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Abstract. For the diagnosis and evaluation of ophthalmic diseases, imaging and quantitative characterization of
vasculature in the iris are very important. The recently developed photoacoustic imaging, which is ultrasensitive
in imaging endogenous hemoglobin molecules, provides a highly efficient label-free method for imaging blood
vasculature in the iris. However, the development of advanced vascular quantification algorithms is still needed
to enable accurate characterization of the underlying vasculature. We have developed a vascular information
quantification algorithm by adopting a three-dimensional (3-D) Hessian matrix and applied for processing iris
vasculature images obtained with a custom-built optical-resolution photoacoustic imaging system (OR-PAM).
For the first time, we demonstrate in vivo 3-D vascular structures of a rat iris with a the label-free imaging method
and also accurately extract quantitative vascular information, such as vessel diameter, vascular density, and
vascular tortuosity. Our results indicate that the developed algorithm is capable of quantifying the vasculature
in the 3-D photoacoustic images of the iris in-vivo, thus enhancing the diagnostic capability of the OR-PAM
system for vascular-related ophthalmic diseases in vivo. © 2018 Society of Photo-Optical Instrumentation Engineers (SPIE)
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1 Introduction
More than 67 million people are diagnosed with glaucoma
globally, making it the most commonly seen irreversible ocular
disease worldwide.1–4 Primary angle closure glaucoma (PACG)
is a major subtype of the disease and affects up to 16 million
patients. Earlier studies have shown that the morphology
alteration of the iris, such as rich blood vasculature, vascular
rearrangement and hemodynamics changes, occurs with the
development of PACG.5–9 Thus, iris vascular imaging and char-
acterization of vasculature is of great significance to provide
valuable information not only for the diagnosis of PACG, but
also for understanding the role of blood vasculature alteration
in the progression of the disease.

Fluorescein angiography (FA) using exogenously injected
contrast agents is currently used in clinics for iris vascular
imaging.10–12 The primary goal of this method is to reveal
the alterations in the morphology of the diseased iris blood ves-
sels and also to assess the hemodynamic changes by evaluating
the degree of vascular leakage. Although FA has been widely
applied to diagnose PACG and many other eye diseases, such
as traumatic iris changes, iris tumor, and iris dysplasia, it is
still inadequate for imaging small blood vessels (microvessels)
since exogenous contrast agents can hardly reach some of
the microvessels due to the leakage of the contrast agents in

the artery, the slow blood flow in some of the microvessels,
and iris lesions.13,14 In addition, the imaging quality of FA is
suboptimal due to the limited resolution and leakage of the con-
trast agents and is invasive due to the use of exogenous contrast
agents, which may pose safety concerns to the patients since
the injected contrast agents could potentially cause undesirable
complications.14,15 Optical coherence tomography (OCT) is
another imaging modality that has been used for ophthalmic
vascular imaging,16–18 where blood vasculature information and
ocular tissue constituents are acquired simultaneously. However,
this technology is mostly limited to the posterior segment of the
eye, such as imaging retina vessels, and its application to iris
imaging is limited due to the slow blood flow in the relatively
small blood vessels of the iris and the high background signal
interference of the iris pigments.

Imaging of small microvessels is invaluable to diagnose
PACG,19 but the existing solutions based upon OCT and FA
are suboptimal. The photoacoustic imaging technology, which
images small microblood vessels with high fidelity,20,21 is highly
suitable for the iris imaging and thus for PACG evaluation.
A nanosecond pulsed laser is generally applied in photoacoustic
imaging to shed laser into the biological tissues. The absorbed
laser energy by the chromophores (such as oxy- and deoxyhe-
moglobin) in the tissue generates acoustic waves through the
process of laser energy absorption, instantaneous temperature
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rise, transient thermoselastic expansion, and acoustic wave
emission. These generated acoustic waves (also termed as
photoacoustic signals) are captured by the high sensitive and
high resolution ultrasound transducer to form a photoacoustic
image. A variety of photoacoustic imaging embodiments have
been established and reported so far, including photoacoustic
microscopy (PAM), photoacoustic computed tomography, and
photoacoustic endoscopy.20,22–31 Among the different embodi-
ments, optical-resolution photoacoustic microscopy (OR-PAM)
is mostly applicable for iris vascular imaging as it can provide
micron or even submicron high resolution images.

