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Abstract. Manifestation of Čerenkov radiation as a contaminating signal is a significant issue in radiation
therapy dose measurement by fiber-coupled scintillator dosimeters. To enhance the scintillation signal trans-
mission while minimizing Čerenkov radiation contamination, we designed a fiber probe using a silver-only coated
hollow waveguide (HWG). The HWGwith scintillator inserted in its tip, embedded in tissue-mimicking phantoms,
was irradiated with clinical electron and photon beams generated by a medical linear accelerator. Optical spectra
of the irradiated tip were taken using a fiber spectrometer, and the signal was deconvolved with a linear fitting
algorithm. The resultant decomposed spectra of the scintillator with and without Čerenkov correction were in
agreement with measurements performed by a standard electron diode and ion chamber for electron and photon
beam dosimetry, respectively, indicating the minimal effect of Čerenkov contamination in the HWG-based
dosimeter. Furthermore, compared with a silver/dielectric-coated HWG fiber dosimeter design, we observed
higher signal transmission in the design based on the use of silver-only HWG. © 2018 Society of Photo-Optical

Instrumentation Engineers (SPIE) [DOI: 10.1117/1.JBO.23.1.015006]
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Paper 170587PR received Sep. 6, 2017; accepted for publication Dec. 21, 2017; published online Jan. 16, 2018.

1 Introduction
Accurate measurement of the absorbed dose, i.e., energy depos-
ited by the ionizing radiation in tissue, is an important part of
radiation therapy quality assurance. In the context of radio-
therapy dosimetry, fiber optic dosimeters1–20 have drawn great
attention because they show unique practical advantageous
properties including the ability to perform in vivo, real-time,
and intracavity measurements with high spatial resolution due
to their small physical size. These features make them ideal can-
didates for many applications in radiation therapy dosimetry,
such as in high-dose-rate brachytherapy, intensity-modulated
radiation therapy, superficial therapy, stereotactic radiosurgery,
proton therapy, and small-field dosimetry.21

In a typical fiber optic dosimeter system, interaction of the
ionizing radiation with the scintillator generates an optical signal
proportional to the absorbed dose in the irradiated scintillator,
which is collected and transmitted by the optical fiber to a detec-
tor. However, a significant problem with fiber optic dosimetry is
that the signal received by the detector through the fiber is con-
taminated with Čerenkov radiation, which may not be directly
proportional to the dose.22,23 When optical fibers pass through
ionizing radiation fields of high energy, Čerenkov radiation gen-
erated inside the fiber core is guided through the fiber if the
emitted photon hits the core-cladding boundary with an angle
greater than the critical angle for total internal reflection.
Transmission of Čerenkov radiation is, therefore, dependent on
the angle between the particle track and the fiber axis. Therefore,
the total signal must be corrected for the contribution of

Čerenkov radiation in order to accurately measure the absorbed
dose in the scintillator.

Some efforts have been devoted to developing methods to
minimize the influence of Čerenkov radiation contamination
in order to improve the accuracy of fiber optic dosimetry.
These methods include the (i) Subtraction method22,24 based
on using a parallel bare fiber identical to the one that is con-
nected to the scintillator piece to produce similar Čerenkov
light that can be subtracted from the total signal. However,
this technique is not reliable for radiation fields with high-
dose gradient. (ii) Optical filtering25 where a long-wave-
length-emitting scintillator in conjunction with a long pass filter
is used to selectively measure the signal in longer wavelengths
of the spectrum where the intensity of the Čerenkov radiation is
weaker due to its λ−3 intensity profile. However, this method is
not very effective since the filtered signal is still contaminated
with Čerenkov radiation due to the fact that the Čerenkov radi-
ation has a continuous spectrum. (iii) Temporal separation26 that
relies on different time scales associated with Čerenkov emis-
sion and scintillation processes. This method requires fast
responding electronics and works only with pulsed radiation
fields. (iv) Chromatic removal27–29 that requires two different
optical filters to measure the signal at two different spectral
regions; the dose is then calculated by using coefficients
obtained from calibration. (v) Rigorous spectral separation
based on acquiring the whole spectrum of the transmitted signal
and decomposing it into its constituting components using a pri-
ori knowledge of the spectral shape of the scintillation signal
and Čerenkov radiation.9

