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Abstract. We present the nanoparticle-enabled experimentally trained wavelet-domain denoising method for
optical coherence tomography (OCT). It employs an experimental training algorithm based on imaging of
a test-object, made of the colloidal suspension of the monodisperse nanoparticles and contains the microscale
inclusions. The geometry and the scattering properties of the test-object are known a priori allowing us to set the
criteria for the training algorithm. Using a wide set of the wavelet kernels and the wavelet-domain filtration
approaches, the appropriate filter is constructed based on the test-object imaging. We apply the proposed
approach and chose an efficient wavelet denoising procedure by considering the combinations of the decom-
position basis from five wavelet families with eight types of the filtration threshold. We demonstrate applicability
of the wavelet-filtering for the in vitro OCT image of human brain meningioma. The observed results prove high
efficiency of the proposed OCT image denoising technique. © 2018 Society of Photo-Optical Instrumentation Engineers (SPIE)
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1 Introduction
Since optical coherence tomography (OCT) was introduced by
Huang et al.,1 it has become an effective noninvasive imaging
modality mainly in biomedical applications.2,3 Its effectiveness
was shown in ophthalmology4–8 (especially for diagnostics of
retina diseases5,7–10), neuroscience,11–15 vascular and blood
imaging,16,17 dermatology,18–20 etc. Recent developments in
OCT technology show its potential for studying prostate21

and reproductive organs pathologies,22 and malignant tissues
detection.13,23–26

OCT uses the principles of low-coherence interferometry
either in time-domain or in frequency-domain.27–32 Doppler
and polarization-sensitive OCT-techniques allow for specific
functional and structural tissue imaging.33 Ongoing develop-
ment of hardware, such as fiber optics, light sources, mechanical
and optical components, used in OCT systems constantly
improve image resolution. At the same time, the reliability of
OCT measurements can be significantly increased by designing
of adequate algorithms for solution of the OCT inverse ill-posed
problems.34–36 However, speckle and scattering noise of the
OCT signal prevents the data reconstruction;37–40 thus, finding
an appropriate denoising technique remains one of the challeng-
ing problems of OCT technologies.

Nowadays, two general approaches of noise reduction in
OCT images are available. The first one is applied during the
OCT image acquisition and is based on improvement of the
detector integration time or averaging of several scans. The sec-
ond one involves postprocessing techniques, including filtering,
methods of extraction of “pure” signal, and deconvolution
procedures.41 Using more than one OCT scans for noise reduc-
tion has a significant drawback for in vivo imaging, when object
movements become critical. In this case, the averaging should
include algorithms of image alignment. Making some assump-
tions about noise statistics and properties, such methods as
independent component analysis,42 robust principal component
analysis,43 and statistical-based approach44 give appropriate
results, but remain computationally complicated and time-
consuming.

Digital filtering as an effective method of noise reduction
has been recently implemented in various ways.9,10,45–51 Since
it requires a single OCT image, it can be applied for in vivo
and in vitro biomedical imaging. Median filtration is a common,
simple, and quite effective method.9,47,48 The histogram-based
threshold filters show better filtration quality but require knowl-
edge of a priori information about the object.46 For objects with
repeatedly appearing features, it is possible to use a nonlocal
mean filter with double Gaussian anisotropic kernels,10 which
yields better results in comparison to Wiener, median, and bilat-
eral filters. Effectively used in image formation and processing,
wavelet analysis was applied in OCT for noise reduction.49–52
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Wavelet kernels and optical wave packets demonstrate similar
physical features: zero means value, finite energy corresponding
to square norm one, and high locality in both time and frequency
domains. The wavelet analysis seems to be optimal for the
decomposition of time-domain optical data and, in particular,
for the denoising of OCT images.53 Wavelet analysis employs
different types of kernels and filtration methods, thus, choosing
the most effective filter parameters for OCT imaging of the par-
ticular object of interest remains a challenging problem.

