scanner and machine learning algorithms to process these data. We illus-
trate the performance by automatic Gleason grading of prostate specimens. The imaging system operates on the
principle of interferometry and, as a result, reports on the nanoscale architecture of the unlabeled specimen. We
use these data to train a random forest classifier to learn textural behaviors of prostate samples and classify each
pixel in the image into different classes. Automatic diagnosis results were computed from the segmented
regions. By combining morphological features with quantitative information from the glands and stroma, logistic
regression was used to discriminate regions with Gleason grade 3 versus grade 4 cancer in prostatectomy tis-
sue. The overall accuracy of this classification derived from a receiver operating curve was 82%, which is in the
range of human error when interobserver variability is considered. We anticipate that our approach will provide a
clinically objective and quantitative metric for Gleason grading, allowing us to corroborate results across instru-
ments and laboratories and feed the computer algorithms for improved accuracy. © 2017 Society of Photo-Optical

Instrumentation Engineers (SPIE) [DOI: 10.1117/1.JBO.22.3.036015]
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1 Introduction
Prostate cancer is the second leading cause of cancer-related
death among men in the United States,1,2 after lung cancer.
In 2015, 220,800 men were diagnosed with prostate cancer,
accounting for 26% of the total number of new cancer cases,
and 27,540 men are projected to eventually die from the
disease.2 Prostate health is evaluated using different formats,
including a detailed medical interview, a physical examination
with digital rectal examination (DRE), or a prostate-specific
antigen (PSA) blood test. Abnormal DRE results or PSA levels
above the normal value of 4 ng∕ml might lead to a prostate
biopsy to confirm whether these abnormalities are due to
cancer.3 The excised tissue samples are fixed using formalin
and then embedded in paraffin wax, which is sectioned into
thin slices using a microtome. These sections are then deparaffi-
nized and stained with hematoxylin and eosin (H&E) dye for
microscopic examination by the pathologist. If the pathologist
suspects the presence of cancer, based on the absence of the
myoepithelial or basal cell layer, cancer severity is assessed
using the Gleason grading system.4,5 The Gleason score is
the sum of two Gleason grades corresponding to the two most
prominent disease patterns present in the examined tissue. The
Gleason grade, which typically ranges from 3 to 5, measures the
degree of glandular separation and, thus, cancer aggressiveness.

The glands in Gleason grade 3 carcinoma are smaller and more
closely packed than in a normal prostate, resulting in a reduced
separation between them. In Gleason grade 4, the glands display
fusion, sometimes creating what appears to be large glands con-
taining multiple lumens, also known as the “cribriform” pattern.
In Gleason grade 5, glands are very poorly differentiated with
sheets of epithelial cells seen in the stroma, which is connected
with poor disease outcome. Although the Gleason grading sys-
tem has undergone a few revisions since it was first established,
it continues to remain a strong prognostic indicator. The Gleason
score is linked to several clinical endpoints, including progres-
sion to metastatic disease and patient survival.6 It also influences
the treatment decisions made by the physician.7 Accurate dis-
crimination between Gleason grade 3 and 4 is critical as it trig-
gers the switch between active surveillance and aggressive
treatment.8

Although the diagnosis of prostate biopsies by a trained
pathologist is currently considered to be the “gold standard,”
the technique suffers from several shortcomings. First, for
Gleason grading, the samples are stained using H&E, aiming
to target different components in the prostate biopsies, e.g.,
nuclei, cytoplasm, and nucleoli. The protein-rich regions, basic
in nature, are stained pink while those that are acid rich become
blue. Other markers with better specificity have also been
developed.9–11 The need for using these markers stems from
the fact that many biopsies are nearly transparent under bright-
field microscopy inspection. Therefore, exogenous factors must
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be introduced to enhance the contrast. This process takes time,
requires expertise, and sacrifices the intrinsic properties of the
sample. Furthermore, the staining poses a significant challenge
for improving the throughput of the system using modern com-
puting algorithms. An experienced pathologist can handle the
variation in the concentration of the dye, staining skill, and
color balance. However, it requires additional processing and
assumptions before inputting to a computer to automate the
process. Significant effort has been spent in producing reliable
automatic Gleason grading based on the histological H&E
images. Such efforts can be divided into two categories: classi-
fication- and segmentation-based techniques. Methods in the
first group use various features from stained images to produce
Gleason scores without the need for image segmentation. These
features include textures from H&E images12 and multispectra
images.13 Methods in the second group produce a Gleason score
in two stages. In the first stage, label maps of the biopsies are
produced from the H&E images. Then, morphological features
are extracted from these maps. Finally, subsequent classifiers are
deployed to produce the final Gleason grade. Naik et al.14 built
statistical models of the likelihood for the class of a pixel given
its color and location in the training set. Nguyen et al.15 used the
(L, a, b) color space and various constraints on the relative
arrangements of tissue regions sections to refine the segmenta-
tion map. To achieve automatic histology using H&E images,
preanalytical variables, such as exposure time, magnification,
illumination spectra, dye concentration, must be normalized
to produce color consistency.16,17 Also, there is a lack of a uni-
versal agreement on how the normalization should be performed
and what the correct normalization result should be.18

