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Abstract. Raman spectroscopy (RS) has demonstrated great potential for in vivo cancer screening; however,
the biophysical changes that occur for specific diagnoses remain unclear. We recently developed an inverse
biophysical skin cancer model to address this issue. Here, we presented the first demonstration of in vivo mela-
noma and nonmelanoma skin cancer (NMSC) detection based on this model. We fit the model to our previous
clinical dataset and extracted the concentration of eight Raman active components in 100 lesions in 65 patients
diagnosed with malignant melanoma (MM), dysplastic nevi (DN), basal cell carcinoma, squamous cell carci-
noma, and actinic keratosis. We then used logistic regression and leave-one-lesion-out cross validation to deter-
mine the diagnostically relevant model components. Our results showed that the biophysical model captures the
diagnostic power of the previously used statistical classification model while also providing the skin’s biophysical
composition. In addition, collagen and triolein were the most relevant biomarkers to represent the spectral
variances between MM and DN, and between NMSC and normal tissue. Our work demonstrates the ability of
RS to reveal the biophysical basis for accurate diagnosis of different skin cancers, which may eventually lead to
a reduction in the number of unnecessary excisional skin biopsies performed. © 2018 Society of Photo-Optical

Instrumentation Engineers (SPIE) [DOI: 10.1117/1.JBO.23.5.057002]
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1 Introduction
Raman spectroscopy (RS) has emerged as a powerful tool for
clinical diagnosis of skin malignancies. RS offers a number
of advantages compared with gold standard biopsy: it has
high endogenous molecular specificity, it is minimally invasive,
and it does not require sample preparation.1 The development of
Raman optical fiber probes has greatly promoted its application
in real time in vivo skin cancer screening.

Previous studies have shown that RS is highly sensitive in
differentiating malignant melanoma (MM, the deadliest version
of skin cancer) from benign pigmented lesion (PL, frequently
confused in the clinic with MM).2–4 Our group has demonstrated
that MM (12 lesions) can be discriminated from PL (17 lesions)
with 100% sensitivity and specificity using a Raman probe-
based system5 and principal components analysis (PCA) with
a logistic regression classifier.4 Schleusener et al.6 discriminated
MM (23 lesions) and PL (33 lesions) with a balanced accuracy
of 91% using partial least squares discriminant analysis (PLS-
DA). Lui et al.3 discriminated MM (44 lesions) from PL (286
lesions) with 90% to 99% sensitivity and 15% to 68% specificity
using PCAwith generalized discriminant analysis (PCA-GDA).
A follow-up independent validation study from the same group
showed consistent results for discriminating MM (53 lesions)
from PL (336 lesions).7 Their research later led to the commer-
cial launch of a clinical skin cancer detection device (Verisante
Aura) in Canada.3

RS also has been used to detect nonmelanoma skin cancer
(NMSC), mainly basal cell carcinoma (BCC), squamous cell

carcinoma (SCC), and actinic keratosis (AK, a precancerous
state). Lieber et al.8 developed a portable confocal Raman sys-
tem with a handheld probe and achieved 100% sensitivity and
91% specificity in discriminating BCC, SCC, and inflamed
scar tissues from normal tissues (21 versus 21). The spectral
differences were extracted through the maximum representation
and discrimination feature statistical method. Silveira et al.9

discriminated BCC, SCC, and AK from nontumorous tissue
(44 versus 55) with ∼91.9% accuracy using a dispersive
Raman system and PLS-DA. Schleusener et al.6 discriminated
BCC from normal skin (35 versus 104) and SCC from normal
skin (22 versus 104) based on PLS-DAwith a balanced accuracy
of 73% and 85%, respectively. Lui et al.3 distinguished skin
cancer and AK from benign lesions with 90% to 99% sensitivity
and 24% to 66% specificity based on PLS.

Despite these successes, these studies have employed
statistical classifiers, sometimes called “black box” methods,
to describe the spectral differences between pathologies. The
challenge with these statistical algorithms lies in interpreting the
biophysical basis for their discriminant ability. That is, they do
not provide insights into the most relevant cancer biomarkers
that RS relies on to make an accurate diagnosis. Therefore, we
aim to determine the biophysical basis of skin cancer detection
based on RS. This may enable the pathologist to interpret the
spectral data in a familiar manner (such as a thickening epider-
mis, the change in collagen and lipid content, etc.) and guide
a dermatologist in determining the most appropriate treatment.

