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Abstract. Embryogenesis is regulated by numerous changes in mechanical properties of the cellular micro-
environment. Thus, studying embryonic mechanophysiology can provide a more thorough perspective of embry-
onic development, potentially improving early detection of congenital abnormalities as well as evaluating and
developing therapeutic interventions. A number of methods and techniques have been used to study cellular
biomechanical properties during embryogenesis. While some of these techniques are invasive or involve the use
of external agents, others are compromised in terms of spatial and temporal resolutions. We propose the use of
Brillouin microscopy in combination with optical coherence tomography (OCT) to measure stiffness as well as
structural changes in a developing embryo. While Brillouin microscopy assesses the changes in stiffness among
different organs of the embryo, OCT provides the necessary structural guidance. © 2017 Society of Photo-Optical

Instrumentation Engineers (SPIE) [DOI: 10.1117/1.JBO.22.8.086013]
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1 Introduction
Mechanical forces play a significant role in the development of
different organs. For example, the heart tube, which begins to
contract at embryonic day (E) 8.5, circulates plasma through
the vascular system for the first few hours following the first
contractions. After the heartbeat strengthens, erythrocytes from
blood islands begin to circulate, and, within the next 24 h, blood
flow becomes stronger and the heart loops, eventually forming
the chambers. Here, the hemodynamic force exerted by the
blood flow induces vascular remodeling.1 Similarly, a number
of other processes, such as cell differentiation,2–4 rate of cell pro-
liferation,5–8 and tumor progression,9–11 are affected by cellular
biomechanical properties. Thus, understanding the mechanical
changes that occur during development will help us gain
a deeper insight into the process of embryogenesis.

Although a number of mechanical parameters affect embry-
onic development, the morphogenetic flows and tissue deforma-
tions that occur as a part of embryonic development are due to
two important mechanical factors: the spatial distribution of
stresses generated by the cells and the local mechanical proper-
ties of the surrounding tissues.12 Measuring these mechanical
factors is a significant challenge. Several techniques have been
proposed to study the different mechanical parameters that affect
embryogenesis. However, the techniques that have been devel-
oped for embryonic applications have mostly been used to study
cellular forces or stresses.13 Considerably less in vivo work has
been done to measure local material properties of developing
tissues.

Techniques that have been used in different settings (in vivo
and in vitro) to measure the mechanical properties of developing
embryos include laser ablation,14 tissue dissection and relaxa-
tion,15–18 force inference,19–21 micropipette aspiration,22–25 canti-
levers and atomic force microscopy (AFM),26–28 microindenters
and microplates,29–32 three-dimensional (3-D) traction force
microscopy,33 optical tweezers (OT),34 magnetic tweezers,35

microrheology,36 Förster resonance energy transfer-based ten-
sion sensors,37 and droplet-based sensors (DS).38 While these
techniques have revealed valuable information about the mecha-
nophysiology of embryonic development, some of them are
invasive, involve the use of external agents, or have poor spatial
and temporal resolutions. For example, microindentation and
AFM require physical contact with the sample, and force infer-
ence cannot provide quantitative material properties. In contrast,
OTand DS do provide quantitative information but require micro-
injections of external agents or involve complex calibrations.

In the past, elastography has also been used to study
mechanical changes that occur during embryonic development.
The techniques used include AFM elastography,39 optical coher-
ence elastography (OCE),30 and acoustic radiation force impulse
(ARFI) imaging.40 However, resolution constraints for subcellu-
lar imaging with OCE and ARFI and the need for external
loading to induce deformations might have detrimental effects
on the developing embryo or may cause external perturbations
to the already existing mechanical forces.

Brillouin microscopy has recently shown particular promise
for tissue and cell biomechanical applications.41,42 Brillouin
microscopy is an all-optical method that probes the mechanical
properties of material via light scattering and thus is noncontact
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and noninvasive. In addition, it does not need to deform the
sample with an external load during measurement and can
achieve submicron resolution when using a high numerical-
aperture (NA) objective lens. Brillouin microscopy has demon-
strated its use in various biological applications, such as the
characterization of crystalline lens and cornea of the eye,43–45

the measurement of fibrous proteins of extracellular matrix,46

and the mapping of cellular and subcellular mechanics with
live cells.47–50

Optical coherence tomography (OCT)51 is a well-established
optical imaging modality that is capable of live 3-D imaging of
embryos with high spatial and temporal resolution.52 Due to
its ability to provide cross-sectional images of a specimen non-
invasively with high resolution, OCT has become a powerful
tool in developmental biology.52

In this pilot study, we use Brillouin microscopy in combina-
tion with structural imaging provided by OCT (Br-OCT) to ana-
lyze the spatial stiffness distribution of a developing embryo.
Due to the micrometer-scale resolutions of both techniques,
we generated two-dimensional (2-D) elasticity maps of a murine
E8.5 embryo using Brillouin microscopy and correlated these
results with structural images obtained with OCT. Br-OCT pro-
vided a completely noninvasive and noncontact method for
imaging the structure and assessing stiffness changes of an
embryo without the use of any external agents. Quantitative
results were obtained in terms of Brillouin frequency shift, a
measure of stiffness of the tissue.