In addition to the imaging technology, the development of
algorithms to accurately extract quantitative vascular informa-
tion from the images, such as blood vessel diameter, vascular
density (VD), and vascular tortuosity, is also key to directly
reflect the diseased state of the underlying imaging tissue.
We have previously reported a multiparametric quantitative
vascular imaging algorithm32 to accurately extract quantitative
vascular information from vasculature images of mouse back
and ear obtained with our custom-built OR-PAM system.33

However, the reported quantitative algorithm based upon a two-
dimensional (2-D) Hessian matrix is only suitable for vascula-
ture images of objects with flat surfaces, while failing for objects
with curved surfaces, such as the iris. In this study, to address the
quantification of vascular images of the objects with the curved
surfaces, we have developed a vascular quantification algorithm
based upon a three-dimensional (3-D) Hessian matrix. We
validate the performance of this quantitative vascular imaging
method by comparing its performance against the performances
of our previously developed 2-D Hessian matrix-based method
and also the 3-D Hessian matrix-based method widely used in
clinical CT vascular imaging.34

In this study, the in vivo photoacoustic imaging of rat iris was
carried out with a custom-built OR-PAM system. The obtained
images from this system were processed with our developed
algorithm and the quantitative vascular information including

vessel diameter distribution, VD, and vascular tortuosity were
calculated and analyzed. The results shown in this study indicate
that our developed algorithm would greatly facilitate the appli-
cation of OR-PAM photoacoustic imaging for diagnosing oph-
thalmic diseases.

2 Materials and Methods

2.1 Photoacoustic Imaging of Rat Iris

A custom-built OR-PAM system was used to acquire all the
imaging data in this manuscript. The system is composed of
a nanosecond pulsed laser (GKNQL-532, Beijing Guoke Laser
Co., Beijing, China), a single-element ultrasound transducer
(V2022, Olympus-NDT, Kennewick, Washington), a precision
motorized 3-D scanning stage (PLS-85, Micos, Eschbach,
Germany), and a high speed data acquisition board (CS1422,
Gage Applied Technologies Inc., Lockport). The detailed
information of the OR-PAM system can be found in our earlier
publication.32,33 One eight weeks healthy female Sprague Dawley
(SD) rat (300 g) was selected for photoacoustic imaging, which
remained anesthetized throughout the experiment using 1.5% iso-
flurane gas (Euthanex, Palmer, Pennsylvania) mixed with oxygen.
The right eyelid of the rat was flipped inside out and fixed with
adhesive tapes to expose the eyeball and 0.4% oxybuprocaine
hydrochloride eye drops were used to anesthetize the eyeball
during the imaging process. The imaging head of OR-PAM was
positioned directly above the eyeball, as shown in Fig. 1(a), and
the photoacoustic image of the entire iris was first obtained with
the pupil positioned on the top surface of the eyeball, as shown
in Fig. 1(b). Next, we manually rotated the eyeball to position
the root part of the iris [yellow circle in Fig. 1(b)] on the top
surface of the eyeball and acquired another image. This imaging
procedure is similar to the real procedure followed in the clinics
for the eye examination. In the clinics, patients are typically
asked to expose the entire iris with the pupil at the center
first and then are asked to rotate their eyeballs so that the region

Fig. 1 (a) Schematic of the imaging setup. (b) Photo of the rat eyeball during the imaging process.
The yellow circle indicates the root part of iris, and the green arrows indicate the illumination laser.
(c) and (d) Schematic comparison of the relative position between the incident beam and the sample
before and after the rotation of the eyeball.
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of interest (i.e., the iris root part) comes to the center for close
observation. By manually rotating the rat eyeball and moving
the iris root part to the top surface, we are not only
simulating the real clinical scenario, but we are also obtaining
high quality images since both the incident beam for photo-
acoustic signal excitation as well as the receiving transducer
for signal detection are perpendicular to the region of interest
[Figs. 1(c) and 1(d)].

For the in vivo experiment, the laser frequency was 2 kHz,
and the pulse energy was 200 nJ. As the laser focal depth is more
than 300 μm below the sample surface to efficiently image iris
vessels, and the numerical aperture is 0.1, the surface laser
fluence is below 11 mJ∕cm2, which is within the American
National Standards Institute safety limit.24,35,36 To confirm that
our imaging study caused no damage to the iris, the rat was
euthanized and the imaged eyeball was removed after the
completion of photoacoustic imaging to test for any damages.
The 4% paraformaldehyde was used to fix the eyeball, followed
by paraffin-cut sectioning andMasson’s trichrome staining to pre-
pare the sample for further optical microscopic observation (Axio
Lab.A1, ZEISS, Gottingen, Germany). In this study, all animal
handling and experimental procedures conformed to the protocol
approved by the Animal Study Committee of Shenzhen Institutes
of Advanced Technology, Chinese Academy of Sciences.