Our group recently proposed a Raman biophysical model, an
inverse model that derived the skin’s biochemical makeup from
its Raman spectrum.10 The model described the Raman spectra
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from in vivo human skin as a linear combination of eight Raman
active skin constituents extracted from skin in situ, including
collagen, elastin, keratin, triolein, ceramide, nucleus, melanin,
and water. We have validated the model using previous
in vivo human skin cancer screening data10 and identified dis-
tinct biophysical changes between pathologies. However, we
have not evaluated the diagnostic potential of those biophysical
parameters in discriminating skin cancers. We also have not
identified the important biophysical features used as diagnostic
tools.

Here, we present a preliminary study of in vivo diagnosis of
melanoma and NMSC on the biophysical basis. We demon-
strated that the biophysical model captures the diagnostic
power of the previously used statistical classification model
while also providing the skin’s biophysical composition. Our
work demonstrates the ability of RS in sensing the biochemical
composition of skin cancers, thus allowing for better interpre-
tation of the diagnostic results from a pathological basis.

2 Materials and Methods

2.1 Clinical Instrument and Dataset

The clinical skin cancer screening study4 was conducted using a
Raman optical fiber probe11 integrated in an optical fiber probe-
based system.5 An 830-nm wavelength excitation was used to
minimize tissue autofluorescence. Collected signals entered
a spectrograph and were imaged onto a camera. Integration
time for each measurement was 3 s. Spectral resolution of the
probe-based system is around 10 cm−1. This study was
approved by the Institutional Review Board at the University of
Texas at Austin and the University of Texas MD Anderson
Cancer Center (trial registration ID: NCT 00476905).
Informed consents were acquired from all patients prior to
the study.

In vivo Raman spectra were obtained from 65 patients diag-
nosed with BCC, SCC, AK, dysplastic nevi (DN, a dysplastic

Table 1 Summary of clinical data.

Lesion
type # patients

# lesions
(# spectra)

# adjacent normal
tissues (# spectra)

MM 10 12 (33) 11 (23)

DN 11 17 (37) 17 (33)

BCC 14 19 (39) 19 (38)

SCC 20 38 (81) 38 (76)

AK 10 14 (30) 14 (28)

Total 65 100 (220) 99 (198)

Fig. 1 (a) Eight model components: (1) collagen, (2) elastin, (3) triolein, (4) nucleus, (5) keratin, (6) ceram-
ide, (7) melanin, and (8) water. Peak positions of the main Raman bands are labeled. (b) Fitting results for
the average Raman spectra of normal tissue, BCC, SCC, AK, DN, and MM. Black solid lines: average
tissue spectra. Red dotted lines: model fits. Residuals are also plotted on the bottom. Images are adapted
from Ref. 10.

Journal of Biomedical Optics 057002-2 May 2018 • Vol. 23(5)

Feng et al.: Raman biophysical markers in skin cancer diagnosis



form of PL), and MM. Details of the clinical data are provided in
Table 1. In total, there are 100 lesions and 99 adjacent normal
tissues because one normal tissue was shared between two
lesions. Fourteen out of 38 SCC lesions containing both SCC
and AK were grouped into SCC. Multiple spectra were taken
from each lesion by moving the probe to different locations
to sample as much of the lesion as possible. Multiple spectra
were also taken from the normal skin adjacent to each individual
lesion. Although not verified by histopathology, normal skin
was visually verified to be normal by an experienced dermatolo-
gist or physician assistant.

2.2 Data Preprocessing

Spectra underwent wavenumber calibration, dark noise removal,
cosmic ray removal, and smoothing, followed by a fifth-order
polynomial fitting12 to remove tissue fluorescence background.
Spectral data were spectral response calibrated using a tungsten
halogen lamp (LS-1-CAL, Ocean Optics). Spectral band
between 800 and 900 cm−1 was excluded due to a strong broad
fiber background peak around 800 cm−1. A sharp room light
peak at 1100 cm−1 was removed from five spectra from one
MM patient.

2.3 Diagnostic Algorithms

2.3.1 Classification tasks

We used four classification tasks in this study: (1) MM versus
DN, (2) MM, DN versus normal (norm), (3) NMSC (BCC,
SCC, and AK) versus norm, and (4) SCC, BCC versus AK.
Diagnostic algorithms were implemented within MATLAB
(version R2015a, MathWorks).

