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Abstract. We present a multimodal visible light optical coherence microscopy (OCM) and fluorescence imaging
(FI) setup. Specification and phantom measurements were performed to characterize the system. Two appli-
cations in neuroimaging were investigated. First, curcumin-stained brain slices of a mouse model of Alzheimer’s
disease were examined. Amyloid-beta plaques were identified based on the fluorescence of curcumin, and
coregistered morphological images of the brain tissue were provided by the OCM channel. Second, human brain
tumor biopsies retrieved intraoperatively were imaged prior to conventional neuropathologic work-up. OCM
revealed the three-dimensional structure of the brain parenchyma, and FI added the tumor tissue-specific con-
trast. Attenuation coefficients computed from the OCM data and the florescence intensity values were analyzed
and showed a statistically significant difference for 5-aminolevulinic acid (5-ALA)-positive and -negative brain
tissues. OCM findings correlated well with malignant hot spots within brain tumor biopsies upon histopathology.
The combination of OCM and FI seems to be a promising optical imaging modality providing complementary
contrast for applications in the field of neuroimaging. © The Authors. Published by SPIE under a Creative Commons Attribution 4.0
Unported License. Distribution or reproduction of this work in whole or in part requires full attribution of the original publication, including its DOI. [DOI:
10.1117/1.JBO.24.6.066010]
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1 Introduction
Optical coherence tomography (OCT) is an optical imaging
technique, which was introduced in the early 1990’s. OCT has
since become one of the most important imaging and diagnosis
tools in ophthalmology.1 The use of OCT or optical coherence
microscopy (OCM) also expanded into a wide range of appli-
cation fields such as neuro-, skin, and endoscopic imaging.2–4 In
neuroimaging, OCT has been utilized to investigate diseases
such as Alzheimer’s disease (AD),5–7 Parkinson’s disease,8,9 and
a variety of brain tumors.10–12 However, in comparison to his-
tology, OCT often lacks tissue-specific contrast of anatomical
structures since conventional OCT image contrast is mainly
based on light scattering. Current research in the OCT commu-
nity has therefore also focused on validating and/or combining
OCTwith other established imaging modalities. One promising
possibility is to combine OCT and fluorescence imaging (FI).13

FI provides tissue specificity based on biochemical or meta-
bolic contrast through either autofluorescence or exogenous
fluorescent dyes.14 A combination of OCT and FI may enable
the assessment of tissue morphology by OCM imaging with
complementary biochemical tissue information retrieved by FI.
Multimodal OCT and FI approaches have been implemented
in different ways by research groups over the past years.15–35

However, most presented OCM/fluorescence systems thus far
have been based on rather complex optical layouts, which were

designed to only work for one specific fluorescent dye and often
relied on two separate light sources and paths, one for OCM
and one for FI. Also, most of the OCT subsystems were operated
in the near-infrared wavelength region and were designed for
imaging the retina. Recently, using supercontinuum lasers work-
ing in the visible light spectrum, submicrometer axial resolu-
tions for imaging the eye,34,36–38 cells,39 and brain tissue5–7 were
achieved.40

AD is characterized by the degeneration of neurons, the
formation of extracellular plaques composed of amyloid-beta
protein, and the accumulation of intracellular neurofibrillary
tangles composed of tau protein.41 In our recent work, we inves-
tigated neuritic amyloid-beta plaques in AD brain tissue using
a high-resolution visible light OCM setup.6,7 In histology, which
is the gold standard for confirming these structures in neuro-
pathology, amyloid-beta plaques can be identified using various
stains, such as Congo red or immunohistochemical staining
against amyloid-beta.42,43 Another possibility to visualize
amyloid-beta plaques is the use of fluorescent dyes, such as
thioflavin-S or curcumin.44–46 Curcumin is a yellow pigment,
which is extracted from the rhizome of the plant Curcuma longa
and has been used to label amyloid-beta deposits ex-vivo.47

Optical imaging plays a crucial role during dissections of
brain tumors. In state-of-the-art neurosurgery, the surgeon uti-
lizes an intraoperative microscope to navigate through the pro-
cedure and to localize malignant tissue areas to be resected.48