2.2 Vascular Information Quantification Algorithm

2.2.1 Overall algorithm flowchart

The overall flowchart of our proposed algorithm is shown in
Fig. 2. The vascular walls from the original 3-D volume data
are extracted by background noise degradation, vascular signal
identification, vascular signal enhancement, and region grow-
ing. On these extracted vessels, centerlines are identified.
Finally, the quantitative vascular information, including vessel
diameter, VD, and vascular tortuosity, are calculated from the
identified centerlines. Details of each module in the flowchart
are described in the next few subsections. All the postprocess-
ings of the acquired data were performed using MATLAB
(R2012b, Mathworks, Natick, Massachusetts) software on
a PC with an Intel(R) Core(TM) i7 CPU at 3.9 GHz and
a 64 GB RAM. It takes about 25 s to run a regular maximum

amplitude projection (MAP) code and 25 min to run our devel-
oped quantitative code.

2.2.2 Vascular signal extraction

Step 1: Background noise degradation based on open
operation.

To remove the nonvascular background noise, such as
discrete microvessel wall signals from the raw data, “open
imaging” operation was used.37 The open imaging operation
is suitable specifically for extracting bright objects in the dark
background images and more details about open operation can
be found in Ref. 37. We chose a disk-shaped structural element
SEðu; vÞ, with a typically used radius of three pixels, to remove
the background noise from the input image Iðx; yÞ. For 3-D
volume, we perform open operation layer-by-layer. On each
layer, corrosion, also called erosion, of the image followed by
the expansion, also called dilation, of the corroded image is
performed using structural element SEðu; vÞ to get the denoised
image. The whole operation can be described using Eq. (1):

EQ-TARGET;temp:intralink-;e001;326;530I ∘ SE ¼ ðI⊖SEÞ � SE; (1)

where corroded image (I⊖SE) with structural element SE is
expanded (I � SE) to get the final open operated image I ∘ SE.

Step 2: Vascular signal identification with 3-D Hessian
matrix.

Before applying the 3-D Hessian matrix to identify the vas-
cular signals from the 3-D volume, we first enhance the details
of the vascular boundary of the open-operated 3-D volume,
especially the small blood vessels, by applying a high frequency
enhancement (HFE) filter as follows:

EQ-TARGET;temp:intralink-;e002;326;389Hhfe ¼ aþ bHhp; (2)

where Hhp is a high pass filter, a is the offset from the origin,
and b is the weighing number of the high frequency signals
(a ¼ 4, b ¼ 2).

The results of image processing on a photoacoustic image of
an iris are shown in Fig. 10 in the Appendix for one lateral
cross-section (i.e., cross-section perpendicular to the imaging
depth direction). When an object with a flat surface is imaged
(such as mouse ear in our previous study), most blood vessel
segments project longitudinal tubular structures on the lateral
cross-section. Our previous 2-D Hessian matrix-based algorithm
recognized these longitudinal tubular structures as blood vessels
and enhanced their signal. However, blood vessel segments in
the iris, due to the curved shape of the eyeball, mostly project
elliptical or circular shapes [indicated by yellow arrows in
Fig. 10(b) in the Appendix] on the lateral cross-section. If
our 2-D Hessian matrix-based method is used to process this
image, the algorithm would classify these elliptical or circular
shaped blood vessels as noise and will suppress them rather
than enhance.