We chose these four classification tasks not only to be con-
sistent with our previous study4 but also based on their clinical
significance. Task (1) is significant, because it directly affects
the decision of a clinician to remove the lesion or continue
to observe when facing a pigmented lesion of concern. Task
(4) is significant, because while a BCC or SCC will require sur-
gical excision, it is often sufficient to treat an AK with cryo-
therapy or a topical chemotherapeutic agent. Both tasks (1)
and (4) are highly related to reducing the number of unnecessary
excisional skin biopsies. Although tasks (2) and (3) are not
currently clinically actionable, they are very relevant to the per-
spective of tumor margin detection. We used normal skin as a
placeholder for these other diagnoses, with the hope that in the
future we can perform the analysis on enough benign lesions to
allow the device to distinguish these benign issues from cancer.

2.3.2 Receiver operating characteristic

An ROC curve was used to determine a model’s performance in
discriminating between two groups. An ROC curve is a graphi-
cal representation of the trade-off between sensitivity and speci-
ficity. Sensitivity is the ability of the model to correctly identify
the positive group, whereas specificity is the ability of the model
to correctly identify the negative group. For good discrimina-
tion, the ROC curve is predominately in the left and top boun-
daries of the graph, whereas for poor discrimination, the ROC
curve approaches the diagonal line drawn from the bottom-left
to the top-right of the plot. ROC curves were calculated sepa-
rately for PCA and biophysical model, and for each of the four
classification tasks.

By default, the ROC curves were calculated by treating each
lesion as an experimental unit. The method is described else-
where:13 if one or more spectra from a site were classified as
cancer, the site was classified as cancer. If all spectra from a
site were classified as normal, the site was classified as normal.

Table 2 Peak positions of the main Raman bands in the Raman
active components.

Raman
peaks
[cm−1] Band assignments Components

937 C─C stretching of proline and valine and
protein backbone

Keratin

940 C─C stretching of protein backbone Collagen,
elastin

1003 C─C vibration of phenyl ring Collagen,
elastin, keratin

1063 C─C asymmetric skeletal stretching of
lipids (trans-conformation);

Ceramide

1080 C─C skeletal stretching in lipids Triolein

1093 O─P─O symmetric stretching vibration
of the DNA backbone

Nucleus

1128 C─C symmetric skeletal stretching Ceramide

1248 Amide III (β-sheet and random coil
conformations)

Collagen,
elastin

1254 β sheet/thymine/cytosine (DNA
base/DNA and RNA base)

Nucleus

1269 Amide III (α-helix conformation), C─N
stretching, N─H in-plane bending

Collagen,
elastin, keratin

1301 C─H modes (CH2 twisting and wagging)
of lipids; CH2∕CH3 bands

Triolein

1336 Amide III, C─N stretching, N─H in-plane
bending

Elastin

1337 Adenine, guanine (DNA and RNA base) Nucleus

1378 Linear stretching of the C─C bonds within
the rings

Melanin

1440 CH2∕CH3 bands Triolein,
ceramide

1450 C─H bending of proteins Keratin

1454 C─H stretching, C─H asymmetric
deformation

Collagen,
elastin

1573 In-plane stretching of the aromatic rings Melanin

1645 O─H bending mode of liquid water Water

1653 C─O stretching model of amide I Keratin

1656 C─C lipids Triolein

1665 C─O amide I vibration Collagen,
elastin
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We used this conservative technique to approximate the derma-
tologist’s tendency to err on the side of caution.

2.3.3 Statistical model

The statistical model (PCA) was adopted from our previous
publication.4 For each classification task, we limited the number
of principal components (PCs) to 5, because the diagnostic
improvements dropped significantly beyond 4.4 First, we per-
formed PCA for a given classification task and then generated
all the possible combinations of 1, 2, 3, 4, or 5 PCs from the first
15 PCs. Next, we selected one combination of PCs and built a
logistic regression classifier. Specifically, for each PC-logistic

regression analysis, a successive single lesion was left out for
testing, with the remaining lesions being used for training.
After the posterior probabilities of all lesions were calculated
according to the leave-one-lesion-out cross-validation protocol,
an ROC curve was then calculated. Using this method, we gen-
erated different ROC curves for different combinations of PCs.
The combination of PCs that yielded the largest area under the
ROC curve (AUC) was selected for subsequent analyses.