Understanding these obstacles, several groups have tried to
do diagnosis from label-free slices. Muller et al.19 used the opti-
cal attenuation coefficient measured using needle-based optical
coherence tomography as a tool for detection of prostate cancer.
They showed that the optical attenuation coefficient was signifi-
cantly higher in malignant tissue compared to benign prostate
tissue. Uttam et al.20 used optical path length information to
quantify the depth-resolved density alteration of the nuclear
architecture as a tool for early prediction of cancer progression.
Spectroscopy methods have also been used to examine the bio-
chemical information of the tissue at a molecular level for differ-
ent pathologies in vitro. Crow et al.21 demonstrated the use of
Raman spectroscopy to differentiate between benign samples,
benign prostatic hyperplasia (BPH) and prostatitis, from prostate
cancer at an accuracy of 86%. Combining Fourier transform
infrared (FTIR) spectroscopy with bright-field microscopy,
Kwak et al.22 improved the accuracy of automatic segmentation
and demonstrated an area under the curve (AUC) of at least 0.97
in a binary classification problem between cancer versus non-
cancer cases. It was later shown that FTIR spectroscopy can
be used to provide a better prediction of prostate cancer recur-
rence, compared to two widely used tools, Kattan nomogram
and CAPRA-S.23 However, the spectroscopic information in
FTIR is obtained at the expense of spatial resolution (typically
above 10 to 15 μm) and extremely slow acquisition speed. Fehr
et al.24 suggested using magnetic resonant imaging as a noninva-
sive tool for automatic classification of Gleason scores.

Recently, quantitative phase imaging (QPI)25–31 has emerged
as valuable tool for rendering high contrast of unlabeled trans-
parent samples. The contrast of QPI is due to the real part of the
refractive index of the sample retrieved through interferometric
settings. Therefore, the measurement is very robust to change in

the illumination condition, e.g., illuminating variation, allowing
high repeatability and seamless translation across measurement
sites. Previously, many QPI methods utilized laser illumination
due to a requirement for long coherence length in “traditional”
interferometry. The laser illumination generates random speckle
pattern,32 which suppresses structural details of the biopsy.
Recently, a combination between white-light illumination and
“common-path” interferometry26–28,33 has solved this problem.
This method, referred to as spatial light interference microscopy
(SLIM),27 allows the refractive index information to be captured
at a diffraction-limited resolution with nanoscale accuracy and
excellent temporal stability. In Ref. 34, it was reported, for the
first time, the potential of QPI to classify cancerous areas versus
benign ones in prostate biopsies, using the mean and median of
the phase distribution. Furthermore, light scattering parameters
measured in the prostate stroma using QPI have been used
to predict the aggressiveness of intermediate grade prostate
cancer.35

Here, we introduce a combination of advanced machine
learning algorithms with SLIM label-free imaging and describe
the first label-free tissue scanner with automatic prostate cancer
diagnosis. The SLIM system can image at 12.5 SLIM images
per second with 40× magnification and 4 megapixels∕frame.
Using a tissue microarray (TMA), containing more than 300
cores, we segmented different regions from prostatectomy sam-
ples into multiple classes (gland, stroma, and lumen) with high
accuracy. Segmented label maps are further used to obtain sev-
eral morphological features of the glands of the cores, e.g., dis-
tortion, variation of gland areas, etc. One of our advantages over
other techniques is the ability to extract physics-related features,
e.g., stroma anisotropy, which characterizes the directional
dependence of the light scattering when it propagates through
stromal areas of the tissue. Using these features, we were able
to separate regions with Gleason grade 3 and Gleason grade 4
with an AUC of 0.82.