The most common and most aggressive primary brain tumor
is the glioblastoma multiforme, which belongs to a group of
tumors called gliomas. Even with the best possible treatment,
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in most cases median survival does not exceed 15 months.
Surgery followed by radiotherapy and concomitant temozolo-
mide chemotherapy is the most important current treatment
approach.49 To enable maximal safe resections, intraoperative
differentiation of tumor tissue and brain parenchyma is of
utmost importance.50 Recently, 5-aminolevulinic acid (5-ALA)
FI has emerged as a powerful intraoperative modality capable
of detecting high-grade glioma. The patient orally intakes the
5-ALA tracer prior to surgery. 5-ALA is then metabolized in
the tumor cells to the fluorescent molecule protoporphyrin IX
(PPIX).51 During the operation, a blue light source, integrated
in the neurosurgical microscope, is used to excite the fluoro-
phore, making it easier for the surgeon to identify the malignant
areas.52–54 However, FI lacks morphological information about
the tissue. It was already shown that OCT is a promising tech-
nique to investigate tumorous brain tissue.12,55–59 Kut et al.12

evaluated the attenuation coefficient extracted from the OCT
data to distinguish between healthy tissue and tumors at differ-
ent stages. Researchers have focused on integrating OCT into
surgical microscopes.60–62

In this work, we present an adaptable, multimodal visible
light OCM and FI setup. Our system is based on a supercontin-
uum laser operating in the visible wavelength range as a single,

shared light source for both OCM and FI. By using a visible
spectrum and appropriate spectral filter sets, the presented setup
is able to excite various fluorescence dyes. In the OCM channel,
the broad spectrum provides a high axial resolution to investi-
gate microscopic features in the tissue. We present imaging of
amyloid-beta plaques, in ex-vivo brain tissue of a mouse model
of AD, using curcumin-based fluorescence contrast and visual-
ize the three-dimensional structure of the brain tissue using the
OCM channel of our multimodal setup. Finally, we investigate
ex-vivo tumor biopsies with our multimodal setup. We identify
the malignant regions with the FI setup and assess the morpho-
logical information of the brain parenchyma with the OCM.
Finally, we evaluate the attenuation coefficients retrieved from
the OCMmeasurements and perform a comparison to histology.

2 Methods

2.1 Combined Visible Light Optical Coherence
Microscopy and Fluorescence Imaging Setup

A multimodal visible light optical coherence microscope
(OCM) and FI setup was developed. The OCM subsystem was
first introduced in 2017.6 A sketch of the setup is shown in
Fig. 1(a).

Fig. 1 The multimodal FI and visible light OCM setup. (a) Sketch of the visible light OCM subsystem.
(b) The FI subsystem after flipping the mirrors into the beam (indicated as F.M. in red). Components:
collimator (Col.), dichroic mirror (D.M.), emission filter (Em.F.), excitation filter (Ex.F.), flip mirror (F.M.),
pinhole (Pin.), and PMT (photomultiplier tube). (c) Photograph of a part of the interferometer of the OCM,
where the yellow line indicates the laser beam of the OCM part and the blue dashed line the beam of the
FI part. (d)–(f) A phantom of dragon-green microbeads was imaged. (d) OCM en-face projection and a
representative B-scan. (e) FI image with a zoom-in. (f) Overlay of the OCM (red) and FI (green) images.
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The system is based on a free-space Michelson interferom-
eter and a custom-built spectrometer. A supercontinuum laser in
combination with a variable filter box (NKT Photonics SuperK
EXTREME EXU-6 and VARIA) provided a broad visible
spectrum (400 to 700 nm). An axial resolution of 0.88 μm in
brain tissue was measured assuming a refractive index of 1.36.63

A 20× magnification objective lens was utilized (Olympus,
UPLFLN 20XP) leading to a measured transversal resolution
of 2 μm and a theoretical depth of focus of 44 μm. The A-scan
rate of the system was 30 kHz. To switch from OCM to FI, two
flipping mirrors (F.M.), see Fig. 1(b), were used to deflect the
beam. A zoom-in photograph of the combined setup in Fig. 1(c)
shows the part where the two mirrors can be flipped. For FI, a
variable combination of excitation filter (Ex.F.), dichroic mirror
(D.M.), and emission filter (Em.F.) can be chosen and inserted in
a filter cube (Olympus U-MF2) and may therefore enable flex-
ible imaging of a variety of fluorophores. The light beam first
passed through an excitation filter (Thorlabs MF 434-17, central
wavelength = 434 nm, bandwidth = 17 nm) and was reflected
by a dichroic filter (Thorlabs MD 434) and scanned across the
sample. The beam in the sample arm was raster scanned using
a microelectromechanical mirror scanner (MEMS, Mirrorcle
Technologies, Inc.). The line scan camera (Basler spL8192-
70km) in the spectrometer, the MEMS and the PMT were
synchronized using a custom-made LabView [Version 15.0
(64-bit)] program. The photons emitted by sample fluorescence
passed through an emission filter (Curcumin: Thorlabs MF 530-
43, central wavelength = 530 nm, bandwidth = 43 nm; 5-ALA:
MF 630-69, central wavelength = 630 nm, bandwidth =
69 nm). The fluorescent signal was focused by a lens onto a
photomultiplier tube (Thorlabs, PMMT02, PMT), whose volt-
age output was digitized using a data acquisition card (National
Instruments PCIe-6321). A pinhole with a diameter of 700 μm
was placed in the focal plane before the PMT to reduce of out-
of-focus light. For OCM imaging, the power at the sample was
measured to be 0.8 mW and for FI 0.2 mW.