The development of waveguides with hollow cores was a
milestone in infrared light transmission,30,31 where conventional
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solid-core fibers dramatically suffer from optical power loss.
Hollow waveguides (HWG) structurally are composed of a
glass or plastic capillary coated internally with a metal/dielectric
layer to enhance the infrared transmission in the waveguide. In
the context of fiber optic dosimetry, it has been suggested32 that
the use of HWG with air core instead of conventional solid-core
fibers would reduce the deteriorating effect of Čerenkov radia-
tion due to the fact that the production of Čerenkov light is min-
imal in air since its refractive index is very close to 1; such
HWGs, however, conventionally have optimal design parame-
ters for transmission of infrared wavelengths,31,33 whereas the
scintillators of interest in fiber optic dosimeters emit primarily
visible light.

In this work, in order to enhance the transmission of the scin-
tillation signal while minimizing Čerenkov radiation contamina-
tion, we designed and evaluated the performance of an HWG-
based dosimeter system using silver-only coated (i.e., without
the additional dielectric coating) HWG. The silver-only coated
HWG34 has been designed to have superior transmission in vis-
ible range of the spectrum compared with the conventional
HWGs with silver/dielectric coating that are optimized for trans-
mission of infrared light. In order to evaluate the performance of
our dosimeter, optical spectra of the irradiated dosimeter tip with
therapeutic electron and photon beams were taken using a fiber
spectrometer, and the signal was deconvolved with a linear fit-
ting algorithm. The resultant decomposed spectra of the scintil-
lator with and without Čerenkov correction were in agreement
with measurements performed by standard electron diode and
ion chamber for electron and photon beam dosimetery, respec-
tively, indicating the minimal effect of Čerenkov contamination.
Compared with a silver/dielectric-coated HWG fiber dosimeter
design, we observed higher signal transmission in the design
based on the use of silver-only coated HWG.

2 Čerenkov Radiation
Čerenkov radiation has attracted a considerable amount of
recent research interest for its potential applications in life sci-
ences and engineering, such as in molecular imaging,35–48 par-
ticle detection,49–53 ionizing radiation quality assurance, and
beam monitoring.54–58

Čerenkov radiation is a visible light emitted from a dielectric
medium when charged particles with velocities greater than the
phase velocity of the light in that medium, i.e., v > c∕n, pass
through it. The passage of the charged particles induces dipole
oscillations through polarization of the medium whose relaxa-
tion lead to emission of light when v > c∕n due to the construc-
tive interference of the emitted waves. Čerenkov radiation is
a polarized, coherent, and directional emission; its direction
is along the surface of a cone that makes the half-angle
θ ¼ cos−1ðnβÞ−1 with the particle track, where n is the refractive
index of the medium and β ¼ v∕c is the ratio of the velocity of
the particle to that of light.

To induce Čerenkov radiation, a charged particle must satisfy
the v > c∕n condition; the minimum energy required is given as

EQ-TARGET;temp:intralink-;e001;63;155Emin ¼ m0c2
�

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − n−2

p − 1

�
; (1)

where m0 is the rest mass of the particle. The threshold electron
energies to generate Čerenkov radiation in water (n ¼ 1.33) and
pure silica (n ¼ 1.55) are Emin ¼ 264 and 158 keV, respectively.
These energies are far below the energies of megavoltage beams

used in modern radiotherapy. The passage of these high energy
primary and secondary electrons through the fiber optic dosim-
eters generates Čerenkov light that is the dominant source of the
unwanted background signal in the output signal.

The number of Čerenkov photons generated by a charged
particle with charge ze, where e is the charge of an electron,
along path length l in the wavelength region between λ1 and
λ2 (λ1 < λ2) is proportional to λ−2 and is given as

EQ-TARGET;temp:intralink-;e002;326;661N ¼ 2παz2lðλ−11 − λ−12 Þ½1 − ðnβÞ−2�; (2)

where α ¼ e2∕ð4πε0ћcÞ ≈ 1∕137 is the fine structure constant.59

The amount of Čerenkov light contamination recorded by the
optical fiber dosimeter depends on the angular configuration
and spatial position and therefore is not constant so straightfor-
ward subtraction as a calibration constant cannot be done.
However, the spectral characteristic of the Čerenkov radiation
can be used to decompose the output signal through rigorous
spectroscopy. Specifically, Čerenkov radiation has a continuous
spectrum spanning from near-ultraviolet to near-infrared,
restricted from both ends of the visible spectrum by the absorp-
tion spectrum of the material in which it is generated, with light
intensity decreasing proportional to λ−3 as the wavelength
increases.

