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Abstract

Significance: In breast-preserving tumor surgery, the inspection of the excised tissue boundaries
for tumor residue is too slow to provide feedback during the surgery. The discovery of positive
margins requires a new surgery which is difficult and associated with low success. If the re-
excision could be done immediately this is believed to improve the success rate considerably.

Aim: Our aim is for a fast microscopic analysis that can be done directly on the excised tissue in
or near the operating theatre.

Approach: We demonstrate the combination of three nonlinear imaging techniques at selected
wavelengths to delineate tumor boundaries. We use hyperspectral coherent anti-Stokes Raman
scattering (CARS), second harmonic generation (SHG), and two-photon excited fluorescence
(TPF) on excised patient tissue.

Results: We show the discriminatory power of each of the signals and demonstrate a sensitivity
of 0.87 and a specificity of 0.95 using four CARS wavelengths in combination with SHG and
TPF. We verify that the information is independent of sample treatment.

Conclusions: Nonlinear multispectral imaging can be used to accurately determine tumor boun-
daries. This demonstration using microscopy in the epi-direction directly on thick tissue slices
brings this technology one step closer to clinical implementation.
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1 Introduction

Breast cancer is the second most common cancer accounting for 2.09 million cases and 627,000
deaths worldwide, which is ∼15% of all cancer-related deaths among women in 2018.1

Screening programs have led to an increase in the early stage and nonpalpable tumor detection,
which increased the number of patients eligible for breast conservative surgery (BCS). BCS aims
to remove the tumor while conserving as much healthy breast tissue as possible. BCS is con-
sidered successful when all tumor tissue is removed and resection margins of the specimen are
tumor negative. However, globally in 10% to 30% of the BCS procedures, tumor positive resec-
tion margins are found requiring a secondary surgical procedure to allow re-excision of the sus-
pected areas, as such patients are at risk for local tumor recurrence.2 Therefore, one of the key
challenges of BCS is to ensure complete removal of the tumor with negative margins. Ensuring
clean resection margins avoids patients returning to the operating room (OR) after surgery,
reduces patients’ stress, increases hospital’s productivity due to OR availability for new oper-
ations, and helps the healthcare system as a whole, by reducing medical costs.

To ensure clear margins preoperative imaging such as mammography or MRI is used to guide
the surgeon during BCS, but they are often not sufficient to guarantee radical tumor resection.
After surgery, the ultimate margin status is determined by histopathological analysis. Results of
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this investigation become available several days after the surgical procedure, which means that in
case of tumor positive resection margins additional treatment is necessary by either reoperation
or additional boost radiotherapy.3–6 There is a clear need for a development of a new tool for
direct evaluation of surgical resection margins during the surgery. In case of a tumor positive
resection margin, such tool allows immediate surgical intervention during the initial surgical
procedure, preventing additional treatments afterward.

Several techniques have been adopted and are currently evaluated as candidates for intra-
operative assistance. They include both in vivo and ex vivo applications and rely on various
physical principles to provide information about the makeup of the tissue. Hyperspectral imag-
ing has been successfully used in margin assessment for various types of cancer7,8 and more
recently also on breast cancer.9 Although hyperspectral imaging is able to image large sections
of tissue rather quickly, it suffers from a relatively low spatial resolution. This makes it difficult
to detect small tumors and (pre)-cancerous ducts, limiting its accuracy, especially in the case of
ductaal carcinoma in situ. Other techniques include optical coherence tomography, diffuse
reflectance spectroscopy, infrared microscopy, however, most of them can provide limited bio-
chemical information, while lacking temporal and/or spatial resolution.