2.2 Tissue Preparation

2.2.1 Phantom imaging

To validate the setup, three fluorescence phantoms were imaged.
For the first phantom, mounting medium (Aqua-Poly/Mount,
Polysciences) was mixed (concentration 10%) with a curcumin
powder (Sigma-Aldrich). This mixture was stuck onto paper
and a region including both paper and curcumin was imaged.
As a control case, only mounting medium on paper was imaged.
Second, to verify the system’s 5-ALA imaging capabilities, a
fluorescence reference target (Starna Scientific, Protoporphyrin
IX in PMMA, concentration 20%) was utilized (data not
shown). For the third phantom dragon-green micro-beads
(polystyrene-based microspheres dyed with dragon-green fluo-
rophore) were imaged, and the results are shown in Figs. 1(d)-
1(e). Figure 1(d) shows the OCM en-face image averaged over
10 μm in depth as well as a representative B-scan. Figure 1(e)
shows the corresponding FI image including a zoom-in.
Figure 1(f) shows an overlay of the OCM (red) en-face projec-
tion and the FI image (green).

2.2.2 Curcumin-stained mouse brain tissue

Heterozygous breeding of an AD mouse model, APPswe,
PSEN1dE9 (APP-PS1, MMRRC stock number 34829, The

Jackson Laboratory64–66) was established. Animal experiments
were approved by the local ethics committee and by the Austrian
Federal Ministry of Education, Science and Research under
protocol BMWFW-66.009/0279-WF/V/3b/2018. One mouse
was sacrificed at the age of 63 weeks. The brain was carefully
removed and for one hemisphere a vibratome (Vibratome Series
1000 Sectioning System, The Vibratome Company) was used to
cut 100-μm-thick brain sections. The slices were cleared for
15 min following the SWITCH clearing protocol,6,67 stained
with curcumin, and imaged using a laser scanning microscope
(Confocal Microscope LSM 700 Zeiss). The other hemisphere
was embedded in paraffin and 3 μm thick slices were stained
with curcumin and imaged by a conventional Olympus fluores-
cence microscope (BX51). Amyloid-beta plaques in consecutive
sections were then visualized by immunohistochemical [anti-A
β antibody (clone 6F/3D, diluted 1:100, Dako)] staining for
neuropathological confirmation of findings.

2.2.3 Tumor and control human brain samples

Brain tumor samples were retrieved intraoperatively. The sur-
geon used a surgical fluorescence microscope to identify
5-ALA-positive areas and resected the tumor-associated tissue.
During tumor resection, 5-ALA-positive and/or -negative tissue
samples were routinely collected. Half of the biopsy samples
was directly processed for routine neuropathological work-up
and the other half was imaged with the multimodal setup
(Ethical approval EK 419/2008 - Amendment 04/2018). The
fluorescence images were acquired before the OCM volumes
to prevent photo bleaching. After OCM and FI, the samples
were prepared for histology. Hematoxylin and eosin staining
was performed and micrographs were acquired with a slide
scanner (Hamamatsu NanoZoomer 2.0 HT). In total, 12 biopsies
of 6 patients (age range 47 to 65 years) diagnosed with brain
tumors were investigated. According to the surgeon six sam-
ples showed strong 5-ALA-positive fluorescence, three samples
showed vague 5-ALA-positive fluorescence and three samples
were 5-ALA negative. A detailed description of all biopsies can
be found in Table 1.