2.3.4 Biophysical model

In vivo Raman spectra were fit into the biophysical model with
eight primary model components: collagen, elastin, triolein,

Table 3 Comparison of diagnostic performance of the statistical model and biophysical model.

Classification tasks # lesion

Diagnostically relevant components ROC AUC

Statistical
model

Biophysical
model

Statistical
model

Biophysical
model

MM versus DN 12 versus 17 PC 3,4,5,8,9 Collagen, triolein, and melanin 1.00 0.99

[MM, DN] versus norm 29 versus 28 PC 1,6,9 Triolein and melanin 0.89 0.93

[BCC, SCC, AK] versus norm 72 versus 64 PC 3,4,8,9 Collagen, triolein, elastin, nucleus,
and ceramide

0.58 0.76

[SCC, BCC] versus AK 68 versus 55 PC 3,6,7,8 Collagen, keratin, and water 0.62 0.65

Fig. 2 Comparison of ROC curves between statistical model (thin line) and biophysical model (thick line)
for the four classification tasks: MM versus DN, MM, DN versus norm (adjacent normal tissue), BCC,
SCC, AK versus norm, and BCC, SCC versus AK. The ROC curves are statistically compared, and
the p values are labeled. p > 0.05 indicates no significant difference between the two curves.
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nucleus, keratin, ceramide, melanin, andwater, as shown in Fig. 1.
Those components were collected from human skin in situ and
were averaged over multiple patients.10 Those components con-
tain both biochemical and structural information. For instance,
nucleus refers to the nuclear material in the cell. Collagen and
elastin refer to dermal extracellular matrix. Keratin represents epi-
dermal extracellular matrix. Triolein mainly represents subcutane-
ous fat. Peak positions of the main Raman bands and their
physical origin are summarized in Table 2.10,14–16 The subbands
(or subpeaks) were not listed but also played a role in the fitting.
The fit coefficients provide the relative concentration of those
components and were used as the input variables of the discrimi-
nant analysis. Similar to PCA model, for each classification task,
we generated all the possible combinations of 1, 2, 3, 4, or 5
components from the eight primary model components and built
logistic regression classifiers.We then selected the combination of
model components that yielded the largest AUC.

2.4 Comparison of Discriminative Capability
Between Statistical and Biophysical Models

Statistical analysis was performed using an open-source pack-
age written in R software (version 3.3.3).17 The AUC of two

Table 4 Comparison of specificities derived from ROCs according to
sensitivities of 95% and 90%.

Classification
tasks

Statistical model Biophysical model

Sensitivity
(%)

Specificity
(%)

Sensitivity
(%)

Specificity
(%)

MM versus DN 95 100 95 94

90 100 90 94

[MM, DN] versus
norm

95 64 95 71

90 71 90 75

[BCC, SCC, AK]
versus norm

95 10 95 18

90 6 90 39

[SCC, BCC]
versus AK

95 21 95 11

90 21 90 21

Fig. 3 Fit coefficients of the eight model components computed from the biophysical model. Each point
represents a spectrum data. Significance tests are conducted for the fit coefficients of DN norm (the
adjacent normal tissue of DN) versus MM norm (the adjacent normal tissue of MM), DN versus MM,
and [DN norm and MM norm] versus [DN and MM]. **p ≤ 0.01, *p ≤ 0.05.

Journal of Biomedical Optics 057002-5 May 2018 • Vol. 23(5)

Feng et al.: Raman biophysical markers in skin cancer diagnosis



paired ROC curves was compared using the bootstrap test, with
a goal to determine if the biophysical model provides at least
equivalent potential for classification compared with the statis-
tical model.

2.5 Interpretation of Biophysical Model Result

The fit coefficients of the eight model components generated by
the biophysical model were visualized using scatter plots. Each
scatter point represents one spectrum. The error bar generated by
the 95% CI is used to represent the variance of the fit coefficient.
Unpaired Student’s t test was employed, and the corresponding
p values were labeled to compare if the fit coefficients have any
statistically significant difference between pathologies.