Thus, to overcome the limitations of the 2-D Hessian matrix,
we have developed a 3-D Hessian matrix-based algorithm to
process iris volume data. Before the 3-D Hessian matrix is
computed at each voxel location, we perform 3-D filtering of
the input volume data with a Gaussian kernel Gðx; y; z; sÞ,
where s controls the size of the kernel (1 ≤ s ≤ 9), to eliminate
high frequency variations in the image generally associated
with noise. The 3-D Hessian matrix at each data point in

Fig. 2 The overall flowchart of the vascular information quantification
algorithm.
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a 3-D volume is a 3 × 3 matrix consisting of the second-order
partial derivative of Iðx; y; z; sÞ:
EQ-TARGET;temp:intralink-;e003;63;730

▿2I ¼

2
66664

∂2Iðx;y;z;sÞ
∂x2

∂2Iðx;y;z;sÞ
∂x∂y

∂2Iðx;y;z;sÞ
∂x∂z

∂2Iðx;y;z;sÞ
∂y∂x

∂2Iðx;y;z;sÞ
∂y2

∂2Iðx;y;z;sÞ
∂y∂z

∂2Iðx;y;z;sÞ
∂z∂x

∂2Iðx;y;z;sÞ
∂z∂y

∂2Iðx;y;z;sÞ
∂z2

3
77775
; (3)

where Iðx; y; z; sÞ is the filtered grayscale value at location
x, y, z in the input volume.

Three orthogonal vectors ðe1; e2; e3Þ were chosen as the
eigenvectors of the Hessian matrix, with one eigenvector
corresponding to the axial direction of the blood vessel [or
the direction with minimal value descendent of Iðx; y; z; sÞ],
and the other two eigen vectors orthogonal to the axial direc-
tions. The vascular information is obtained by calculating the
three eigenvalues ðλ1; λ2; λ3Þ. Since the image feature along

the direction of the blood vessels does not change substantially,
the eigenvalue λ1 corresponding to this direction should have
minimum value and close to 0. The other two eigenvalues,
λ2 and λ3, corresponding to the other two orthogonal radial
directions should be close to each other and their absolute values
should be much larger than that of λ1 (we defined jλ2j ≤ jλ3j).
Thus, the vascular signals within the 3-D volume data can be
identified using the following criteria:

EQ-TARGET;temp:intralink-;e004;326;664jλ1j < ε ≪ jλ2j; λ2 ≈ λ3 < 0; (4)

where ε is set empirically to 0.8.

Step 3: Vascular signal enhancement.

The vascular signal enhancement, IðsÞ, was carried out
using Eq. (5):

EQ-TARGET;temp:intralink-;e005;63;544

IðsÞ ¼
8<
:

0; λ2 > 0 or λ3 > 0 or jλ1j ≥ 0.8h
1 − exp

�
− RA2

2α2

�i
exp

�
− RB2

2β2

�
×
h
1 − exp

�
− S2

2γ2

�i
; else

; (5)

where RA ¼ jλ2j∕jλ3j, RB ¼ jλ1j∕ ffiffiffiffiffiffiffiffiffiffiffiffijλ2λ3jp
, and S ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

λ21 þ λ22 þ λ23
p

(RA, RB, and S are filters to suppress noisy,
plate-like, and blob-like structures), and α, β, and γ are thresh-
olds that control the sensitivity of the filter to RA, RB, and S for
removing residual nonvascular signals. The previous study
has shown that for image with vascular structures, α and β
are generally fixed to 0.5 to enable better smoothing effect of
the filter and γ is related to the dynamic range of the grayscale
image, which is usually set to S∕2.

Finally, the extracted feature map of image, i.e., the 3-D map
of extracted vascular signals is obtained by repeatedly applying
the Gaussian filter with different s to take into account different
vessel sizes and then combining them using Eq. (6):

EQ-TARGET;temp:intralink-;e006;63;330f ¼ max
smin≤s≤smax

jIðsÞj; (6)

where smin ¼ 1 and smax ¼ 9 are different kernel sizes deter-
mined by the distribution of the vessel diameter and IðsÞ is
determined using Eq. (6) for each s. It is to be noted that
there will be multiple cases in terms of the selection of the
three orthogonal vectors corresponding to each of the vascular
voxels. As a result, the yield of Eq. (5) will also change. In
practice, we did the calculation corresponding to all the cases
in Eq. (5) and obtained multiple yields, and then we selected
the maximum among all the yields for vascular signal enhance-
ment, as indicated in Eq. (6).

To further enhance vascular signals and lower background
noise, an intensity transformation function was applied to the
feature map f to obtain the transformed image g given by

EQ-TARGET;temp:intralink-;e007;63;150g ¼ 1

1þ ðm∕fÞn ; (7)

where m is an adjustable parameter that represents threshold
value to determine background or vessel pixel (grayscale value)
of the image and n is an adjustable scaling factor, which was
empirically set between 19 and 21 to further scale up or suppress

the value. When the intensity of a voxel is lower than m, the
voxel will be treated as background and thus will be suppressed.
In our experiments, the ideal value of m was obtained automati-
cally by performing the clustering-based image thresholding.