2 Methods

2.1 Animal Manipulations

Timed matings of CD-1 mice were set up overnight. The mice
were checked for a vaginal plug every morning. The morning
when a plug was found was considered E0.5. On E8.5, the
embryos were dissected out and were first imaged using a
home-built swept source OCT system. The embryos were
then kept in 0.9% saline and transported to the University of
Maryland on ice and imaged with Brillouin microscopy within
8 h (n ¼ 5). The embryos were kept cold but not frozen during
transportation and were brought back to room temperature for
imaging.

2.2 Brillouin Microscopy

The Brillouin microscope is built by coupling a Brillouin spec-
trometer with a confocal microscope, and the setup is shown
in Fig. 1. The laser source is a single-mode linearly polarized

532-nm continuous wave laser (Torus, Laser Quantum), and
∼10-mW power was used in the experiment. After passing
through a half-wave plate (HWP) and a polarizer (P), the polari-
zation of the laser beam was aligned to the input polarization of
the polarized beam splitter (PBS). The beam was then focused
into the sample by an objective lens (NA ¼ 0.6, magnification
40×) with a spot size of ∼0.5 μm × ∼0.5 μm (transverse) by
∼2 μm (axial). The backward scattering light was collected
by the same objective lens and coupled into a Brillouin spec-
trometer through a fiber coupler (FC). A combination of a quar-
ter-wave plate (QWP) and a PBS was used to ensure that all the
scattered light collected by the objective lens was delivered into
the spectrometer. The Brillouin spectrometer consisted of a two-
stage virtually imaged phased array in cross-axis configuration,
similar to previous reports.47,53 Before and after the measure-
ment, the Brillouin spectrum was calibrated by standard materi-
als with known Brillouin frequency shift. The embryo sample
was placed onto a glass bottom dish and surrounded by medium.
Brillouin images were acquired by scanning the sample with
the help of an automatic XYZ stage. The step size of the
scanning was 5 μm.

2.3 Optical Coherence Tomography System

The home-built OCT system consisted of a swept source laser
(HSL2000, Santec USA, Corp., Hackensack, New Jersey) with
a central wavelength of ∼1310 nm, scan range of ∼150 nm,
A-scan rate of ∼30 kHz, output power of ∼39 mW, and axial
resolution of ∼11 μm (in air).54,55 Figure 2 shows a schematic of
the OCT system. A-scan averaging was performed to reduce
the background noise and enhance signal-to-noise ratio (SNR);
five A-scans were taken at each position and then averaged. The
images were corrected to physical dimensions assuming that
the refractive indices of saline and the embryos were 1.38.

2.4 Relationship between Brillouin Frequency Shift
and Elastic Moduli

Spontaneous Brillouin light scattering arises from the interac-
tion of incoming laser light with acoustic phonons inside the
material. Within this process, the scattered light will undergo
a frequency shift vB, which is related to the high-frequency
longitudinal modulus M 0 (the ratio of uniaxial stress to uniaxial
strain) of the material as

EQ-TARGET;temp:intralink-;e001;326;275vB ¼ 2n
λ

ffiffiffiffiffiffiffi
M 0

ρ

s
sinðθ∕2Þ; (1)

where λ is the wavelength of the light source, n is the refractive
index of the material, ρ is the density of the material, and θ is the
angle between the incident and scattered lights. For backward
scattering geometry used in this work, θ ¼ 180 deg. We
need to know the factor ρ∕n2 to extract the longitudinal modulus
from the measured Brillouin shift, according to Eq. (1).
Although the density and refractive index are probably inhomo-
geneous at different parts of the embryo, previous studies show
that the variation of the ratio ρ∕n2 is fairly small for various
biological samples, such as cornea and cells.43,47 This indicates
that the measured Brillouin shift is approximately proportional
to the standard longitudinal modulus. The relationship between
high-frequency longitudinal modulus and traditional quasistatic
Young’s or shear moduli that are generally used for material