In this paper, we propose the nanoparticle-enabled experi-
mentally trained wavelet-domain denoising technique for
OCT. We suggest using a test-object for experimental training,
which is made of monodisperse nanoparticle suspension and
contains microscale inclusions. To set the criteria for the exper-
imental training of the wavelet-domain denoising procedure, we
use information about the geometry and the scattering properties
of the test-object, which are known a priori and could be
tuned with a high precision by changing the nanoparticle size,
suspension concentration, geometry and positions of the micro-
scale inclusions. By imaging of the test-object and implement-
ing the wavelet denoising to experimental processing, we
choose the appropriate combination of the wavelet decomposi-
tion basis and the filtration threshold. We present the results of
the experimental demonstration of the proposed technique.
In order to show the prospectives of the developed technique
for biomedical applications of OCT, we apply it for in vitro
imaging of human brain meningioma, which seems to be
a representative object for the proposed denoising technique.
It features a morphologically heterogeneous structure and often
contains tumorous cell clusters (whorls) and collagen balls,13

which could be treated as local microscale inclusions in
a semi-infinite scattering space. The observed results demon-
strate an ability for denoising of the meningioma OCT images
while sustaining all the structural features of biotissues. This jus-
tifies high efficiency of the proposed OCT denoising procedure
and prospectives of its use in noninvasive and intraoperative
medical diagnosis.

2 Nanoparticle-Based Test-Object
We prepare the test-object [see Fig. 1(a)] for the experimental
training of the wavelet-domain filter. First, we make a glass
cuvette for the test-object, where we place three 80-μm-diameter
rigidly fixed cylindrical Cu-wires serving as the microscale
inclusions. These wires are placed at the depth of 0.3 mm
from the cover window of the cuvette and spaced at the fixed
distances of r1 ¼ 0.5 mm and r2 ¼ 0.4 mm measured by
visible microscopy. Second, we make aqueous colloidal suspen-
sion, i.e., spherical monodisperse nanoparticles of amorphous
silica in water. In order to make uniform particle concentration
within the suspension volume, we apply ultrasound mixer. We
use nanoparticles with diameter of about 400 nm, synthesized
by the multistage Stober method.54,55 Third, we fill the cuvette
with the prepared colloidal suspension. During the described
preparation of the test-object, we can precisely control its geo-
metrical parameters and scattering properties. These values can
be tuned by changing the suspension concentration or/and the
positions of the wires. Using the test-object, we can physically
simulate OCT imaging of the semi-infinite scattering media with
the backscattering inclusions, which is one of the most common
cases for many OCT applications.13

The quantitative criterion for training of the denoising tech-
nique could be based on the prior knowledge of the test-object,
for instance, the distances between the reflecting inclusions.
In our research, we evaluate an efficiency of the noise reduction
by estimating, from the denoised images, the relative distance
r1∕r2 between the wires and comparing it with the actual
value ðr1∕r2Þ0 ¼ 1.25. We perform imaging of the test-object
using the OCT system OCT1300Y (Institute of Applied
Physics RAS, Nizny Novgorod, Russia), described in detail
in Refs. 35, 56, and 57. The experimental setup operates in
the near-infrared range and employs laser radiation with the cen-
tral wavelength of 1.3 μm and the average power of 0.75 mW.
It yields A- and B-scans of the sample and produces the 256 ×
400 pixel images with the 4-s acquisition time. The declared

(a)

(b) (c)

(d) (e)

Fig. 1 (a) OCT imaging of the test-object: a scheme of the test-object; (b)–(e) OCT images of the
test-object for different concentrations of colloidal suspension of monodisperse nanoparticles C0∕16,
C0∕4, C0∕2, and C0, respectively.
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resolution of the OCT system is 50 μm in lateral (A-scan) and
30 μm (B-scan) in depth directions (in the air).