Step 4: Region growing.

The voxel with the maximum signal intensity after vascular
signal enhancement was selected as the seed point for 26 neigh-
borhood region growing to obtain the binary volume data of
the extracted vessels.

2.2.3 Vascular centerlines

We adopted an augmented fast marching method (AFMM) to
extract the vascular centerlines.38 However, before applying this
method, we separate the binary volume data into individual
subdomains so that no connected components (i.e., connected
vessels) exist in each subdomain. We apply AFMM to each sub-
domain to calculate the distance of each voxel present inside the
vessel to the vessel boundary at both sides of the vessel to find
the global maximum distance point, i.e., the voxel with the larg-
est calculated distance from the boundaries. We apply AFMM
again to calculate the distance of each voxel inside the vessel to
the global maximum distance point and then update the voxels
in the volume dataset with the calculated distance value.
The gradient of the updated volume was calculated to get the
gradient map of the vessels. Using the global maximum distance
point and the gradient map, the vascular centerline in each sub-
domain was drawn by extending the global maximum distance
point along the contour of the fastest descent of the gradient
map. Finally, all the subdomains were assembled to obtain the
skeleton of the vascular tree for the 3-D volume data.

2.2.4 Vascular parameter extraction

Two 512 × 512 × 130 subvolumes at the root part of the iris
were selected for extracting quantitative vascular information,
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and the quantified parameters include vessel diameter, VD, and
vascular tortuosity.

Parameter 1: Vessel diameter.

Since the vessel diameter is perpendicular to the centerline of
the vessel, the vertical distances between the centerline and both
sides of the vessel wall can be summed up to get the diameter of

the vessel. Thus, by using this technique, we calculate the diam-
eter of all the blood vessels in the selected subvolume.

Parameter 2: Vascular density.

The VD was calculated by first taking the 2-D MAP of the
selected subvolumes. The VD is calculated from this projected
2-D binary image as follows:

EQ-TARGET;temp:intralink-;e008;63;663VD ¼ The number of pixels with signal intensity value equal to 1

N
; (8)

where N represents the total number of the pixels in the
projected 2-D MAP image, which, in our case, is 512 ×
512.

Parameter 3: Vascular tortuosity.

Three definitions of tortuosity are widely accepted for
3-D vascular data quantification, namely, the distance metric
(DM), the inflection count metric (ICM), and the sum of
angles metric (SOAM).39,40 DM is defined as the ratio
between the actual path length of a vessel segment in each
subdomain and the linear distance between the two ends of
the vessel; ICM is defined as the ratio between DM and
the number of the vessel’s inflection points; and SOAM is
defined as the sum of the curvature at all voxels along the
centerline of a vessel normalized by the vessel’s actual path
length.

2.3 Algorithm Accuracy Evaluation

To evaluate the accuracy of our quantitative vascular parameter
extraction using our developed quantitative algorithm, we used
Image-J (version 1.51K; National Institutes of Health, Bethesda,
Maryland) to manually extract the quantitative vascular param-
eters and compared results against those obtained with our
algorithm. A male colleague blinded from our study manually
performed the measurement five times on the same dataset and
took the averaged value to exclude subjective influence from
the results. The images provided to the colleague for accuracy
evaluation are shown in Figs. 6(d) and 6(h).

3 Results and Discussion
Figure 3 shows the sagittal optical microscopic images of
the anterior segment of the SD rat eyeball. The cornea and
iris tissues are normally distributed, indicating no lesions or
damages were caused due to photoacoustic imaging. Figure 3(b)
is the enlarged view of the yellow dashed rectangular region in
Fig. 3(a) and boundaries of different layers of the iris are high-
lighted with different colors. In Fig. 3(b), it can be seen that
the iris is divided into three layers near the pupillary end: the
stromal layer, the muscle layer, and the pigment epithelium
layer, and two layers near the root end: stromal layer and pig-
ment epithelium layer. In addition, we can also see in Fig. 3(b)
that the diameters of the stromal vessels (indicated by the white
regions in the image) are also different near the pupillary end
and the root end of the iris. Thus, deriving quantitative vascular
information of the subvolumes of the iris is important rather than
that of the entire volume to evaluate the vascularity of the tissue
at different regions.