Fig. 1 Sketch of Brillouin microscopy. HWP, half-wave plate; P, polar-
izer; PBS, polarized beam splitter; QWP, quarter-wave plate; and FC,
fiber coupler.
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characterization is straightforward in crystalline material but not
fully understood in biological tissue. For soft matter, such as
biopolymers, biological tissue, and cells, the longitudinal modu-
lus is generally much higher than traditional moduli due to the
incompressibility of the material and the frequency dependence
of the modulus. Empirically, we previously found that the longi-
tudinal modulus, M 0, measured by Brillouin microscopy, has a
log–log linear relationship to conventional Young’s modulus,
E 0, through

EQ-TARGET;temp:intralink-;e002;63;429 logðM 0Þ ¼ a · logðE 0Þ þ b; (2)

where a and b are the material-dependent coefficients.44 In this
work, we report the Brillouin shift as a metric of mechanical
properties of the embryo as it is the direct parameter measured
in the experiment.

3 Results and Discussion
Multiple embryos were imaged successfully (n ¼ 5). Figure 3(a)
shows a representative 2-D mechanical map of a sagittal plane of
an embryo as measured by Brillouin microscopy. Figure 3(b)
shows a similar 2-D sagittal section obtained from the 3-D
OCT structural image [Fig. 3(c)]. Using Fig. 3(b) as a reference,
the neural folds, developing heart, and closed neural tube/
somites of the embryo in Fig. 3(a) are well-identified.

The mean Brillouin shift values from the different regions
labeled in Fig. 4(a) were averaged and are plotted in Fig. 4(b)
to show the difference in Brillouin shift between organs of the
developing embryo. Based on the linear log–log relationship
between the elastic modulus measured by Brillouin microscopy
and the conventional Young’s modulus in Eq. (2), we observe
that the neural tube/somites at this stage (E8.5) are much
stiffer compared to the developing brain (neural folds) and
the developing heart.

The results depicted here are from one cross section of the
embryo. In our future studies, we will image different planes and
then calculate the stiffness differences between organs and the
changes in stiffness of each organ over time.

One limitation of the current work is that the embryos were
dissected out of the yolk sac. The yolk sac is highly scattering
and thus requires further development of the Brillouin system to
obtain accurate measurements with sufficient SNR. Our future
work will involve analyzing the biomechanical properties of
developing embryos within the yolk sac because this will
allow for longitudinal analysis of embryonic biomechanical
properties in live animals.

Figure 5 shows different orientations of 3-D OCT image of
the same embryo. It can be clearly seen that the embryo was
imaged during neural tube closure.56 The neural groove fusion
had begun, and we noticed that the rostral/cranial and caudal
neuropores were still open. Imaging the embryonic neural

Fig. 2 OCT system schematic. ADC, analog-to-digital converter and DAC, digital-to-analog converter.

Fig. 3 E8.5 Br-OCT images. (a) 2-D elasticity map obtained using Brillouin microscopy from one sagittal
plane, (b) 2-D OCT image of a similar sagittal plane of the same embryo in (a), and (c) 3-D OCT image.
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tube is crucial because neural tube defects (NTDs) are known to
occur when neural tube closure is disrupted.57 Although the
etiology of NTDs is known to be complex, several genetic as
well as environmental factors are known to have an influence
on neural tube closure.57 However, the mechanisms by which
these environmental factors affect neural tube closure are not
well-known. Since NTDs present themselves as one of many
distinct morphological changes in the embryo, studying the
mechanical properties of the cells that are involved in neural
tube closure might be useful in understanding the mechanisms
causing NTDs. This will be the focus of our future work. By
imaging different regions of the neural tube at different devel-
opmental stages of the murine embryo, we hope to study how
changes in mechanical properties of cells influence NTDs. Since
OCT has already been used for imaging and analyzing the clo-
sure of a live murine embryonic neural tube,58 our future work

will entail imaging this process with Br-OCT and understanding
the influence of teratogens and other environmental factors on
neural tube closure.

4 Conclusion
This work is a pilot study that assessed stiffness distribution via
Brillouin shift in a developing embryo using Br-OCT. A 2-D
elasticity map of a sagittal plane of an E8.5 embryo was
obtained using Brillouin microscopy, and structural guidance
to identify the developing organs was provided by OCT, sepa-
rately. The results show that the closed neural tube/somites area
was stiffer than the developing heart and neural folds (develop-
ing brain) at this gestational stage. Our work opens up an area of
multimodal imaging for understanding changes in local biome-
chanical properties and corresponding structural changes with
Br-OCT.
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