2 Material and Methods

2.1 Label-Free Tissue Scanner

Let T ¼ eiϕ be the transmission of the biopsy and ϕ be the opti-
cal phase shift introduced by the sample. We have ϕ ¼
hΔnð2π∕λÞ. Here, λ is the central wavelength of 552 μm, Δn
is the refractive index difference, and h is the sample thickness.
Our system measures ϕ using a commercial inverted phase con-
trast microscope (Axio Observer, Z1, Zeiss Inc.) connected to an
external SLIM module (CellVista SLIM Pro, Phi Optics, Inc.).
A schematic of our optical setup is shown in Fig. 1(a). Under
uniformly coherent illumination, the imaging field at the output
port of the microscope is a magnified version of the transmis-
sion, i.e., Ut ¼ T. This total field is Fourier transformed into Ũt
by the lens L1 onto the surface of a spatial light modulator
(SLM) (Boulder Nonlinear Inc.). On this surface, the spatial
spectrum Ũt is spatially separated into two different compo-
nents, the nonscattering component, Ũo, and the scattering
one, Ũs ¼ Ũt − Ũo. The nonscattering component Ũo matches
the support of the condenser phase annulus and the phase ring of
the phase contrast objective. Meanwhile, the scattering compo-
nent ~Us covers the rest of the aperture of the objective. These
Fourier components are inversely Fourier transformed by a sec-
ondary lens L2 into two fields, the nonscattering field, Uo, and
the scattering field, Us. The field Uo spatially averages the total
field Ut into Uo ¼ hUtir. The scattering field, Us, on the other
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hand, is given asUs ¼ Ut −Uo. The SLM further retardsUo by
nπ∕2, with n ¼ 0;1; 2;3, resulting in four interference intensities
on the camera plane of

EQ-TARGET;temp:intralink-;e001;63;503Iðnπ∕2Þ ¼ jeinπ∕2Uo þ Usj2
¼ jUoj2 þ jUsj2 þ 2jUoUsj cosðΔϕ − nπ∕2Þ: (1)

These four intensities are captured by a high-resolution 10-bit
5.5-megapixel sCMOS camera (Andor Inc.). The phase is
extracted using the following procedures. First, we compute
the phase difference between two fields as ΔϕðrÞ ¼ argðUsÞ −
argðUoÞ ¼ argf½Ið0Þ − IðπÞ� þ i½Iðπ∕2Þ − Ið−π∕2Þ�g. Here, i is
the imaginary unit. The ratio between the amplitude of these
two fields βðrÞ ¼ jUsjðrÞ∕jUojðrÞ is obtained from the follow-
ing relations: ½Ið0Þ þ IðπÞ�∕2 ¼ jUoj2 þ jUsj2 and ½Ið0Þ −
IðπÞ�∕4 ¼ jUojjUsj. See Ref. 36 for more details. Finally, the
phase of the total field is calculated from β and Δϕ as

EQ-TARGET;temp:intralink-;e002;326;752ϕ ¼ arctanf½β sin Δϕ�∕½1þ β cos Δϕ�g; (2)

where we dropped the coordinate r for brevity.
Figure 1(b) shows four intensity images for a small section of

a prostate biopsy. The first inset is the original phase contrast
image at zero external phase modulation while the last inset
is the bright-field image with a phase modulation of 3π∕2.
Figure 1(c) is the extracted phase map for ϕ from these inten-
sities. All details in the intensity images are still visible in the
SLIM image with very good contrast. More importantly, the
SLIM image is not susceptible to variation in the illumination,
as it only captures intrinsic information of the sample.

2.2 Imaging the Tissue Microarray

The TMA is provided by the Co-operative Prostate Cancer
Tissue Resource from the College of Medicine of University
of Illinois at Chicago. It consists of 368 prostate cores (one
core per patient) with several diagnosis results, including
normal, BPH, high-grade prostatic intraepithelial neoplasia
(HGPIN), and Gleason scores varying from 2þ 2 to 5þ 5.
After being deparaffinized, unstained cores were first imaged
using SLIM under a 40× magnification. The phase images are
stitched together to generate one high-resolution image per core.
Each such image has 10;000 × 10;000 pixels with a pixel ratio
of 14 pixels per micron. Afterward, the cores were stained with
H&E and scanned by a bright-field tissue scanner. The results
of all cores can be found in Fig. 2(a). Figures 2(b) and 2(c) are
a zoomed-in H&E image of a core and its corresponding SLIM
image, respectively.