Figure 4 shows the depth encoded photoacoustic imaging
results of iris vasculature with the pupil at the top of the eyeball.
Figure 4(a) is the original image generated with the raw 3-D
volume data. Figures 4(b)–4(d) are the postprocessed images
processed with our previously developed 2-D Hessian matrix-
based algorithm [Fig. 4(b)], the conventional 3-D Hessian
matrix-based algorithm used in clinical CT imaging [Fig. 4(c)],
and the 3-D Hessian matrix-based algorithm developed in this
study [Fig. 4(d)], respectively. Figures 4(e)–4(j) are the enlarged
view of the subareas in Figs. 4(a), 4(c), and 4(d), respectively.
The subareas are indicated by the two white rectangles in
Fig. 4(a). The smaller rectangular area in Fig. 4(a) corresponds
to the area within the depth of focus of OR-PAM, while the
larger rectangular area corresponds to the out of focus region.
Significant information loss can be seen in Fig. 4(b), confirming
that the 2-D Hessian matrix-based method is unsuitable for
processing images with large surface curvature, as described in
Sec. 2.2.2 of the method part. Compared to Figs. 4(b)–4(d),
significantly higher quality images are shown, when 3-D
Hessian matrix-based methods were used for image processing.
Furthermore, by comparing Figs. 4(c), 4(f), and 4(i) with cor-
responding Figs. 4(d), 4(g), and 4(j), respectively, we find the
following advantages for our 3-D Hessian matrix-based algo-
rithm over the conventional 3-D Hessian matrix-based algorithm
used in clinical CT imaging: (1) the background noise is sup-
pressed more efficiently, as indicated by the blue arrows in
Figs. 4(c) and 4(d) due to the use of open operation and vascular
signal enhancement; (2) blood vessels with different diameters
are better differentiated, as indicated by the blue and green
arrows in Figs. 4(e)–4(g) due to the HFE filter, intensity trans-
formation filter, and large Gaussian kernel size; and (3) the
extracted blood vessels are more smoothed in Fig. 4(j) compared
to Fig. 4(i), due to the larger Gaussian kernel size as well. All

Fig. 3 Sagittal optical microscopic images of the anterior segment of
SD rat eyeball (a) using a ×10 objective lens. Black arrows indicate
corneas (1), iris (2), ciliary body (3), and lens (4); red arrows indicate
the root end (5) and the near pupillary end of iris (6). (b) Using a ×20
objective lens. Enlarged view of the yellow dashed rectangle area in
panel (a), with the green arrows indicating the stromal layer (7), the
muscle layer (8), and the pigment epithelium layer (9).
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these advantages of our algorithm enable better extraction of
the vessels from the out of focus region. The depth of focus of
the imaging system is ∼260 μm. Based on our analysis, more
than 95% of the blood vessels shown in Fig. 4 are within 1 mm
distance from the focal plane of the system. The worst resolution
within this range should be around 30 μm, which is good
enough to accurately image most of the blood vessels in the

iris. Furthermore, Fig. 4(j) shows that the blood vessels can be
accurately extracted with our algorithm even for the most defo-
cused region. So, overall, it is believed the performance of our
imaging quantification algorithm remains at a high level for the
whole iris area. Moreover, to evaluate how the noise affected the
performance of our algorithm, we also applied our algorithm to
a vascular image with high noises. The result (Fig. 11 in

Fig. 4 Depth encoded photoacoustic imaging results of iris vasculature for the comparison of different
image processing algorithms. (a) The original image generated with the raw 3-D volume data. (b)–(d) The
postprocessing images with our previously developed 2-D Hessian matrix-based algorithm, the conven-
tional 3-D Hessianmatrix-based algorithm used in clinical CT imaging, and the 3-D Hessianmatrix-based
algorithm developed in this study. (e)–(g) The enlarged view of the same areas [smaller rectangle
area in (a)] in panels (a), (c), and (d). (h)–(j) The enlarged view of the same areas [larger rectangle
area in (a)] in panels (a), (c), and (d).
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Appendix) shows that the blood vessels can still be accurately
extracted even under the noisy condition. To demonstrate the
performance of our algorithm in 3-D, we also load the postpro-
cessed volume data (i.e., volume after the vascular signal
enhancement step) into VolView (Kitware Inc., Clifton Park,
New York) to display the data in 3-D format for easier evaluation
(Fig. 5).