For the experimental training, we prepared four different
concentrations of the colloidal suspension: C ¼ C0∕16, C0∕4,
C0∕2, and C0, where C0 ≃ 1% is the maximal suspension con-
centration. Such values were used to demonstrate applicability
of the proposed denoising approach in a wide range of scattering
parameters, while for the particular object of interest, the scat-
tering parameters should be adjusted precisely as close to the
object as possible. OCT imaging of the test-object with these
properties yields the results demonstrated in Fig. 1, i.e., the
distortions of the OCT images are quite obvious. In particular,
strong light scattering in highly concentrated suspension is
the reason for distortions and increased background intensity
in the image from Fig. 1(e). Moreover, the “wakes,” appearing
around the metal inclusions in images from Figs. 1(d) and 1(e),
can strongly impact the accuracy of estimating the object geom-
etry. At the same time, for the smallest suspension concentration
[Fig. 1(b)], the metal inclusions are represented with the sharp
intensity peaks. Such distortion of the OCT images complicates
analysis and processing of the OCT-imaging data and justifies
the importance of introduction of an efficient denoising pro-
cedure. These “wakes” might appear as a result of combination
of light reflection from metal objects and multiple scattering in
the surrounding colloidal suspension. In the case of biological
tissues, such artifacts are not expected, and other factors will
distort the signal like absorption, surface roughness, or bulk
scattering. In general, an effective denoising procedure should
suppress these factors and retain information about the object,
i.e., interface position, scattering coefficient profile, or position
and sizes of the inclusions. For demonstration, we used
symmetrical metal objects, assuming that filtration should retain
or reconstruct their initial symmetry and thus, the position of
center of mass. Depending on the main extracted key features,
we could select different criteria and test samples, including
ones, accounting for the asymmetric geometry of the sample.
For instance, one could use transparent inclusions of spherical
or plane form made of glass or plastic.

3 Principle of the Wavelet-Domain Denoising
After registration of OCT images of the test-object, the wavelet
filtration of the experimental data is performed. At this
stage, various combinations of the wavelet bases and the
wavelet-domain filtration procedures are examined in order to
select the optimal one.

OCT signal has a form of a spatial distribution of the
scattered light intensity Iðx; zÞ, where z is a sample depth
and x is a lateral coordinate. Wavelet-domain denoising could
be separately applied to different cross-sections x ¼ x 0 of
this two-dimensional field, namely, to IxðzÞ ¼ Iðx ¼ x 0; zÞ.
This procedure includes three main steps.

• Step 1. Direct wavelet transformation:

EQ-TARGET;temp:intralink-;e001;63;169Cða; bÞ ¼ W½IðzÞ� ¼
Z þ∞

−∞
IxðzÞψða; b; zÞdz; (1)

where ψðzÞ is the mother wavelet and ψða; b; zÞ are
the wavelet-decomposition kernels:

EQ-TARGET;temp:intralink-;e002;63;103ψða; b; zÞ ¼ jaj−1∕2ψ
�
z − b
a

�
; (2)

for which a and b define the scale and the translation,
respectively.

• Step 2. Wavelet-domain thresholding:

EQ-TARGET;temp:intralink-;e003;326;715CTða; bÞ ¼
�
Cða; bÞ; if Cða; bÞ ≥ T;
0; if Cða; bÞ < T;

(3)

where T is the threshold value.

• Step 3. Inverse wavelet transformation:

EQ-TARGET;temp:intralink-;e004;326;644I 0xðzÞ ¼ W−1½CTða; bÞ�

¼ C−1
ψ

ZZ þ∞

−∞

CTða; bÞ
a2

ψ̃ða; b; zÞda db; (4)

where ψ̃ða; b; zÞ is the dual function of ψða; b; zÞ, and

EQ-TARGET;temp:intralink-;e005;326;571Cψ ¼
Z þ∞

−∞

ΨðωÞΨ̃ðωÞ
jωj dω < ∞ (5)

is the admissible constant restricting the diversity of
functions suitable for the definition of the mother
wavelet ψðzÞ. Functions ΨðωÞ and Ψ̃ðωÞ in Eq. (5)
correspond to the Fourier spectra of ψðzÞ and ψ̃ðzÞ,
respectively.