3 Materials and Methods
We designed and fabricated a fiber optic dosimeter probe with
the following main components:

i. a plastic scintillator tip to convert the radiation absorbed
dose to an optical signal,

ii. a silver-only coated glass HWG to transmit the scintil-
lation signal to an optical fiber,

iii. a solid-core optical fiber to transmit the signal from the
HWG to the spectrometer,

iv. a spectrometer to acquire the spectrum of light collected
by the HWG and transmitted by the fiber, and

v. a computer for signal processing to calculate the radia-
tion dose.

A schematic illustration of the dosimeter design is shown in
Figs. 1(a) and 1(b). A 5-mm length piece of BCF-12 (Saint-
Gobain Crystals) plastic scintillating fiber with ∼1 mm diameter
was inserted at the tip of a silver-only coated glass HWG with
50 cm length and ∼1 mm inner and 1.2 mm outer diameters. A
15-m-long silica optical fiber (FT400UMT, Thorlabs) with
numerical aperture NA ¼ 0.39 (core refractive index 1.51
and cladding index 1.46 at 500 nm) and core diameter of
400 μm was inserted 1 cm into the HWG from the other end
to capture and transport the emitted light from the scintillator
to the spectrometer. In order to compare the operation of differ-
ent types of HWG-based dosimeters, we made another dosim-
eter based on a silver/dielectric-coating HWG (Polymicro
Technologies) with 20 cm length and 1 mm ID, in which we
inserted the same scintillator piece.

It should be mentioned that the choice of 1 mm as the inner
diameter of the HWGs used in our work was to provide maxi-
mizing throughput while not sacrificing too much in the way of
robustness, as there is a tradeoff between robustness and
throughput. Since the power loss in a HWG is inversely propor-
tional to the cube of the bore radius,30 increasing the bore
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diameter reduces the transmission loss. However, practically as
the waveguide bore size is increases, we reach a point at which
we have a rigid glass rod instead of a relatively flexible HWG. In
practice, the largest hollow glass waveguide size that is typically
used is ∼1 mm inner diameter.

Optical spectroscopy was performed by a thermoelectrically
cooled CCD array spectrometer (BTC112E, BWTEK Inc.) with
0.4-nm spectral resolution. In order to minimize potential direct
interaction of ionizing radiation with its CCD, the spectrometer
was placed outside the treatment room. Dark current spectra
were acquired with the spectrometer’s input aperture covered
and were subtracted from each spectrum acquired. The spectra
were corrected for wavelength-dependent instrument response
and wavelength-dependent transmission of fibers using an
instrument-specific calibration function. This function was
determined by taking the ratio of the measured spectrum of
a lamp with a NIST-traceable calibration (LS1-cal, Ocean
Optics) to its known spectrum.

The fiber probe, placed in a 30 × 30 × 1 cm3 virtual water
phantom (Standard Imaging), was irradiated by 6-MeV energy
electron beam and 6- and 15-MV photon beams in a square field
size of 10 × 10 cm2 generated using a clinical medical linear

accelerator (TrueBeam™, Varian Medical Systems), see
Fig. 1(c). The selected electron beam energy is much greater
than the energy threshold required for emission of Čerenkov
radiation in pure silica (Emin ≈ 0.158 MeV). In the case of irra-
diation with 6- and 15-MV photons, the secondary liberated
electrons would have energies much higher than the threshold
energy needed to generate Čerenkov radiation, as we have pre-
viously observed Čerenkov emission from radiation at these
photon energies in silica fibers.15 The HWG was completely
embedded in the sample-phantom that provides a way to
place additional phantom layers on top of the sample-phantom.
Additional phantom layers were sequentially added after each
measurement to provide measurements at different phantom
depths. The distance from the source to the top surface of
the top most phantom (SSD) was adjusted to 100 and 90 cm
for the electron beam and photon beam irradiation, respectively.