Figure 12 in the Appendix shows the MAP image of the
entire iris generated using raw 3-D volume data obtained with
the root part of the iris on the top surface of the eyeball. Two
512 × 512 × 130 subvolumes from the root part of iris were
selected for quantitative vascular information extraction and
analysis, which correspond to the two green rectangles (labeled
as area 1 and 2) in Fig. 12 in the Appendix. As shown in this
figure, the two labeled areas are featuring two different vascular

characteristics. Area 1 represents the iris part with disorderly
distributed vasculature, while area 2 represents the iris part with
radially distributed blood vessels. Figure 6 shows the image
processing results after the key steps of the vascular information
quantification algorithm developed in this study. Figures 6(a)
and 6(e) are the original unprocessed MAP images of areas 1
and 2. Figures 6(b)–6(d) and 6(f)–6(h) are the images obtained
after vascular signal enhancement, intensity transformation, and
region growing steps of our algorithm. By comparing vascular
signals in Figs. 6(a) and 6(e) with the corresponding vascular
signals in Figs. 6(b) and 6(f), we can clearly see that the 3-D
Hessian matrix-based method enhances the vascular signals
throughout in the image. However, microvascular signals are
still relatively weak and thus are not diagnostic. But, after
intensity transformation, the microvascular signals are further
enhanced, as can be clearly seen in Figs. 6(c) and 6(g). The
background noises are completely removed and binary images
after region growing are shown in Figs. 6(d) and 6(h). To val-
idate the accuracy of our algorithm, the signal intensity profiles
along the dashed lines in the original images [Figs. 6(a) and
6(e)] and the binary images [Figs. 6(d) and 6(h)] were plotted
and compared with each other in Fig. 7. The blue line in Fig. 7 is
from the original image and the red line is from the binary
image. The matched peaks of the blue line and the red line
indicate that our method did not introduce any distortion in
the image and yet resulted in high quality image for accurate
vascular information extraction. Furthermore, to validate the
accuracy of our algorithm by comparing it to the algorithm
used for CT, we also applied the CT algorithm to the images
shown in Figs. 6(a) and 6(b) under the same procedure as
that in Figs. 6 and 7, and put the final result as Fig. 13 in
the Appendix. As can be seen by comparing Fig. 6(d) with

Fig. 6 The original unprocessed image and postprocessing images after vascular signal enhancement,
intensity transformation, and region growing. (a)–(d) Correspond to area 1 in Fig. 12 in the Appendix.
(e)–(h) Correspond to area 2 in Fig. 12 in the Appendix.

Fig. 5 Representative image frame from Video 1 (Video 1, MP4, 6 KB
[URL: http://dx.doi.org/10.1117/1.JBO.23.4.046006.1]).
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Fig. 13(a) in the Appendix and Fig. 6(h) with Fig. 13(b) in the
Appendix, the extracted blood vessels look much worse with the
algorithm used for CT. Furthermore, by comparing Fig. 7(a)
with Fig. 13(c) in the Appendix and Fig. 7(b) with Fig. 13(d)
in the Appendix, it can be seen that the extracted images with

our algorithm also agree more with the original images com-
pared to the algorithm used for CT.

Finally, the quantified vascular parameters of the selected
two subvolumes are shown in Fig. 8. Figure 8(a) shows the
distribution of vessels with different diameters and Fig. 8(b)
shows the VD and tortuosity information in our input volume.
From Fig. 8(a), it can be clearly seen that microvessel
(vessel diameter below 20 μm) density in subvolume 1 (area 1)
is significantly higher than that in subvolume 2 (area 2), which
agrees with the images in Figs. 6(d) and 6(h). In addition, in
Fig. 8(b), we can see that the overall vascular densities (VD)
in subvolumes 1 and 2 (area 1 and 2) are very close to each
other, which is consistent with the findings in the previous
reports.8,19 The quantification values shown in these figures
also reveal information that is not easily captured by the
naked eye, e.g., vascular tortuosity in subvolume 2 (area 2)
is more severe than that in subvolume 1 (area 1), as indicated
by all three definitions (DM, ICM, and SOAM) in Fig. 8(b).

In Fig. 9, we show the comparison between vessel diameter
distributions obtained with our algorithm (series 1) versus

Fig. 7 Comparison of the intensity profiles along the dashed lines in
the original and binary images in Fig. 6.