Another approach is spontaneous Raman scattering, used both in vivo through fiber optics10

and ex vivo on frozen samples.11 When applied to the fingerprint spectral region (400 to
2000 cm−1), Raman spectroscopy can provide detailed information about the molecular com-
position, molecular structures, etc.;12,13 the spectra allow for tissue characterization without prior
assumptions about its composition. The power of Raman spectroscopy has been demonstrated in
cancers of various organs including the kidney,14 prostate,15 brain,16 skin,17 and many others as
well as diagnosis of cervical dysplasia.18 Also multiple studies point out a promising potential of
Raman spectroscopy in diagnosis, detection, and classification of breast cancer.19–26 The findings
show the possibility not only to discriminate cancerous from healthy tissue, but also to classify
the different types of breast cancer and even to grade of the disease.23 However, Raman micro-
spectroscopy is limited by long integration times.27 Spectral collection times are typically in the
range of 0.2 to 30 s.12 Raster-scanning methods, used to build Raman spectral images, can take
more than 5 h∕mm2, which is a serious limitation for use in large-area, high-resolution imaging
that is critical for clinical practice.

An interesting alternative is surface-enhanced Raman scattering (SERS).19 SERS utilizes
resonant nanostructures such as gold nanorods that can enhance the local electric field up to
106 times, increasing spectral resolution, and decreasing the time needed to collect the spectra.
The resonant nanostructures generally have to be administered to the patient in the form of small
gold rods, meaning it is not strictly label-free adding another level of complexity when trans-
ferred into clinical practice. The gold particles also have a tendency to cluster together, leading to
signal inhomogeneity. This can potentially compromise its accuracy and make interpretation of
experimental data more difficult.

Nonlinear optical imaging has shown considerable promise in providing intraoperative mar-
gin assessment, due to its rapid and label-free detection capabilities.27 This includes second har-
monic generation (SHG),28–30 two-photon excitation fluorescence (TPF),31,32 and nonlinear
Raman spectroscopy methods such as stimulated Raman scattering33 and coherent anti-
Stokes Raman scattering (CARS).34 In comparison to spontaneous Raman scattering, CARS
offers a significant signal enhancement, natural confocality, and no signal overlap with one-pho-
ton excited fluorescence facilitating fast imaging of relatively large areas of the sample, while
still providing detailed information about biochemical composition of the sample. At the same
time, the nonlinear nature of CARS permits imaging with subcellular resolution. Moreover, the
use of tunable laser enables selection of individual wavenumbers of interest further decreasing
data acquisition time.

CARS is primarily used in the high-wavenumber region to detect high densities of CH2

groups in biological tissues13,33 because of their large scattering cross sections and high local
concentrations in cellular lipids droplets, adipocytes, nervous tissues, breast tissue, fatty liver
tissue, and other lipid-related pathologies. In many Raman studies, e.g., Ref. 11, of breast tissue,
it was shown that there are spectral differences between normal and breast tissue associated with
lipid and protein content: pathological tissues exhibit the presence of more proteins and fewer
lipids. The protein concentration can also be tackled using CARS at a selected wavenumber.
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Various combinations of nonlinear imaging techniques have been applied to the problem
of breast cancer delineation.17,35–43 Most commonly it involves trying to create histology-like
images—“Optical-H&E” or “Pseudo-H&E”—usually through information gathered by SHG,
TPF, and/or CARS.20–22 These images replicate the traditional H&E image, providing physicians
with information in a way that they are used to and can easily interpret. Human interpretation is still
required, but computer-aided diagnostics are being developed to help in this process.23–26,44–47

In this study, we aim to validate if nonlinear imaging, mainly CARS imaging in the high-
wavenumber region, provides sufficient information to discriminate healthy breast tissue from
cancerous and what (combination of) wavenumbers has the most significant discriminative
power. As it was shown that spectra of bulk versus sliced tissue are rather different, we used
tissue biopsies for all the measurements. An H&E section was used for every sample imaged
by CARS and scored by a trained pathologist to provide ultimate tissue classification as the
gold standard. Since in the previous studies it was demonstrated that label-free imaging meth-
ods and histopathological H&E staining of the same slides showed strong morphological
agreement,34 we used a multimode—SHG/TFP/CARS—imaging for matching of the CARS
spectra with the corresponding H&E tissue type. We tested 17 biopsies from 14 patients. Our
results show that CARS spectra of fat cells can be successfully distinguished from connective
tissue (collagen fibers and elastin) and other cells with excellent selectivity. However, healthy
tissue cells and cells in the cancerous regions show less pronounced differences. Feature
importance analysis shows that we can distinguish between cancerous and healthy tissue.
First, the CARS is dominant in separating the fat cells, from connective tissue and cells.
The SHG is the dominant factor to separate the connective tissue (healthy and cancerous) from
the tissue cells. The TPFE with the CARS distinguishes the cancerous cells from the healthy
cells. By measuring in the epi-direction on thick tissue slices, we bring this technology one
step closer to clinical implementation.