We implement methods of the fast direct and inverse wavelet
transformations (FDWT and FIWT)58 to force the computations
of Eqs. (1) and (4). We consider various wavelet bases from
the ones used in FDWT and FIWT algorithms, both “soft” and
“hard” thresholding modalities,59,60 and different number of the
decomposition levels L. Each configuration of the wavelet-
domain filter is applied to the initial images [see Figs. 1(b)–1(e)],
then, using the image thresholding procedure, we determine
three image segments with high pixel intensity and find their
centroids61 (i.e., centers of mass). Finally, we estimate the
corresponding relative distance for the filtered image ðr1∕r2ÞF.
This value is compared with the reference one ðr1∕r2Þ0:
EQ-TARGET;temp:intralink-;e006;326;329di ¼ jðr1∕r2ÞF − ðr1∕r2Þ0j; i ¼ 1: : : N; (6)

for every i’th of N experiment iterations with the similar
object configuration, each of which is characterized by
various realization of equal-magnitude noise. The standard
deviation (STD) of this estimation is then determined:

EQ-TARGET;temp:intralink-;e007;326;254σSTD ¼
�
1

N

XN
i¼1

d2i

�1∕2

: (7)

By comparing the σSTD values based on N ¼ 5 measure-
ments, we find the minimal one and the related appropriate
wavelet-domain filter configuration. The described experimen-
tally trained wavelet-domain denoising algorithm is summarized
in Fig. 2.

4 Choosing the Wavelet-Domain Filter and
Application for OCT Imaging

For the described test-object and the corresponding OCT images
(Fig. 1), we apply the proposed algorithm. Our database
includes 52 mother wavelets of five wavelet families widely
applied in FDWT and FIWT algorithms, i.e., daubechies (db),
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coiflets (coif), symlets (sym), biorthogonal (bior), and reverse
biorthogonal (rbio). We use soft (s) and hard (h) thresholding
procedures and four values of L.

Figure 3 shows an error map presented in logarithmic scale
logð1þ σSTDÞ for different suspension concentrations C. The
colormap in this figure is changed from red to dark blue with
an increase of the error. By analyzing all values, we selected
seven cases, which are marked with blue ovals and correspond

to the minimal error below 0.01 from the observed ones. As it is
clear from Fig. 3, there is no unique filter configuration with
the equally good results for all of the sample concentrations.
We could notice that the measurement errors do not depend
monotonically on scatterer concentration, which could be due
to nonmonotonical changes of the scattering coefficient of turbid
media with increased volume fraction of colloidal particles,62,63

as well as due to complex dependence of the Mie scattering cross-
section of microinclusions on the effective refractive index of
colloidal suspension.31 Moreover, when small concentrations of
nanoparticles produce weak noise, σSTD has insignificant varia-
tions and all considered filter realizations have the similar effect,
in contrast to the high concentration with large σSTD variations.

Figure 4 compares seven selected cases of the wavelet-
domain filtration. It highlights the concentration influence.
When all cases of the sample condition have to be considered,
the averaging can help find the appropriate filter parameters. The
inset in Fig. 4 demonstrates the mean value h½logð1þ σSTDÞ�iC.
Among these results, we can find that the sixth case bior3.5(4)
has better performance for our OCT system and sample.
Depending on the goal of OCT imaging, one could increase
the number of noise conditions and change the scattering
medium.

In order to prove our results, we compare the filtered images
for the optimal wavelet filter configuration bior3.5(4) with non-
optimal ones (Fig. 5). Configuration sym8(8) corresponds to the
highest error among the seven selected cases (Fig. 4); this filter
[Figs. 5(i)–5(l)] demonstrates satisfactory speckle reduction but
adds dark artifacts and allocates particles’ centers at high con-
centrations less distinctly [Figs. 5(k) and 5(l)] than configuration
bior3.5(4). Configuration bior3.3(5) corresponds to the highest
error value among all results from our database. Its application
[Figs. 5(m)–5(p)] distorts the initial image, adds dark regions

(a) (b)

(c) (d)

Fig. 3 Wavelet-domain filter selection: (a)–(d) colored diagrams represent errors of ðr 1∕r 2Þf estimation
produced by denoising procedure for the colloidal suspension concentration of C0∕16, C0∕4, C0∕2,
and C0, respectively. Horizontal lines in each panel correspond to eight (1) to (8) different thresholding
methods, i.e., soft (s) and hard (h) thresholding procedures and decomposition level L. Vertical lines
correspond to 52 mother wavelets of five wavelet families. Seven combinations of filter parameters
with lowest errors are marked with dark blue ovals.