Figure 3 displays three H&E [Fig. 3(a)] and SLIM [Fig. 3(b)]
images of three cores in the TMA. To provide ground truth for
automatic diagnosis, different regions of interest (ROIs) in each
core are studied and color-coded by certified pathologists for the
diagnosis results using H&E images. In Fig. 3, green color indi-
cates normal areas, red color indicates HGPIN, and blue color
indicates tumors. Based on these annotations, corresponding
regions in the SLIM images are extracted and further used
for the automatic diagnosis.

Fig. 1 Optical setup and working principle: (a) SLIM optical setup,
(b) four intensity images and the phase map computed by combining
four frames, and (c) the resulting SLIM image.

Fig. 2 H&E image of the whole TMA with diagnosis results. (a) H&E image of the whole TMA slide con-
sisting of 368 cores. (b) A zoomed-in H&E image of a prostate core with annotations. The region high-
lighted in green represents normal glands, region in blue is Gleason grade 3 prostate cancer glands, and
region in red corresponds HGPIN. (c) A zoomed-in SLIM image of the same core as in (b), obtained prior
to staining. Morphological features in the H&E image are recapitulated by SLIM.
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2.3 Automatic Diagnosis Framework

To obtain the automatic diagnosis from SLIM images, we use an
approach summarized in Fig. 4. First, texture-based features are
extracted for each pixel in the SLIM image and passed into a
classifier to do automatic segmentation based on pixel classifi-
cation. Each pixel is assigned into one of three following classes
(gland, stroma, and lumen). Second, using the label map
obtained from the previous step, morphological and phase-
based features are evaluated for all glands in the current field
of view and its surrounding stroma. These features are later
passed into a subsequent classifier to produce diagnosis results,
as described below.

2.4 Feature Extraction from Phase Images

To capture the texture expression of the biopsies, we use the
“texton” framework proposed by Julesz37 and later expanded
by Leung and Malik.38,39 The framework has demonstrated
great success in solving several computer vision problems,
e.g., material classification and characterization,38–41 due to its
ability to accurately imitate mechanism of human’s textural
perception.37,42,43 In this work, the framework is used to train
a texton dictionary [see Fig. 5(a)] from a set of training images
and extract a feature vector for each pixel as follows.

First, each SLIM image ϕ is convolved with a Leung–Malik
filter bank,43 consisting of L filters h1; : : : ; hL to generate L fil-
ter responses ϕ � h1; : : : ;ϕ � hL. The bank consists of 90 filters,
L ¼ 90, with 10 symmetric ones and 80 directional ones, ori-
ented at eight different angles over five scales. The directional
filters are generated from the first- and second-order derivative
of Gaussian kernels with an elongation factor of 3. After this
step, each pixel has a feature vector of dimension 90. A
phase image in the training set generates totally 3072 × 3072

feature vectors. To reduce the size of the training set, a subset
is formed from four million feature vectors randomly selected
from a larger pool of all feature vectors, accounting for
0.18% of the total number of feature vectors. Finally, the K-
mean clustering algorithm with K ¼ 50 is applied on this subset
to divide it into K clusters whose centers are chosen as textons.
Here, the value of K is chosen to balance between the complex-
ity of the model and the estimation error, i.e., avoiding cases
where there is not enough textons to capture texture variation
or those when some textons come from clusters only associated
to a very small number of filter responses.

In feature extraction, given an input image (I), one wants to
obtain a set of descriptors for each pixel in the image. Figure 5(b)
shows how to calculate these descriptors. First, filter responses
of the image I to the Leung–Malik filter bank are computed.
Then, we apply vector quantization to associate the filter

Fig. 3 H&E images versus SLIM images. (a) H&E images of three cores in the TMA. Each core in the
training data set includes an annotation of diagnosis results. (b) Corresponding SLIM images of those
in (a).