2.3 Data Acquisition and Postprocessing

Processed OCM volumes consisted of 4096ðzÞ × 500ðxÞ ×
500ðyÞ pixels and the fluorescence images comprised 500ðxÞ ×
500ðyÞ pixels. The field of view was 200 × 200 μm2. Data
were acquired using a custommade Labview program (LabView
2015, Version 15.0, 64-bit, National Instruments). The OCM
data were processed following the steps described by
Lichtenegger et al.,7 and en-face projections were generated
by averaging intensity over various depths. Fiji was used to
generate composition images of FI and OCM results.68

2.3.1 Data processing of the brain biopsy measurements

An overview over the data processing pipeline for the tumor
samples is shown in Fig. 2. After FI [Fig. 2(1)] and OCM
[Fig. 2(3)] acquisition, surface flattening was performed, and
attenuation maps [Fig. 2(4)] were generated following previous
work.6,12,69 A region of interest consisting of 100 B-scans was
chosen manually and for each B-scan, the average attenuation
coefficient was calculated [Fig. 2(5)]. The respective average
fluorescence signal [Fig. 2(2)] was calculated to create a scatter
plot [Fig. 2(6)]. The fluorescence data [dataFIðnÞ; n ¼ 1: : : N;
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ðN ¼ 12 biopsiesÞ] was normalized using normFIðnÞ ¼
dataFIðnÞ−minðdataFIÞ

maxðdataFIÞ−minðdataFIÞ. To calculate the maximum [maxðdataFIÞ] and
minimum [minðdataFIÞ], all data sets were used. The resulting
clusters (each point represents one B-scan) were visualized in
a scatter plot (5-ALA-positive/negative and infiltration zone).
For the statistical analysis, mean values of attenuation and FI
data were calculated for each of the 12 samples. Mann–Whitney
U tests with Bonferroni correction were performed to test for the

equality of the distributions in attenuation and fluorescence data
using a significance level of p < 0.01.

Further cell counting in OCM volumes was performed.
Subvolumes consisting of regions of interest of 120 × 200 ×
20 μm3 were evaluated. For each volume three times the same
area was evaluated. The cells, appearing as hyposcattering
regions in the intensity volumes, were manually annotated
using ITK-Snap.70 The binary output files were then used to per-
form automatic cell counting using the three-dimensional (3-D)
objects counter tool in Fiji.

3 Results

3.1 Curcumin Phantom Measurements

A curcumin phantom was imaged to validate the performance of
the system. The excitation and emission spectra of curcumin are
shown in Fig. 3(a) along with the filters used. In the fluorescence
image [Fig. 3(b)], a clear contrast between pure paper and the
mounting medium mixed with curcumin is visible. A represen-
tative intensity B-scan image and the intensity averaged OCM
en-face projection over 50 μm are shown in Figs. 3(c) and 3(d),
respectively. Note that it is challenging to distinguish the curcu-
min from the paper in the OCM en-face image. Figure 3(e)
shows an overlay of the OCM en-face image (red) and the cor-
responding fluorescence image (green).

3.2 Amyloid-Beta Plaque Imaging in Brain Tissue
of an Alzheimer’s Disease Mouse Model

Curcumin-stained brain sections of a mouse model of AD were
imaged with the combined setup (Fig. 4). An immunohisto-
chemical and hematoxylin-stained histology image of an adja-
cent brain region is shown in Fig. 4(a). Amyloid-beta plaques
appear as brown structures. Figure 4(b) shows an image of a
3-μm-thick brain section stained with curcumin taken with a
commercial fluorescence Olympus microscope. The plaques
can be identified as regions with increased fluorescence due
to curcumin. A similar region in a 3-μm-thick brain section was
imaged with the OCM/FI setup, and the FI results are shown in
Fig. 4(c). Again, amyloid-beta plaques can be identified as
highly fluorescent structures. A 100-μm-thick brain slice was
first imaged with a commercial laser scanning microscope
[Fig. 4(d)]. A representative OCM B-scan of the vibratome
section is shown in Fig. 4(e). A plaque can be identified as a
hyperscattering structure. Figure 4(f) shows an OCM intensity
en-face projection over 10 μm underneath the tissue surface.
A plaque shows up as a highly scattering feature. The corre-
sponding fluorescence image is shown in Fig. 4(g). The focus
was set at the same depth as for the OCM acquisition. Finally, a
composite image of OCM (red) and fluorescence (green) image
is shown in Fig. 4(h). The amyloid-beta plaque, which is present
in both the OCM and the fluorescence image, can be observed in
a yellowish color. Another plaque, which is present in the fluo-
rescence image, is barely visible in the OCM image. The dark
spots in the fluorescence image are cells and appear as hyposcat-
tering in the OCM images. Figure 4(i) shows an average en-face
projection over the whole 100 μm in a slightly bigger area with
hyperscattering plaques indicated by yellow arrows.