2 Materials and Methods

2.1 Sample Preparation

The samples were acquired as 5-mm biopsies during routine pathological preparation of the
specimen directly after the surgery. The biopsies were snap frozen in liquid nitrogen and sub-
sequently stored at −80°C. A 5-μm frozen slice was used for H&E preparation according to the
standard protocol and the rest of the tissue was used for imaging. Tissue samples were thawed at
room temperature and placed in a FluoroDish FD35 Petri dish filled with formalin in such a
manner that the imaging was conducted on the consecutive slide to the cut for H&E surface
enabling matching of the H&E image with the CARS and/or other measurements. The sample
was fixated at the bottom of the Petri dish by putting a transparent block of PDMS on top of the
sample.

2.2 Experimental Setup

The setup consists of a high-power aeroPULSE fiber laser (NKT Photonics)—a passively mode
locked fiber laser with a center wavelength of 1032 nm. It has a pulse length of 6 ps and a repetition
rate of 80MHz, with a nominal power output of 10W. Part of the 1032 power is used as the Stokes
beam in the CARS process, whereas the rest is frequency doubled to 516 nm. This light is then
used to pump the Levante optical parametric oscillator (OPO) (APE, Germany), which converts
part of it into a signal and an idler beam (ωpump ¼ ωsignal þ ωidler). The idler is not used in this setup
and is discarded in a beam dump. The signal beam is used as the pump in the CARS process, and
hereafter is referred to as “pump beam.” The wavelength of the pump beam can be tuned from 690
to 990 nm and used in the range of 775 to 807 nm to generate CARS range of 2700 to 3200 cm−1.
A small part of this pump beam is split off and directed into a power meter, which is used to
monitor the average output power. These data are used later to correct for power fluctuations
during the spectral measurements. Another part of the pump beam is split off and coupled into a
spectrometer (Ocean Optics HR2000, the Netherlands), which is used to verify that the desired
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wavelength is generated. If this is not the case, various parameters on the OPO can be adjusted,
such as cavity length, Lyot filter position, and crystal temperature. The Stokes beam can be
modulated with an acousto-optic modulator (Crystal Technology 3080-197, USA), and is spa-
tially and temporally overlapped with the pump beam through the use of a delay stage and
an appropriate dichroic mirror. The overlapped beams proceed into an Olympus FV300 laser
scanning microscope which consists of a scanning box with galvo mirrors, and an Olympus
IX71 inverted microscope. The microscope is equipped with a filter wheel, with different com-
binations of filters and dichroic mirrors. Furthermore, a set of objectives (Olympus 60X/1.2NA
water immersion and Olympus 20X/0.75NA air objective) are installed allowing to create an
image of 235.7 × 235.7 μm2∕frame or 707 × 707 μm2∕frame, respectively.

For signal detection, a photo multiplier tube (PMT)—Hamamatsu R3896—is placed in the
epi-direction. An optional extra (narrowband) filter can be placed directly in front of the PMT (in
addition to the filter in the filter wheel) to reject background light from the SHG signal.

2.3 Homodyne Detection

The TPFE signal partially overlaps spectrally with the CARS signal. The majority of the
TPFE can be collected using a spectral filter but the minor overlapping part presents a sub-
stantial background to the smaller CARS signal. To separate the contribution of the TPFE
from the CARS signal, homodyne detection is used, in which the Stokes beam in the CARS
process is modulated (on/off). As a result, the CARS signal, which depends on the presence
of the Stokes, is modulated as well whereas the TPFE that is generated predominantly by the
pump beam remains constant. By detecting only the modulated part of the signal around the
CARS wavelength, we separate the CARS portion. We separately verified that the Stokes
beam alone does not generate any significant TPFE. The Stokes beam is modulated by
an acoustic optical modulator, with a square wave at 1 MHz generated by an SFG-2110
function generator (GW Instek, Taiwan). The resulting signal from the PMT is demodulated
on a HF2LI Lock-in amplifier (Zurich Instruments, Switzerland). A low-pass filter at roughly
the same frequency as the pixel sampling frequency is applied, to average the demodulated
signal over a single pixel.