Fig. 4 Automatic diagnosis scheme of steps from an SLIM image to a diagnosis result.
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response at each pixel to the closest texton in the dictionary
obtained in the previous step. For each pixel i, let us use ti
to denote the index of the closest texton. By definition, ti
can take one of the K following indices {1;2; : : : ; K}. The out-
put of this step is an indexing map where each pixel is assigned
to a number, the index of the closest texton. Using this indexing
map, for each pixel i, we further obtain a histogram of texton
indices evaluated over pixels in its neighborhood. To control
the trade-off between the richness of texture information and
locality of the descriptor, we apply a Gaussian weight to the
histogram calculation where larger histogram contribution is
given to pixels closer to the center of the neighborhood. By
trial and error, we determine that a neighborhood radius of σ ¼
45 pixels is suitable to characterize the pixel. This radius cor-
responds to ∼10 μm in the downsampled SLIM image.

2.5 Random Forest for Automatic Segmentation

To perform image segmentation, we use a random forest (RF)
classifier, a method introduced by Breiman44,45 and Shotton
et al.46 This classifier has shown success in several problems,
such as object segmentation,40,47,48 human-pose estimation,46,49

and medical image analysis using magnetic resonant imaging,50–52

due to its ability to reduce the tree dependence with “feature
bagging” and “bootstrap” sampling, i.e., random sampling with
replacement. In this work, we use the RF to classify each pixel in
the image into one of three classes, i.e., epithelial gland, con-
necting stroma, and lumen. Lumen pixels are classified first
based on the proximity of their phase values to that of the back-
ground. Then, remaining pixels are classified into either gland or
stroma. Here, we train an “extremely randomized” forest53 of
50 trees. Our implementation is written in MATLAB® with
the MexOpenCV wrapper that allows us to call OpenCV

routines. The wrapper is obtained from Ref. 54. The training
set consists of 4.92 million histograms with two possible labels
(“gland” or “stroma”). These histograms of texton are randomly
sampled from a larger pool of 2.2 billion histograms. Each tree
in the forests is trained on 11 randomly selected features (out of
50, the total number of textons). For each feature of interest, 100
possible thresholds are considered between the minimum and
maximum of the feature values for splitting. Let us use Sn to
denote the training data set of samples reaching node n’th. At
this note, this set is partitioned into a left set, Sl, and a right one,
Sr, based on an optimal selected feature νn and its optimal
threshold tn, namely Sl ¼ fs ∈ Snjvn < tng and Sr ¼ Sn \ Sl.
Here, (νn; tn) are chosen to maximize the expected gain of infor-
mation on category, i.e.,

EQ-TARGET;temp:intralink-;e003;326;272ðvn; tnÞ ¼ arg maxv;t½IGðv; tÞ�

¼ HðSnÞ −
jSlj
jSnj

HðSlÞ −
jSrj
jSnj

HðSrÞ; (3)

where IGðν; tÞ is the information gain at the current node when
the threshold t and the feature ν are used.HðSnÞ is the entropy of
the set Sn, measuring its degree of class inhomogeneity. The
training is recursive and terminated at a leaf node when the
maximum depth of 25 levels is reached or less than 20 training
histograms left. The training takes ∼5 to 6 h. After the training is
completed, each leaf node lm of the m’th tree contains two class
likelihood values, plmðglandÞ, plmðstromaÞ telling how many
training histograms reached it are of gland and stroma pixels,
respectively. These probability quantities are used as the confi-
dence value of the classifier produced by the m’th tree when its
leaf node is reached.

Fig. 5 Feature extraction from SLIM images: (a) extracting the texton dictionary from a training set
of SLIM images, (b) feature extraction using vector quantization and the trained dictionary of textons
from (a), (c) RF training using descriptors obtained from (b), and (d) pixel classification using a trained
RF from (c).
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After the RF has been trained, automatic segmentation
results can be obtained by classifying each pixel in the query
image to either gland or stroma using its pixel descriptor
[Fig. 5(d)]. The optimal class g� for each pixel is determined
by summing the class likelihood values over all the trees and
picking the class that maximizes the combined score, i.e.,

EQ-TARGET;temp:intralink-;e004;63;686g� ¼ arg max
g

�XT
m¼1

plmðgÞ
�
; (4)

where g ∈ fgland; stromag. After an initial classification for all
pixels of the input image, a postprocessing step is applied to fine
tune the segmentation result, making it more stable to gland
fusion, which is more popular in high-grade cancer. This step
is detailed in Sec. 2.6.

2.6 Postprocessing of Segmentation Results

The output of the pixel classifier is usually noisy. We use the
following procedure to obtain good segmentation results and
resolve the glandular fusion, which is more frequent in high-
grade prostate carcinoma.