Fig. 2 A scheme of the nanoparticle-enabled experimentally trained
wavelet-domain denoising technique, which uses the accuracy of esti-
mating the relative distance between the microscale inclusions r 1∕r 2
as a criterion of the noise suppression efficiency.
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and deformations of the sample internal structure. Therefore,
bior3.5(4) operates well for both low and high concentrations
and confirms the obtained results.

5 Applications of the Denoising Procedure
for OCT-Imaging of Meningioma

The latest research demonstrates that OCT could become
an effective intraoperative imaging technique for neurosurgery,
where fast and accurate detection of tumor margins is of high
importance.14,23,64,65 Recently, numerous modern techniques
of tissue imaging are considered to solve this problem:
intraoperative magnetic resonance imaging,66,67 terahertz
reflectometry,68–70 Raman spectroscopy,71–73 and fluorescence

imaging.74,75 Among them, OCT remains one of the most prom-
ising instrument, which yields noninvasive, fast, and label-free
2-D and 3-D visualisation of tissues, providing both lateral and
depth information about its structure and scattering properties.

Many biomedical applications of OCT imaging deal with
objects featuring finally structured heterogeneous semi-infinite
scattering medium with local inclusions possessing high (or
low) scattering. Representative examples of this type of objects
are tissues of retina,7 cortex,12 liver,24 embryo,22 and brain.13 For
example, brain meningiomas are characterized by a nonhomo-
geneous internal structure owing to the presence of cell clusters
(whorls) and collagen balls.13 For the listed tissues, the proposed
denoising technique would yield improvement of the OCT
image quality, i.e., suppressing the noises and the scattering
background, while sustaining and even emphasizing the inclu-
sions, which could serve as specific features of tumorous tissues.
Therefore, in order to highlight the potential of the proposed
denoising technique for OCT imaging of tissues, we apply
the selected wavelet-filter bior3.5(4) for processing the OCT
image of the in vitro human brain meningioma (Fig. 6).

The sample of brain meningioma tissue [Fig. 6(c)] is
explored no later than 4 h after its resection, performed in
Burdenko Neurosurgery Institute. To fix the tissue, prevent
its hydration/dehydration, and sustain its structure and compo-
sition during both transportation and OCT imaging, we place
the sample on a reference optically transparent substrate and
cover it with gelatin films.76 The examined tissue sample is
excised according to the initial medical diagnosis. After the
OCT imaging, it is fixed in formalin and sent to the histological
examination, which is aimed to confirm the result of preopera-
tive diagnosis.

The initial OCT image and the denoising data are demon-
strated in Figs. 6(a) and 6(b). This example of brain tumorous
tissue contains several inclusions of different scale. The large-
scale inhomogeneities are quite visible from the initial OCT
scan, while scattering noise prevents observation of the small-

(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

(m) (n) (o) (p)

Fig. 5 (a)–(d) Results of wavelet filtration of the initial images (e)–(h) applying the optimal filter param-
eters, (i)–(l) filtration with one of the seven selected filters with high error, and (m)–(p) the non-optimal
filtration with the highest error.

(a)

(b)

Fig. 4 Analysis of the wavelet-domain denoising performance:
(a) a comparison of errors, produced by the seven selected filter
parameters and (b) a mean value of error for different suspension
concentrations C.
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scale ones. Two regions in green rectangles shown on panels
[Figs. 6(d)–6(g)] demonstrate an effective denoising inside
small circle-like inclusions. This makes the OCT image more
sufficient for further segmentation and processing. Moreover,
we analyze four vertical cross-sections of the OCT image,
marked on both the initial and filtered images. These results
are demonstrated in Figs. 6(h)–6(k). Initial intensity of OCT
A-scans is shown in red color, and filtered ones are shown in
black. It is visible from these panels that the application of
the selected wavelet filter leads to noise suppression, while
the position and form of all inhomogeneities of tissue are
sustained.