2.4 Data Acquisition

An overview of SHG, TPF, or CARS (2850 or 2940) image acquired with the 60× objective was
recovered by stitching the individual frames. Measured with 256 × 256 pixels resolution these
images feature a spatial resolution of 0.91 μm. For the hyperspectral scan, a single frame was
measure repeatedly, while changing the CARS wavelength over the range of 2700 to 3200 cm−1.
A combination of a stitching scan and hyperspectral scan (hyperstitch) was made on selected
regions of interest.

To accurately reconstruct the Raman spectrum, the measured intensity was calibrated with
respect to the output power of the OPO and Stokes beam power, thus obtaining a spectrum that is
independent of input power. The data were also corrected for the constant offset on the ADC, of
about 50 mV and variation of the PMT voltages were used for signal detection. The stitched
images were corrected for the uneven illumination (bright in the center and less bright at the
edges) by fitting a fourth order 2-D polynomial to the overall averaged intensity of all frames and
dividing the individual frames by this shape.

2.4.1 Support vector machine recursive feature elimination

Precision and speed tend to be conflicting requirements so that it is important to know which
type of signal or which wavelengths influence the classification the strongest and which mea-
surements might be redundant. Many strategies have been developed for this feature selection
and have been implemented as MATLAB routines,48,49 support vector machine recursive feature
elimination (SVM-RFE) is one such method.50 It is designed to distinguish only binary problems
(whereas we classify into four tissue types) but can be extended by adding the weights of the
binary subclassification to arrive at an overall classification.
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2.4.2 Feature importance analysis

When the number of features (intensity at different wavenumbers) is very large relative to the
number of samples in the dataset, some classifiers struggle to train effective models. Feature
extraction and feature selection techniques can be used to avoid the curse of dimensionality.
Feature extraction creates a new, smaller set of features that still captures most of the useful
information, while feature selection keeps a subset of the original features. The scheme used
in this paper is the sequential forward selection (SFS) method.50–52 This method starts with
an empty feature set and, for each step, the best feature that satisfies a criterion function is
included with the current feature set. The accuracy of an SVM classifier is taken as the criterion
function. The SFS algorithm stops when the number of included features reached the predefined
maximum number of features (set to 30 for this work).

Since the SFS algorithm may result in local decisions, the feature selection is repeated for 20
times to obtain a globally optimal solution. The final feature set is obtained by selecting the
wavenumbers with the highest occurrence number after 20 iterations.

3 Results

3.1 Tissue Fixation

In different studies, it was shown that formalin, as well as liquid nitrogen fixation, can generate
some additional peaks in the fingerprint region while altering the intensity of existing peaks
which would make the data analysis and results translation to the nonfixed tissue more complex.
To examine whether a similar effect happens in the high-wavenumber region, we did measure-
ments using a model tissue—pork. We used pork as fresh, formalin-fixed, and fresh frozen sam-
ples imitating regular pathology tissue preparation. For all samples, a CARS spectrum was
acquired in a high-wavenumber region 2700 to 3200 cm−1 (see Fig. 1). Our results show that
there is no significant difference in spectra acquired from samples treated in different ways.
Moreover, our measurements indicated a clear differentiation of different types of pork tissue,
namely fat and meat. From Fig. 1(c), it is clear that fat tissue has a dominant peak at 2850 cm−1,
corresponding to CH2 stretch, while in the meat tissue Fig. 1(b), the signal from OH stretch
(water) is more pronounced. Furthermore, we tested a combined effect of the fixation methods:
liquid nitrogen fixed tissue was thawed at room temperature and then fixed in formalin. When
CARS spectra were acquired from these samples, no difference was observed when compared to
fresh or formalin or liquid nitrogen fixed samples. These results enabled us to develop a protocol
for patient tissue handling and use that is independent from the surgery planning. This protocol
was implemented as described in M&M. In short, a 5-mm biopsy was acquired directly after
surgery and snap frozen in liquid nitrogen. A frozen section H&E was prepared and the con-
secutive slice was used for the CARS measurements at room temperature in formalin. Such
imaging of the consecutive planes enabled matching of the H&E and CARS images (see Fig. 2).