1. Setting aside all lumen pixels from the segmentation.
Assign all remaining pixels with stroma likelihood less
than 0.5 to gland pixels. An example of the stroma
likelihood map is shown in Fig. 6(a).

2. Denoising gland map. First, we remove all small areas
inside and between the glands that have less than 2000
pixels. Next, we perform an opening morphological
operation using a “disk” structure element with a
radius of 20 pixels. Finally, we remove all glands that
have less than 5000 pixels. The result of this step is
shown in Fig. 6(b). It also can be seen that there are
still several glandular regions detected as big blobs due
to small stroma likelihood of the connecting stroma.

3. Watershed segmenting on denoised gland map. This
step cuts small joining regions between the glands.
First, the denoised gland map is inverted to obtain

a nongland map [Fig. 6(c)]. Then, a distance transform
is applied to the nongland map to calculate the dis-
tance between each pixel in the nongland map to
the nearest nonzero pixel [Fig. 6(d)]. Next, the water-
shed transform55 is applied on the inverted distance
map to obtain an oversegmentation result of the gland
map into multiple regions [Fig. 6(e)]. Separating lines
between neighboring regions is computed by sub-
tracting the gland map [Fig. 6(b)] from the watershed
segmentation result. Then, a closing transform is
applied to the map of separating lines to make sure
their widths are at least 15 pixels. Figure 6(f) shows
the result of this step.

4. Evaluating the separation and recombine glands if
needed. This step evaluates each separating line pro-
duced by step 3. Here, the mean value of the stroma
likelihood is evaluated over each separation line. Lines
with mean value of stroma likelihood more than 0.2
are retained. Otherwise, they are eliminated and glands
separated by them are rejoined. The step gives a
refined gland map [Fig. 6(g)]. Compared to Fig 6(b),
the map has resolved several separated glands that
were incorrectly fused by a simple thresholding.
From the refined map, we obtain the final segmenta-
tion result in Fig. 6(h).

3 Results

3.1 Automatic Segmentation

Figure 7 shows automatic segmentation results overlaid with the
SLIM images. It can be seen that the label map has a good cor-
relation with the H&E images. Figure 8 shows other segmenta-
tion examples with H&E and SLIM images of increasing
Gleason grade from 3 to 5. Their automatic segmentation results
from SLIM images are further shown in Fig. 9.

To quantify the performance of our segmentation, we sum-
marize in Fig. 10(a) receiver operating characteristic (ROC)
curves for the segmentation of different diagnosis groups using

Fig. 6 Steps of image postprocessing for automatic segmentation: (a) the stroma likelihood map pro-
duced by the RF classifier, (b) the raw binary gland map, (c) the raw binary nongland map (in white),
(d) the distance map from each gland pixel to the nearest nongland pixel, (e) the oversegmentation map
produced by watershed segmentation, (f) the map of gland separating lines, (g) the refined segmentation
map where some similar regions in (e) have been merged, and (h) the final segmentation map.
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10-fold cross-validation. Since these ROC curves are very close
to each other, it is difficult to compare their performance. To
address this issue, we show in Fig. 10(b) a zoomed-in image
to the upper-left corner of Fig. 10(a), where the true positive
rate and the false negative rate range from [0.75, 1.0] and [0,
0.5], respectively. Figure 10(c) shows the corresponding AUC
values for each group. The ground truth for the ROC evaluation
is created by manually labeling glandular and stromal regions
directly on the SLIM images after validating them with H&E
images. In the noncancer cases, the AUC is at least 0.97,
which indicates that gland and stroma pixels are classified
with high accuracy. Meanwhile, in the malignant cases, as
cancer progresses to higher grades, e.g., from 3þ 3 to 5þ 5,
the AUC reduces from 0.98 to 0.87. This result can be explained
by the fact that more glandular distortions and deformations
are observed at higher grades, which leads to a reduction in

discrimination between stroma and glands. Therefore, it is
not surprising that the classifier has the smallest AUC with a
Gleason score of 5þ 5. However, these high grades are very
easily diagnosed by the pathologist and, thus, do not represent
our main focus. Using these segmentation results, we solve the
automatic Gleason grading problem, with particular emphasis
on discriminating between grades 3 and 4.