3.3 Imaging of 5-ALA Brain Tumor Biopsies

5-ALA-positive tumor samples retrieved intraoperatively were
imaged prior to routine neuropathologic work-up. In Fig. 5(a),

Fig. 2 The data processing pipeline. First, OCM and FI images are
acquired. Attenuation maps are generated from the OCM data.
Attenuation coefficients are averaged in a chosen region of interest.
The results from the attenuation analysis are then compared in a
scatter plot with their respective averaged FI values.

Table 1 The detailed information of the 12 biopsies of 6 patients. The
5-ALA status and the definite diagnosis of patient records are shown.
5-ALA − corresponds to no fluorescence, 5-ALA + to vague, and
++ to strong 5-ALA fluorescence.

Patient
ID

Biopsy
(n)

Fluorescence
status Definite diagnosis

I 1 5-ALA − Adjacent brain parenchyma

I 2 5-ALA ++ Compact tumor and infiltration
zone

II 3 5-ALA ++ Compact tumor and infiltration
zone

II 4 5-ALA ++ Diffuse tumor infiltration and
necrotic tissue

III 5 5-ALA ++ Infiltration zone

IV 6 5-ALA − Adjacent brain parenchyma

V 7 5-ALA + Physiological tissue and
infiltration zone

V 8 5-ALA + Physiological tissue and
infiltration zone

V 9 5-ALA ++ Compact metastatic tissue

VI 10 5-ALA − Adjacent brain parenchyma

VI 11 5-ALA − Adjacent brain parenchyma

VI 12 5-ALA ++ Compact tumor and infiltration
zone
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the excitation and emission spectra of 5-ALA are plotted. The
emission (red) and excitation (blue) filter spectra are indicated
by color bands.72 In Figs. 5(b)–5(d), histological images are
shown for a 5-ALA-negative area, an infiltration zone, and a
5-ALA-positive area. Tumor area and infiltration zone can be
distinguished by the densities of malignant cells. In the infiltra-
tion zone, areas of physiological brain tissue with infiltrating
malignant cells (indicated by green arrows) can be observed.
An average en-face projection over 20 μm and a representative
B-scan image of a 5-ALA-positive area are shown in Figs. 5(e)
and 5(f), respectively. The averaged attenuation map shows
lower values in the left lower corner [Fig. 5(g)]. The combined
OCM (blue) and fluorescence image (red) in Fig. 5(h), in the
same area, shows a stronger fluorescence signal indicating a
higher density of malignant cells.73 An average en-face projec-
tion over 20 μm and a representative B-scan image of a 5-ALA-
negative area are shown in Figs. 5(i) and 5(j), respectively.
Compared to 5-ALA-positive tissue, the tissue morphology is
more homogeneous and the intensity in the OCM image is
increased.

Cell counting was conducted in three OCM data sets, three
times each for one tumor area, a nontumorous area, and an infil-
tration zone. As shown in Fig. 6(a), the cell count in the 5-ALA-
positive area and the infiltration zone was 139% and 15% higher
than in 5-ALA-negative tissue, respectively. Attenuation maps

for all measured OCM volumes were calculated. Figure 6(b)
shows the averaged attenuation coefficients over B-scans plotted
over the averaged intensity values retrieved from the fluores-
cence images. For the statistical evaluation mean values for all
12 data sets were evaluated. The 5-ALA-positive tissue exhibits
lower attenuation coefficients and higher fluorescence values
when compared to 5-ALA-negative area. The mean attenuation
values in the infiltration zone compared to the 5-ALA-negative
area showed a trend to be lower but no significance was found
(p ¼ 0.014). The mean attenuation values in the infiltration
zone compared to the 5-ALA-positive area showed a trend to
be higher but no significance was found (p ¼ 0.15). All other
results were statistically significant (Table 2) with a p-value of
<0.01. The mean values of the clusters which were tested for
different distributions are indicated by the color bars in Fig. 6(b).