6 Discussions
The proposed denoising method could be useful for various
OCT applications in biology, medicine, and material science.
Despite that we have considered only a representative example

of the wavelet-domain denoising, the applied type of nanopar-
ticle test-object can be changed for enabling a better solution for
other special denoising problems. The proposed criterion could
be effective for training the wavelet-domain filter in such a
common case, when we need better detection of microscale
inclusions and their relative positions. If other type of data
needs to be analyzed from the OCT image, the criterion can
be modified according to this purpose. Accordingly, different
wavelet filters can become optimal for the same OCT image
depending on the extracted information from the object. For
example, the experimentally trained wavelet-domain denoising
approach could be applied to study the multilayered systems or
to measure the scattering parameters of media by solving the
OCT inverse scattering problems. However, an appropriate
wavelet filter should be constructed to accommodate the
needs of the particular OCT application. In further studies,
this method would be used for in vivo measurements of living
tissues, and the test-sample parameters would be corrected
significantly.

Furthermore, this method could be generalized for various
applications of signal processing, assuming not only the
OCT data but also other types of optical and even acoustic
signals. Further implementations of the experimentally trained
wavelet denoising technique can appear for terahertz pulsed
spectroscopy53,77,78 and time-of-flight tomography,79 and fre-
quency-resolved optical gating.80 Moreover, the proposed
approach has significant potential for autocorrelation methods81

applied to measure the ultra-short optical pulses, ultrasonic
measurements in biology, medicine, nondesctructive testing,82,83

magnetic resonance microscopy,84 etc.
The described method relies on the wavelet analysis, but, in

general case, techniques such as fractional Fourier transform
and chirplet analysis can be used for optimizing the image
decomposition onto a basis of kernels local in both time/
space domain and frequency domain. This improvement will
lead to accounting for other specific properties of analyzed data,
for example, complex internal structure or spectral properties.

The proposed approach of manufacturing the test-object
based on colloidal suspension of nanoparticles seems to be use-
ful for solution of the inverse scattering problems in optics,
where various methods can be experimentally trained using
the prepared test-objects. For example, colloid suspensions of
various nanoparticles (amorphous silica, polymers), their
mixtures, magnetic materials, and even photonic crystals and
amorphous media based on self-assembling from colloid
suspension85 could be applied to simulate, in a simple manner,
the media with spatially inhomogeneous scattering properties.

7 Conclusions
In this work, we proposed the nanoparticle-enabled experimen-
tally trained wavelet-domain denoising technique for OCT. The
used test-object was manufactured from the aqueous suspension
of the colloidal monodisperse nanoparticles and contained the
microscale inclusions made of Cu wires. The geometrical and
scattering properties of the test-object were determined a priori
and were used for setting the criteria and adjusting conditions of
the training algorithm. The proposed test-object and criterion
can be changed according to the stated denoising problem.
We used a wide database of wavelet filter parameters for training
and determined the most satisfactory filter configuration for the
particular OCT measurement conditions. In order to highlight
the prospectives of the proposed denoising approach in biology

(e)

(h) (i)

(j) (k)

(e)

(f)

(g)

(h) (i) (j) (k)

(a)
(c)

(d)

(g)(f)(b)

Fig. 6 Application of the wavelet denoising procedure with bior3.5
(4) filter for OCT image of human brain tumor (meningioma): (a) initial
and (b) filtered B-scan of the (c) brain meningioma tissue sample;
(d) and (f) magnified regions of the B-scan before and (e) and
(g) after filtration, respectively; (h)–(k) A-scans before (orange
lines) and after (black lines) filtration.
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and medicine, we applied it for the in vitro imaging of the
heterogeneous tissues—human brain meningiomas. The observed
results demonstrated high efficiency of the proposed denoising
technique. This general approach could be used for a wide range
of applications of biomedical optics and biophotonics.
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