3 Results

3.1 Statistical Model Versus Biophysical Model

In Table 3, the diagnostically relevant model components in stat-
istical and biophysical models are displayed and the AUCs are
compared. Figure 2 compares the corresponding ROC curves.
The AUCs of the ROC curves of the two models are not
statistically distinguishable for the classification tasks of MM
versus DN, [MM, DN] versus norm, and [BCC, SCC] versus
AK. However, the AUC of the ROC of the biophysical
model for [BCC, SCC, and AK] versus Norm is statistically
significantly better than the corresponding statistical model
(p < 0.0001). Table 4 compares the specificities of the two mod-
els corresponding to sensitivities of 90% and 95%, respectively.

3.2 Biophysical Basis of Classification Results

3.2.1 Malignant melanoma versus dysplastic nevi

The biophysical model reveals the biomarkers responsible for
the variances between pathologies. Major bands used for fitting
and their physical origin was shown in Table 2 and reported in
the literature.10,14–16 The fit coefficients of the eight model
components in DN and MM are shown in Fig. 3. Statistical
analysis indicates significant differences in collagen, elastin,
triolein, nucleus, and melanin content between MM and DN.
Collagen and triolein contributed greatly to the spectral variance
between MM and DN. Using the fit coefficients of collagen and

triolein, 29 out of 33 MM spectra and 35 out of 37 DN spectra
are correctly classified (Fig. 4).

The best result was achieved by employing three compo-
nents: collagen, triolein, and melanin, resulting in 12 out of
12 MM lesions and 16 out of 17 DN lesions being correctly
classified. ROC AUC is 0.99, and specificity is 94% (90% to
95% sensitivity, Table 4).

3.2.2 Pigmented lesions (MM, DN) versus adjacent nor-
mal tissue

Figure 3 shows that pigmented lesions and their adjacent normal
tissue have significant differences in triolein, collagen, ceram-
ide, keratin, and melanin content. Our results show that triolein
and melanin are the most relevant model components to dis-
criminate MM and DN from adjacent normal skin. The ROC
AUC is 0.93 (Table 3) for sensitivities from 95% to 90% and
specificities of 71% to 75% (Table 4).

3.2.3 Nonmelanoma skin cancers (BCC, SCC) and
precancer (AK) versus normal skin

In Fig. 5, significant differences are found between BCC and
adjacent normal tissue in collagen, triolein and melanin, and
between SCC and adjacent normal tissue in collagen, triolein,
keratin, and water. Our results showed that a combination of
collagen, triolein, elastin, nucleus, and ceramide was best for
discriminating BCC, SCC, and AK from adjacent normal tissue.
The ROC AUC is 0.76 (Table 3). For sensitivities from 95% to
90%, specificities range from 18% to 39% (Table 4).

3.2.4 Nonmelanoma skin cancers (BCC, SCC) versus AK

Figure 5 shows significant differences in collagen, nucleus,
keratin, and water between SCC and AK, as well as significant
differences in keratin and ceramide between BCC and AK. The
fit coefficients of collagen, keratin, and water discriminated
BCC, SCC from AK with an ROC AUC of 0.65 (2) and spec-
ificities range from 11% to 21% for sensitivities corresponding
to 95% to 90% (Table 4).

4 Discussion and Conclusions
In our previous work,4 we demonstrated the capability of RS in
detecting skin cancers using a statistical model. Here, we show
that a biophysical model can achieve consistent diagnostic per-
formance with the statistical model while simultaneously
extracting the relevant biomarkers accounting for the diagnosis.

Our model reveals markedly different biochemical and struc-
tural compositions between pathologies. First, the amount of tri-
olein is significantly lower in all skin lesions than surrounding
normal skin. Triolein mostly originates from adipose tissue in
the subcutaneous layer, with a small contribution from epider-
mal surface lipids.18 Triolein has a large Raman scattering cross
section, thus contributing greatly to normal skin spectra. The
decrease of triolein in skin lesions does not necessarily indicate
the actual amount of fat decreases in skin lesions, only that there
is a decrease in the triolein sampled by the probe. One possible
reason is epithelial thickening associated with dysplastic
progression.19,20 An increased thickness of epidermis would
mean that the total volume of tissue sampled would include
more epidermis and less adipose tissue, thereby decreasing
the amount of Raman emission from deeper skin layers (adi-
pose). Another possible reason for the decrease of triolein in

Fig. 4 Scatter plot drawn from triolein and collagen content. The solid
logistic regression line separates MM from DN.
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pigmented lesions relative to the adjacent normal skin is that
melanin strongly absorbs excitation laser power and therefore
reduces the contribution of triolein in Raman signal.