4 Discussion
We developed a combined visible light OCM and FI setup. Our
multimodal system presents a compact and simple design to
consecutively acquire OCM and FI data by using a single light
source for both modalities in comparison to previously reported
work.15,18,19,22–24,26–33 Switching from OCM imaging to FI is
achieved by simply flipping two mirrors in the setup. Another
advantage of our setup is that it has the possibility to detect a

Fig. 3 Curcumin phantom imaging with the multimodal setup. (a) Excitation and emission spectra of
curcumin. The excitation (blue) and emission (green) filters used in the system are indicated by color
bands.71 (b) Fluorescence image of the mounting medium mixed with curcumin on the paper. (c) A cor-
responding B-scan OCM image taken at the location indicated by a yellow dashed line in image (d).
(d) OCM en-face projection over 50 μm. (e) Overlay of the OCM (red) and the fluorescence image
(green). All images are taken with a 20× magnification objective lens.
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variety of standard fluorescence dyes as the light source spec-
trum covers the whole visible range. To image specific fluores-
cent dyes, the system can be equipped with different filter cubes
that are readily available for commercial fluorescence micro-
scopes. In order to further improve the system and to enable fast
switching between different dyes, it might be an option to
assemble multiple filter cubes that could then be integrated in
an automated wheel or stage for quick exchange. At the same
time, using the broad visible spectrum for OCM, an axial res-
olution of 0.88 μm in brain tissue was achieved, which enabled
imaging on a cellular level. When investigating amyloid-beta
plaques, which are in the range of 10 to 200 μm, a high reso-
lution is crucial.74

Further technological improvements of the OCM/FI setup
could enable dynamic focusing and 3-D FI. While focusing was
done manually in the current implementation, setting the focus
for FI and OCM imaging in the future could be done using an
automatic z-stage. The implementation of such a stage would
also enable the acquisition of confocal image stacks of 3-D
FI data. For now, the focus was set at the same position as the
OCM image, at the top of the surface of the tissue. The penetra-
tion depth into brain tissue using visible light OCM was limited
to ∼100 μm. Investigating optically cleared tissue would in-
crease the penetration depth, as has been shown in our previous
work.6 Further, to achieve good FI results, a flat surface would
be optimal. Imaging a curved tissue surface was challenging as
the signal at the image borders is reduced and fewer structures
can be identified. This effect can for example be observed in
Figs. 4(f)–4(h). One possibility to overcome this issue could
be to acquire multiple stacks and fuse them to increase the image
quality and suppress speckle noise.75

A commercial 20× objective lens was used for imaging.
Using higher numerical aperture (NA) would result in a better
fluorescence signal. In future, objective lenses with even higher
NAwill be used to investigate smaller anatomical features with a
better fluorescent response.

For the data acquisition, first the FI image and then OCM
volumes were acquired to prevent bleaching. For all measure-
ments, the same power, pinhole settings, and objective lens
were used. The focus was always set at the tissue surface.
Furthermore, imaging was performed in a darkened room. The
measured FI intensity is also dependent on the biopsy shape and
the autofluorescence.76 As a next step calculating a relative or
quantitative fluorescence intensity will be investigated, follow-
ing, for example, Valdés et al.77 For that purpose, a fluorescence
phantom is needed as a reference to achieve correct relative
intensity values.

Two application possibilities of the setup in the field of neu-
roimaging were presented. First, brain tissue slices of an AD
mouse model stained with curcumin were imaged. The investi-
gations revealed that with the same light source amyloid-beta
plaques can be specifically identified using FI, and the morphol-
ogy of the brain tissue, including anatomical features, can be
investigated by OCM. The plaques were identified in the
OCM images as highly scattering structures and in the FI images
as highly fluorescent spots. The additional fluorescence channel
confirmed that the highly scattering structures observed with
OCM are amyloid-beta plaques. The results were in good agree-
ment with literature and histology.5,7,25 To improve the sensitiv-
ity to detect amyloid-beta plaques, thioflavin-S-stained brain
tissue could be investigated. It was shown that thioflavin-S may
be a more suitable fluorescence marker for the detection of

Fig. 4 Imaging of curcumin-stained brain sections of an ADmouse model. (a) Immunohistochemical and
hematoxylin-stained tissue section of a plaque-rich region (20× magnification). (b) Fluorescence image
of the 3-μm-thick section imaged with 20×magnification (Olympus BX51 microscope). (c) FI image taken
with the combined OCM/FI setup of a 3-μm-thick section. (d) The 100-μm-thick brain section imaged with
the laser scanning microscope (LSM 700 Zeiss). (e) Representative OCM intensity B-scan image.
(f) OCM en-face projection over 10 μm underneath the tissue surface. (g) Corresponding fluorescence
image. (h) An overlay of the OCM (red) and the fluorescence image (green). (i) OCM en-face projection
over the whole depth range. The thicknesses of the measured tissue slices are indicated in brackets in
the right corner of the images. Plaques are marked with yellow arrows in images (f)–(i).
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amyloid-beta plaques compared to curcumin.46 As a next step,
the FI channel could be utilized to investigate tau accumulations,
which could add additional insights in the mechanisms of the
disease.