In each case, the recorded spectrum, corrected for instrument
response, was analyzed as a linear combination of basis lumi-
nescence spectra using a singular value decomposition (SVD)
fitting algorithm implemented in MATLAB®. We considered
the recorded optical signal (Stot) by the spectrometer as the linear
superposition of two basis components: plastic scintillation (Ssc)
and the Čerenkov radiation (Čf ) generated in the fiber scintilla-
tor. The basis spectrum for the Čerenkov radiation is calculated
from the theoretical λ−3 dependency expected for Čerenkov
radiation, where λ is the wavelength of light. We experimentally
verified the λ−3 dependency by curve fitting to spectra obtained
from irradiated standalone fibers in various conditions. The
basis spectrum for the plastic scintillator was obtained according
to the following manner. First, we recorded the spectrum of the
irradiated fiber probe with its scintillator tip connected. Then,
we detached the scintillator tip from the HWG and recorded
the spectrum of the irradiated bare HWG. By subtracting the
latter from the former, we obtained the basis spectrum for the
scintillator. We verified that basis spectrum by irradiating the
scintillator with incident beams of energies below the threshold
for generating Čerenkov radiation. The SVD fitting algorithm
has additional Fourier terms to take into account potential pres-
ence of any other contributions. The two basis spectra and the
Fourier series are fit to the instrument-corrected data using

EQ-TARGET;temp:intralink-;e003;326;301Stot ¼ a100Ssc þ b100Čf þ c1.4F0; (3)

where the numbers in subscript are the weights used in the SVD
fitting algorithm. This choice of the weighting factors provided
reliable fits to the experimental data. It should be noted that their
exact values are not critical as the SVD fits were remarkably
insensitive to the choice of weighting factors.

4 Results and Discussion
The normalized basis spectra for the Čerenkov and scintillator
radiation used in the SVD fitting algorithm are presented in
Fig. 2. Čerenkov light has a continuous spectrum with λ−3 wave-
length dependency and the BCF-12 scintillator has a broad
emission spectrum with a peak at λ ∼ 435 nm.

A series of spectra collected at various depths in solid water
phantom irradiated with 6-MeV electron beam and 6- and 15-
MV photon beams is presented in Figs. 3(a)–3(c), respectively.
For 6-MeV electron beam irradiation, the measurements were
performed at depths of 5 to 30 mm corresponding to the prac-
tical range of electrons in the phantom. For 6- and 15-MV

Fig. 1 (a) Schematic of the experimental setup with the fiber dosim-
eter composed of plastic scintillator inserted in an HWG coupled with
a solid-core optical fiber. (b) Expanded view of the probe. (c) Picture of
the experimental setup with a TrueBeam™ clinical linear accelerator:
the fiber probe was positioned in a virtual water phantom labeled as
the sample-phantom and additional phantom layers (top phantoms)
were placed over the sample phantom sequentially.
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photon irradiation, the measurements were performed at phan-
tom depths of 5 to 125 mm.We assumed that the measured spec-
trum in each condition is a superposition of the BCF-12
scintillation on an extremely weak continuous Čerenkov radia-
tion background generated in the scintillator. By using the SVD
algorithm, we decomposed the recorded signal into its constitut-
ing components and the coefficients a100 defined in Eq. (3) for
each beam and depth condition were used as the measure of the
absorbed dose. Figure 3(d) shows a typical spectrum obtained at
1.5 cm phantom depth, irradiated with a 6-MV photon beam,
with the corresponding components from the SVD fit, showing
less than two orders of magnitude in intensity of the Čerenkov
contamination.

Figure 4 shows the spectrum of a scintillator piece directly
connected to the solid-core fiber (i.e., HWG was not used) irra-
diated with a 6-MV photon beam with 10 × 10 cm2 field size.
The scintillator tip was placed at the center of the field, as sche-
matically shown in the inset. The spectrum obtained from the
fiber with scintillator removed, which shows only Čerenkov
radiation is also plotted in Fig. 4. It can be seen that the con-
tribution of the Čerenkov radiation in the output signal peak
intensity is ∼10%, and integrating the signal shows that ∼20%
of the total optical power is due to Čerenkov radiation. This
comparison shows that the use of HWGs significantly mini-
mizes the contribution of the Čerenkov radiation in the output
signal.