3.2 Automatic Gleason Grading

Next, we demonstrate the use of our technique in clinical appli-
cations with automatic Gleason grading. To generate the ground
truth for the training, all cores were reviewed, manually marked,
and graded unanimously by two trained pathologists. Figure 2
shows an example of markup results for all cores: 129 regions
with Gleason grade 3, 92 regions with grade 4, and 75 regions

Fig. 7 H&E versus automatic segmentation: (a)–(c) H&E images of three cores and (d)–(f) corresponding
automatic segmentation results overlaid on the top of the SLIM images.

Fig. 8 H&E versus SLIM: (a)–(c) H&E images of three cores in the TMA that have Gleason grade of 3, 4,
and 5. (d)–(f) Corresponding SLIM images of these cores. Grayscale bar represents phase shift in
radians.
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with grade 5. Since Gleason grades 2 and 5 are rarely diagnosed,
we study the automatic diagnosis problem of differentiating
Gleason grade 3 versus 4. It has been shown by Allsbrook
et al.56 that grading 3 versus 4 has a reproducibility problem
due to interobserver variation. Also, there is the crucial turning
point from active surveillance to aggressive treatment when
moving from Gleason grade 3 to 4. Distinguishing between 2
and 5 is not a problem of clinical relevance since it is quite triv-
ial. For example, the authors report an experiment where 38
biopsies with known “consensus” Gleason grade were sent to

41 pathologists to measure interobserver variability. The result
was that Gleason grade 4 was undergraded by 21%. Further-
more, there was consistent undergrading of Gleason scores of
5 to 6 (47%), 7 (47%), and 8 to 10 (25%). Clearly, a com-
puter-driven, unbiased procedure for grading is a potential
way to tackle this challenge.

Figure 11 shows five different types of features extracted
from each region. These features include the mean of glandular
distortion, the fusing ratio of glands, the mean number of lumen
areas per gland, the coefficient of variation for gland variation,

Fig. 9 H&E versus automatic segmentation: (a)–(c) H&E images of three cores of different Gleason
grades in Fig. 7, as indicated. (d)–(f) Automatic segmentation results of the cores overlaid on the
SLIM images.

Fig. 10 Automatic segmentation performance. (a) ROC curves for classifying gland versus nongland
pixels for all diagnosis groups. The accuracy reduces in the case of higher Gleason grade due to
the less defined glands. (b) Zoomed-in plot for a red-dashed region of (a). (c) Bar plot of AUC values
of the ROC curves for all diagnosis groups.
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and the mean of stroma anisotropy. Other features include the
maximum number of lumen areas, the median of the glandular
distortion, median of stroma anisotropy, and the mean circular-
ity. Some features are explained here in detail.

• Gland distortion [Fig. 11(a)]: The distortion of a gland is
defined as the ratio between its perimeter and the square
root of its area, scaled by the factor of 1∕

ffiffiffiffiffi
2π

p
. The smaller

values of the distortion correspond to more circular glands.
Elongated glands have distortion values larger than 1. A
distortion value of 1 is obtained for a circular gland.
Average distortion value for the whole ROI is evaluated
by averaging distortion values of glands inside the ROI.

• The average number of lumen [Fig. 11(b)]: This feature is
designed to capture the cribriform pattern that character-
izes grade 4. In grade 4, glands fuse to each other, create
larger glands with multiple lumen areas contributed by
those of individual glands. A value of zero is given if a
gland has no area. A fractional number for the average
count of lumens over an ROI is also possible.

• Average stroma anisotropy (g) [Fig. 11(c)]: This feature
captures potential effects of reactive stroma in the progres-
sion of tumorigenesis.57,58 This quantity measures the
angular uniformity of forward scattering in light–tissue
interaction. A lower value of anisotropy means more iso-
tropic scattering and vice versa. The anisotropic factor is
computed for all pixels in the image using the scattering-
phase theorem as59 g ¼ 1 − ðhj∇ϕðrÞj2ir∕2k2ohΔϕ2ðrÞirÞ.
After the anisotropic factor is obtained for all pixels in the
image, the stroma anisotropy for the whole field of view is
computed as an average of the quantity, evaluating over

a thin layer surrounding segmented glands, as shown in
Fig. 11(c). The thickness of this thin layer is chosen to
be around 10 μm.

• The fusing ratio [Fig. 11(d)]: This feature is the ratio of
total area of all glands with at least two lumens to the total
area of all glands in the ROI. It characterizes the cribri-
form pattern and gland fusion. However, it is more robust
than the average number of lumen feature since fused
glands with small areas have less impact than those with
large areas.