Second, 5-ALA-positive and -negative human brain biopsies
from tumor surgeries were investigated prior to neuropathologic
work-up. The 5-ALA-positive regions in the samples were visu-
alized by FI and morphological OCM information of the tissue
was acquired with minimal delay. For all data sets, attenuation
maps were calculated and analyzed. The attenuation in the
5-ALA-positive areas was significantly lower than 5-ALA-
negative brain areas, and the fluorescence signal was signifi-
cantly higher. Due to autofluorescence of the tissue, in some

cases [see Fig. 6(b)], it was hard to distinguish the negative and
infiltration zone. In these cases, the multimodal approach using
fluorescence and attenuation values may provide better contrast.
Using in total 12 biopsies, a preliminary analysis is presented in
this article; however, a greater sample size will be needed to
achieve a more reliable statistical conclusion. Still, the attenu-
ation values and their decrease in tumorous tissue were in good
agreement with the literature.12,78,79 Kut et al. described that
tumors infiltrate into white matter, breaking down myelin and
therefore decreasing its expression. This ultimately leads to a
lower attenuation.12 OCM-based cell counting results showed
an increase of 139% from 5-ALA-negative to 5-ALA-positive
tissues and 15% increase in the infiltration zone. Our results

Fig. 5 Imaging of 5-ALA-positive and -negative human brain biopsies. (a) Excitation and emission spec-
tra of 5-ALA .72 (b–d) Histology of a control region, an infiltration zone, and a core tumor zone. (e) Intensity
en-face OCM projection over 20 μm in a 5-ALA-positive area. (f) Representative B-scan image of (e).
(g) Average attenuation map over 20 μm in a 5-ALA-positive area. (h) OCM en-face projection (blue)
overlaid with the FI image (red). The dotted line in panels (e) and (g) outlines the hyperfluorescent region
in panel (h). (i) Intensity en-face OCM projection over 20 μm in a 5-ALA-negative area. (j) Representative
B-scan image of (i).
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showed that malignant tissue exhibits a higher cellularity com-
pared to nontumorous brain tissue.80 These data were in agree-
ment with histology. The cell counting results will further be
compared to cellularity maps generated from histological data
of the same region. OCM findings identifying malignant areas
within brain biopsies were further correlated to histopatholog-
ical routine analysis and were in good agreement. For the future,
more samples will be imaged with our multimodal system to
evaluate sensitivity and specificity of using OCM/FI for tumor
intraoperative assessment. The focus will also lie in differenti-
ating low and high grade glioma samples using the multimodal
approach.

5 Conclusion
Amultimodal visible light OCM and FI setup was introduced. A
supercontinuum laser emitting a broad visible spectrum enabled
to achieve submicrometer axial resolution for OCM imaging and
by simply flipping two mirrors, the system can be changed from
OCM to FI mode using the same light source. The performance
was characterized by imaging fluorescent microbeads and a cur-
cumin fluorescence phantom. Two applications of the multimo-
dal approach in the field of neuroimaging were demonstrated.

First, curcumin-stained brain slices of a mouse model of AD
were imaged. Amyloid-beta plaques, one hallmark of AD, were
specifically identified using FI. Consecutively, the brain mor-
phology was investigated in 3-D using OCM, and by FI, the
OCM results could be validated. Second, 5-ALA-positive and
-negative brain biopsies were imaged. Average attenuation coef-
ficients and fluorescence intensity values showed significances
differences between 5-ALA-positive and -negative brain tissue.
Cell counting was performed in the OCM data showing a typical
increase in cellularity in malignant tissue. This multimodal
approach offers the possibility to investigate microscopic, 3-D
features using OCM and at the same time gain tissue-specific
contrast by FI. Using OCM in combination with FI may there-
fore be a versatile and powerful tool for many applications in the
field of neuroscience.
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