The measured absorbed dose as a function of depth in phan-
tom for the 6-MeV electron beam and for the 6- and 15-MV
photon beams are presented in Figs. 5(a)–5(c), respectively.
The hollow circles correspond to the a100 coefficients calculated
with considering the Čerenkov basis spectrum, whereas the
solid circles correspond to the fit without considering the
Čerenkov basis spectrum. The solid lines in Fig. 5 are the depth
dose profiles measured by a standard diode-based and ion cham-
ber-based radiation detectors designed for measurements in
clinical electron and photon beams, respectively, that were
acquired as part of the commissioning procedure for the linear
accelerator, in accordance with standard commissioning
procedures.60 The resultant decomposed spectra of the HWG-
based scintillator dosimeter with and without Čerenkov correc-
tion are in agreement within 3% with measurements performed
by an electron diode for the electron beam and ion chamber for
the photon beam, indicating the minimal effect of Čerenkov
contamination.

In order to compare the light transmission in the system
based on silver-only HWG and a dosimeter system based on
a conventional silver/dielectric HWG, in Fig. 6 we present
the spectra obtained from both probes irradiated with 6-MV
photon beam. It can be seen that the peak signal intensity in
the former is more than twice as that in the latter demonstrating
superior transmission of visible light in silver-only coated
HWG. Also, the total optical power, calculated as the area under
each graph, in the former is more than triple as that in the latter.
It should be noted that the length of the silver-only HWG is
50 cm whereas the length of the silver-dielectric HWG is
20 cm. Due to the relatively low attenuation coefficient

Fig. 3 Series of recorded spectra at different phantom depths
obtained from the Ag-only coated HWG-based fiber dosimeter irradi-
ated by (a) 6-MeV electron beam, (b) 6-MV photon beam, and (c) 15-
MV photon beamwith 10 × 10 cm2 field size. (d) Spectrum obtained at
1.5 cm phantom depth, irradiated with a 6-MV photon beam, with the
corresponding components from the SVD fit showing negligible
Čerenkov contamination. All spectra were normalized to 1.

Fig. 4 Black curve is the spectrum of the scintillator directly con-
nected to a solid-core fiber placed at the center of a 10 × 10 cm2 pho-
ton field with 6-MV energy (corresponding to the geometry shown in
the top inset). Blue graph is the spectrum of the fiber with scintillator
piece removed (corresponding to the bottom inset). Red graph is the
subtraction of the Čerenkov spectrum from the total signal.

Fig. 2 Basis spectra for the Čerenkov radiation and BCF-12 scintil-
lator with peak emission at λ ∼ 435 used for SVD method. Spectra
were normalized to 100 within the data treatment spectral range of λ ¼
410 to 660 nm.
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(∼0.5 dB∕m) in the HWG, we estimate that the output power of
an identical 20-cm-length silver-only HWG would be ∼3.5%
more than that of a 50-cm-length silver-only HWG presented
in Fig. 6.

5 Conclusion
Fiber optic probes are interesting tools for radiation therapy
quality assurance. In order to enhance the scintillation signal
transmission while minimizing the problematic effect of
Čerenkov radiation contamination, we designed a fiber optic
dosimeter probe using a silver-only coated HWG. We evaluated
the dosimeter’s performance in ionizing radiation fields of thera-
peutic electron and photon beams generated by a medical linear
accelerator. Optical spectra of the irradiated tip were taken using
a fiber spectrometer, and the signal was deconvolved with a

linear fitting algorithm. The resultant decomposed spectra of
the scintillator with and without Čerenkov correction were in
agreement with measurements performed by an electron diode
and ion chamber indicating the minimal effect of Čerenkov radi-
ation contamination. Compared with a silver/dielectric-coated
HWG fiber dosimeter design, we observed approximately
three times higher signal transmission in the design based on
the use of silver-only HWG. This increase in the optical
throughput would specifically be more helpful for low SNR
scintillation detection scenarios (e.g., near the field edges or
deeper depths where the dose is lower).

Compared with all-plastic solid-core fiber dosimeter system,
the HWG-based designs using hollow glass waveguides have
negligible Čerenkov radiation contamination, but they have
higher light attenuation and are more fragile and less flexible.
The dosimeter design can be further optimized by improving the
optical coupling between the HWG and the solid-core fiber. The
mechanical flexibility of the design can be increased by using a
hollow plastic polycarbonate waveguides instead of the hollow
glass waveguide.
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