• The coefficient of variation of gland area [Fig. 11(e)]: This
is the ratio of the standard deviation of all gland area to
the mean of all gland area. The ratio is smaller for ROIs
that have more uniformity in gland areas, a criterion for
Gleason grade 3.

These features are designed to measure the distortion, area
homogeneity of the glands, and the amount of gland fusion.
They are often used by pathologists for Gleason grading.5,6,60

Each ROI is characterized by a feature vector of 11 elements.
Diagnosis grades from pathologists are used as ground truth
for automatic diagnosis. After computing the feature vectors
for ROIs, we use logistic regression to classify the grade 3
ROIs versus grade 4. This classifier models the conditional
probability of the Gleason grade (G) given the feature vector
X as pðG ¼ G3jXÞ ¼ expðβTXÞ∕½1þ expðβTXÞ�, and pðG ¼
G4jXÞ ¼ 1∕½1þ expðβTXÞ�. Here, β is a coefficient vector esti-
mated from the data by maximizing the log-likelihood function
of the observations of the training set; see Ref. 61 for more
details.

The performance of the logistic regression classifier is
shown in Fig. 12 in terms of the ROC using leave-one-out

Fig. 11 Feature extraction for automatic diagnosis. Each subfigure shows a feature, how it is calculated
and the distributions of the feature values for G3 (blue) and G4 (orange). (a) Mean distortion feature: D,
mean distortion of a gland;P , perimeter of a gland; and A, area of a gland. (b) Average number of lumens:
ANL, average number of lumens; NL, number of lumen; and NG, number of glands. (c) Average stroma
anisotropy. (d) Fusing ratio: FR, fusing ratio; TG2, total areas of glands with at least two lumens; and TG,
total area of all glands in current field of view. (e) Coefficient of variation: CV, coefficient of variation;
STDA, standard deviation of areas of all glands; and MA, mean of the areas of all glands.
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cross-validation. This type of validation trains classifiers using
all samples in the dataset except one. A remaining sample is
used for testing. The classifier provides two conditional proba-
bilities pðGt ¼ G4jXtÞ and pðGt ¼ G3jXtÞ for the testing
sample Xt. Here, Gt is the Gleason grade of the test sample.
Then, we alternate the selection of the testing sample to
make sure every sample in our dataset becomes a testing sample
once. Finally, the conditional probabilities pðGt ¼ G3jXtÞ and
pðGt ¼ G4jXtÞ of all samples in the dataset are combined to
produce the ROC curve for Gleason grade 3 and 4 classification.
This curve has an AUC value of 0.82. Note that this error is well
within that for interobserver variability reported by Allsbrook
et al.44 The reason why this ROC curve has a stair-case response
while the ROC curves shown in Figs. 10(a) and 10(b) are
smooth is because of the difference in the number of samples
used. To obtain the ROC curve in Fig. 12, we used a dataset
consisting of 141 samples. This number is much smaller than
that of texture descriptors, about 3.9 millions, used for segmen-
tation in Fig. 10. Since the number of samples is large, the steps
of these ROC curve are very small. This fact makes them look
smooth. It can be also seen from the curve that, to detect Gleason
grade 4 at an accuracy of 90%, the false positive rate will be
∼60%. The inset presents a horizontal bar plot of AUC values
when the classifier is trained separately on each individual fea-
ture, also using leave-one-out cross-validation. The two largest
AUC values are obtained on the coefficient of variation for the
areas of the glands and the fusing ratio. Our results demonstrate
that label-free imaging and machine learning can provide an
objective alternative to pathology, even in the case of difficult
tasks, such as classifying Gleason grade 3 and 4.

4 Conclusion
In summary, we have introduced an approach to automatically
obtain Gleason grades using QPI and machine learning. Our
method combines the merits of QPI, which is insensitive to
variation in illumination condition, staining procedure, color
balance, etc. Therefore, it allows easy translation across different
clinics. The grading process is done automatically, using state-
of-the art computational tools to produce objective results
and avoid interobserver variation. Here, we use automatic

classification of Gleason grade 3 and 4 as an example. The
work uses a dataset of 288 cores from a TMA that consists
of 368 cores, with consensus diagnosis results. In the future,
we aim to validate our algorithm on a larger dataset to make
our algorithm more robust to sample variation and to improve
the diagnosis accuracy.
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assessment of prognostic and predictive biomarkers in urologic
tumors with specific emphasis on prostate cancer.
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