Fig. 8 Quantified vascular parameters of the two subvolumes, i.e., subvolumes 1 and 2 (areas 1 and 2).
(a) Vessel diameter distribution and (b) VD and three different definitions (DM, ICM, and SOAM) of vas-
cular tortuosity.

Fig. 9 Vessel diameter distribution in subvolume 1: (a) and subvolume 2 (b) obtained with our algorithm
(series 1) and manual measurement based on Image-J (series 2).
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manual measurement obtained using Image-J (series 2). In both
Figs. 9(a) and 9(b), corresponding to subvolumes 1 and 2,
respectively, distribution of vessels for various diameters is
very close to each other. The correlation efficiency is very
high and is equal to 0.962 and 0.929 (p ≪ 0.01) for regions
1 and 2, respectively, based on Spearman’s correlation test, dem-
onstrating the high accuracy of our algorithm. The VD obtained
with Image-J is 0.3689 and 0.3779 for subvolumes 1 and 2,
respectively. These densities are very close to those obtained
with our algorithm (0.3766 and 0.3773). The accuracy of
vascular tortuosity calculation has been evaluated in many pre-
viously reported studies,40,41 and we adopted the same tortuosity
calculation method in our algorithm as that in the previous stud-
ies. Thus, our method, in addition to being accurate, is automatic
with just enough user input thus can be readily deployed
clinically. The developed algorithm can be incorporated into
the high-end graphics cards with billions of operations to make
it a real-time system. This is one of our next goals. Finally, it is
to be noted that compared with our algorithm, the Image-J
processing takes a much longer time due to the manual
measurement.

4 Conclusion
In vivo quantitative vasculature imaging of rat iris was accom-
plished in this study for the first time with a custom-built OR-
PAM system and a developed 3-D Hessian matrix-based image
processing algorithm. The quantitative vascular information of
rat iris, such as vessel diameter, VD, and vascular tortuosity, was
successfully extracted facilitating the IRIS disease diagnosis.
The combination of photoacoustic imaging with the developed
algorithm has the following advantages: (1) high contrast
images of rat iris containing microvascular information can
be obtained label free with OR-PAM due to the ultrasensitivity
of photoacoustic imaging toward endogenous hemoglobin;
(2) compared with the 2-D Hessian matrix-based algorithm,
the application of the 3-D Hessian matrix in the algorithm
enables significantly improved image quality for further accu-
rate vascular information extraction; and (3) compared to the
3-D Hessian matrix-based algorithm used in the clinical CT
imaging, the developed algorithm in this study is capable of sup-
pressing background noise more efficiently, accurately differen-
tiates blood vessels with various diameters, and readily extracts
out of focus blood vessels. We confirmed all our findings by
using a SD rat for in vivo iris imaging and since densely packed
vasculature in rat iris closely relates to the real condition of
human eyes, the findings in this study could be extended to
human use in the near future. Compared with the previous stud-
ies that all used mice,24,35,36 our research has provided promising
prospects for further pathological studies as it is more flexible to
establish disease models on rat irises. Thus, results in this study
indicate that the developed algorithm in conjunction with OR-
PAM can potentially facilitate the study of ophthalmology and
many other vascular-related diseases in vivo in the near future.
In the next step, we will evaluate several diseased iris to estab-
lish correlation between quantitative parameters and disease
process for easier diagnosis.

Appendix
Figures in the appendix include the following: iris photoacoustic
imaging result for one cross section that is perpendicular to the
imaging depth direction (Fig. 10); comparison of a MAP figure

with low signal-to-noise before and after processed with our
algorithm (Fig. 11); MAP image of the entire iris with the
root part of iris at the top surface of the eyeball (Fig. 12);
and comparison of the vascular information extraction accuracy
for our algorithm and the algorithm used in CT imaging
(Fig. 13).

Fig. 12 In the Appendix, MAP image of the entire iris with the root part
of iris at the top surface of the eyeball.

Fig. 10 In the Appendix: (a) iris photoacoustic imaging result for one
cross-section that is perpendicular to the imaging depth direction and
(b) enlarged view of the rectangle area in panel (a).

Fig. 11 In the Appendix: (a) MAP figure with low signal-to-noise
ratio (SNR ≈ 1.7) and (b) noise degraded figure processed by our
algorithm.
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