3.2 Tissue Spectra

Matching the H&E slides to the microscopic/spectroscopic measurements is not a trivial chal-
lenge. Securing consecutiveness of the observation planes and orientation was a great aid; how-
ever, tissue deformation could not be eliminated. We created stitched images of the samples
using CARS at 2850 cm−1 to highlight the lipids, SHG to highlight the connective tissue, and
TPF to highlight cells and connective tissue (i.e., elastin). The composite of these images (a
representative example is shown in Fig. 3) was used to find a morphological match between
the sample and its corresponding H&E. Due to major tissue deformation, it appeared impossible
to make a full sample match; however, the regions of interest for further examination could be
selected. For each selected region of interest (ROI), CARS measurements were performed from
2700 to 3200 cm−1. In these data sets, three main tissue groups were defined: fat, connective
tissue, and cells; and spectra for each group were reconstructed (see Fig. 4).

Notably, stitched images exhibit uneven illumination, which complicates the data analysis.
Several elaborate methods have been proposed over the years to compensate for this
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nonuniform illumination problem postacquisition.46,47 However, these are relatively compli-
cated and difficult to implement. In this study, we first subtracted the constant background on
the PMT. Then the average intensity distribution over all the individual frames of the images
was calculated and smoothed by fitting a fourth-order two-dimensional polynomial to it. The
frames were corrected by dividing them by this average intensity distribution, which yields the
results shown in Fig. 4. This correction was applied to all collected measurements. Although it
might seem more appropriate to measure a homogenous sample and use that as a reference for
the intensity distribution, we found that the distribution showed day to day variation. We

Fig. 2 Three examples of matching consecutive tissue slices. The images in the left of each pair
are measured with CARS and in the right are stained with HE. The false color in the left uses blue
for CARS at 2850 cm−1, red for SHG, and green for TPF. The circled areas are matched. In the first
pair of images, the circled area contains healthy cells. In the middle pair of images, the areas
circled in red indicated suspicious cells (unpon further inspection labelled as healthy), yellow are
healthy cells, and the green areas indicate inflamed cells. The image in the right is all designated
as tumor cells.

Fig. 1 Spectra for different fixation methods: (a) sample with meat (above) and fat (below),
(b) enlarged section of meat, scalebar is 500 μm, (c) enlarged section of fat, scalebar is
500 μm, and (d) CARS spectra for different fixation methods on meat (blue) and fat (green).
The error bars indicate standard deviation over the measured region.

Beletkaia et al.: Nonlinear multispectral imaging for tumor delineation

Journal of Biomedical Optics 096001-6 September 2020 • Vol. 25(9)



tentatively assign these to variation in alignment and differences in imaging depth for different
samples. The averaging procedure that we use takes no extra time and reduces the stitching
errors to an acceptable level.

In total, 16 samples from 14 patients were examined of which 4 were biopsies acquired from
the healthy tissue and 12 samples were acquired from cancerous tissue. In total, 396,646 spectra
were collected and split into five distinct classes (fat, cancer cells, cancer connective tissue,
healthy cells, and health connective tissue). To reduce noise, a block of 4 × 4 pixels (an area
of 3.7 × 3.7 μm) was averaged to produce one spectrum. Figure 5 presents the averaged CARS
spectra collected from all the tissue samples, averaged over areas that were assigned by pathol-
ogy on the adjoining slice as indicated in Figs. 2 and 4. From these spectra, it is clear that the fat
tissue has the most distinct profile. As expected, the 2850 cm−1 peak is most pronounced making

Fig. 4 CARS spectra for three tissue types: (a) the combined image, (b) the CARS image at
2850 cm−1, and (c) the average spectra for the blue (fat), green (connective tissue), and red (cells)
regions.