Next, we found that the collagen content is significantly
lower in NMSCs than their adjacent normal tissue and AK.
For instance, collagen does not change significantly in the pro-
gression from normal to AK (benign), but it decreases signifi-
cantly from AK to SCC (cancer). This trend of decreased
collagen in cancer was also observed in previous biophysical

models of ex vivo human skin fragments,21 urological tissue,22

gastric/esophagus tissue,23 and cervical tissue.24 This may be
partially explained by the thickening of the epithelium as men-
tioned above. Other reasons may include the release of metal-
loproteinases by cancerous cells to degrade dermal connective
tissue,25,26 and extracellular-degrading enzymes secreted from
fibroblasts that damage the stroma.27

Discriminating MM from benign pigmented lesions (espe-
cially DN) usually leads to large negative biopsy ratio. Due

Fig. 5 Fit coefficients of the eight model components computed from the biophysical model. Each point
represents a spectrum data. Significance tests are conducted for the fit coefficients of adjacent normal
tissue of BCC (BCC norm) versus BCC, the adjacent normal tissue of SCC (SCC norm) versus SCC,
SCC versus AK, and BCC versus AK. **p ≤ 0.01, *p ≤ 0.05.
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to their highly similar appearance, the ratio of negative versus
positive biopsies ranges from 22∶1 to 59∶1 for experienced ver-
sus new general practitioners.28 Understanding of the biophysi-
cal basis of melanoma skin cancer progression is essential to
reduce large negative biopsy ratio and save considerable asso-
ciated costs and efforts. In our study, we discovered that colla-
gen and triolein are the two most important biomarkers to
differentiate MM from DN and NMSCs from normal tissue.
Two previous ex vivo studies based on Raman biophysical mod-
els also showed collagen and triolein (or fat) had important roles
in tissue Raman spectra. Bodanese et al.29 discovered that the
amount of collagen and fat extracted from tissue Raman spectra
can classify BCC from normal skin with sensitivity and speci-
ficity of 95% and 83%, respectively. Haka et al.30 found that the
fit coefficients of collagen and fat can distinguish cancerous
breast tissues from normal and benign tissues with 94% sensi-
tivity and 96% specificity, respectively.

Our results show that melanin is an important biomarker for
classifying pigmented lesions from adjacent normal tissue,
which is as expected because pigmented lesions typically con-
tain more melanin than the surrounding normal skin. However,
we also found melanin is not as relevant as collagen and triolein
in differentiating MM from DN. In fact, melanomas do not
always have more melanin than do benign pigmented lesions.
The existence of amelanotic melanoma is a good example—
we estimated zero melanin content for the one amelanotic mela-
noma lesion in our sample. Blue nevi, on the other hand, contain
abundant pigment but are not cancer. Thus, more data from ame-
lanotic melanomas is needed to clarify the role that melanin may
play in differentiating MM and DN.

We were best able to classify NMSCs from normal skin by
employing a model that considered collagen, triolein, elastin,
nucleus, and ceramide. To better understand the biophysical
changes of each pathology, we examined the lesion-normal
pairs for BCC and SCC separately. We found that melanin
content is significantly lower in BCC than in adjacent normal
skin, likely because the invasion of basal cells takes over the
space normally occupied by the melanocytes. Although not sta-
tistically significant, the amount of nucleus and elastin is larger
in BCC compared with its adjacent normal skin, which may be
explained by the proliferation of cancer cells and the enlarge-
ment of nuclei. Elastin content is also larger in BCC than
adjacent normal, probably because of the existence of solar
elastosis.31 On the contrary, SCC appears to have a higher
amount of keratin, ceramide, and water as compared with its
adjacent normal skin. The increase of keratin may be attributed
to large areas of keratinization in response to malignant epi-
thelial cells.32 Ceramide indicates abnormal epidermal surface
lipid synthesis and thus is a key component to differentiate
SCC from normal skin.

AK is the most common precursor lesion of SCC among
lightly pigmented individuals. Almost every SCC that arises
on sun-damaged skin has evidence of AK in the epidermis,
either directly contiguous with or adjacent to the neoplasm.33

However, AK and SCC have a similar crusted appearance, mak-
ing it difficult to differentiate by visual examination. We found
that the most important components to discriminate SCC from
AK are collagen, keratin, and water. AK is confined to foci
within the epidermis, whereas SCC may further invade into der-
mis. Thus, SCC is expected to have a higher amount of keratin
than AK. Nucleus content is lower in SCC than AK, likely
because the prominent keratinization in SCC occupies the

space of cells. We also observed a higher amount of water con-
tent in SCC than AK. High wavenumber Raman will be an ideal
tool to study the significance of water in NMSC diagnosis.

An interesting discovery is that the normal tissue adjacent to
a DN has significantly more collagen than normal tissue adja-
cent to a MM (Fig. 2). We were suspicious that the observed
difference in collagen could be simply due to aging as the aver-
age age of the MM patients (N ¼ 9) in our study was 65 years
(one patients did not have age information on record), whereas
the average age of the DN patients (N ¼ 11) was 42 years
(Table 5). To control for the effect of aging, we built a gener-
alized linear mixed-effect model34 using patient age and colla-
gen as fixed effects predictors, and tissue type as the response
variable (0 = normal tissue adjacent to DN, 1 = normal tissue
adjacent to MM). We also included a random-effects term for
intercept grouped by patient to account for patient-specific var-
iations. Our result shows that the p value of collagen is 0.041,
indicating the amount of collagen is a significant predictor of
tissue type, even after controlling for age. It is plausible that
there is more collagen in normal skin adjacent to DN than in
that adjacent to MM because melanoma growth is not only asso-
ciated with malignant growth of cancer cells, but also changes in
its stroma microenvironment to support metastasis.35 Paidi
et al.36 discovered that the use of RS is feasible to detect changes
in the stroma of the lung microenvironment in response to pri-
mary breast tumors. Sahu et al.37 found that early malignancy-
associated changes in normal contralateral sites of oral cancer
may lead to anatomical variability and cause misclassification
between contralateral and tumor. Boppart et al.38 raised the
question that molecular surgical margin may be a better way
to define tumor boundary than the “gold standard” structural
tumor margin. Further studies are needed to study changes in
normal stroma in response to dysplastic progression.

One limitation of this study is that it simplifies the model to
only eight Raman active components. Although originally we
had 15 components, we narrowed down to eight to avoid colli-
nearity issues.10 We found that including multiple chemically

Table 5 Patient age for MM and DN.

MM patient # Age DN patient # Age

1 70 1 75

2 58 2 69

3 81 3 31

4 — 4 34

5 69 5 29

6 33 6 69

7 68 7 34

8 70 8 28

9 60 9 35

10 78 10 22

11 34

Average age 65 42
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similar components (e.g., various proteins) would result in fit-
ting results with high variance. However, as there are far more
molecules in skin, this method may underestimate the contribu-
tion of other molecules to the Raman signal. Another limitation
is the limited sample size, which is also the main reason that we
used leave-one-out cross validation to compute the ROC AUC.
It is worth mentioning that this method comes with the risk of
over-optimism. This may be the cause for the discrimination of
MM from DN being better than that of (MM, DN) from normal
(Fig. 2). Alternative methods include (1) k-fold cross validation
(such as k ¼ 10) and (2) bootstrapping.39 The former utilizes
10% of the data as a test set, and the other 90% as the training
set. Although it avoids the caveat of using single observation to
estimate the model performance in each split of the data, it
requires a larger sample size. The latter approach may provide
a better estimate of internal validity.40

In conclusion, we have demonstrated that the biophysical
model has consistent diagnostic capability as our previously
published statistical model. By comparing with the statistical
model, we have demonstrated that the biophysical model cap-
tures the spectral variances between skin pathologies in four dis-
tinct classification tasks. More importantly, the biophysical
model captures the relevant biophysical changes accounting
for the diagnosis. In particular, we found that collagen and tri-
olein were the most important biomarkers in discriminating MM
from benign pigmented lesions, and NMSCs and precancers
from surround normal skin. Our work demonstrated that RS
has great potential in diagnosing skin cancer noninvasively
while extracting the skin’s biophysical composition. Our future
applications involve applying the biophysical Raman model to
an ongoing, larger clinical skin cancer screening study and
tumor margin detection in Mohs micrographic surgery.
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