Fig. 3 Different signals from the same region: (a) CARS signal at 2980 and 2930 cm−1, respec-
tively, (b) these two overlaid in blue and cyan, respectively, (c) the SHG and TPF signal, and
(d) three signals overlaid where SHG is shown in red and TPF in green and the CARS at
2850 cm−1 is shown in blue. The squares are caused by stitching different images together.
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this spectrum easily distinguishable from the spectra of other tissue types. When evaluating spec-
tra from cells and connective tissue, the differences are much less pronounced, however, there is
a difference in cells’ spectra collected from healthy-tissue biopsy versus cancerous tissue biopsy
(see Fig. 5 blue versus purple line). The same is true when comparing the spectra collected from
healthy connective tissue versus connective tissue in cancerous tissue. In accordance with the
results previously reported in the literature,39,41 the water/fat ratio (signal at 3150 cm−1∕signal at
2845 cm−1) in the cancerous tissue is lower than in the healthy tissue.

Additionally, the intensity distribution of the SHG and TPF signals was examined (see
Fig. 6). As expected, the SHG signal for cells has lower intensity than for connective tissue
and there is no distinct difference in SHG distribution between cancerous and healthy cells.
In the case of connective tissue, there is more signal of lower intensity for the healthy tissue,
while cancerous tissue exhibits a more even distribution. For the TPF signal, the connective
tissue does not show much difference between cancerous and healthy tissue. In the case of
cells, the healthy cells have a peak in the low-intensity region while the cancer cells have a
more pronounced peak at the high-intensity region. Despite these distribution differences, the
SHG and TPF signals alone do not contain sufficient discriminative power for tissue
classification.

Fig. 5 Averaged CARS spectra for different regions of interest where the annotation comes from
the matched pathology.

Fig. 6 Histograms showing the relative frequency of the SHG and TPF intensities (digitized PMT
signals, where 1 V ¼ 4096) for the different tissue classes. The horizontal axis is consistent so that
the SHG and TPFE signal levels are on the same scale and can be compared. Fat is not included
as it does not produce SHG or TPF.
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3.3 Machine Learning Analysis

For a more quantitative analysis, we addressed a machine learning analysis. In this study, we
used two methods: (1) recursive feature elimination (RFE)50 and (2) feature importance
analysis.51,52 In both cases, we aimed to identify the wavenumbers with the highest discrimi-
native power as well as the minimum number of wavenumbers required for the best result.

3.3.1 SVM-RFE

Due to the limited number of healthy tissue samples that were measured during this research,
there are comparatively few spectra of healthy cells and fat. Thus for fat and healthy cells, SVMs
were trained with all available spectra. For the other tissue classes, a random subset of 30,000
spectra for each tissue class was taken for the training of the SVMs.

The SVM-RFE feature selection algorithm repeatedly builds an SVM model to classify the
input data and rejects the features with the lowest weights. Following this algorithm, 10 most
important wavenumbers were identified (2943, 2892, 3192, 3093, 2994, 2700, 2829, 3042,
2748, and 3144 cm−1). To avoid adjacent wavenumbers, a minimum spectral distance of 40
inverse centimeters was required, which corresponds to the width of the Raman peaks in this
region.

As an SVM is inherently a binary classifier, a single SVM can only be trained to separate two
classes. For more than two classes, the problem has to be broken down into cascading binary
problems. Each binary problem can then be solved by a single SVM, and a majority vote of all
the SVMs decides the final classification. For training purposes, SHG and TPF data were also
included for some of the tissue classes resulting in a total number of 10 SVM classifiers
(Table 1).

A sweep was performed over the number of CARS wavenumbers included in the SVM train-
ing set. As shown in Fig. 7, the highest Matthews correlation coefficient (MCC) of 0.64 was
achieved with a feature set that contains the SHG signal and four CARS wavenumbers.
Increasing the number of features did not result in a better performance instead the performance
decreases slightly before stabilizing. The optimal feature set exhibits an accuracy of 0.73; sen-
sitivity of 0.75 and specificity of 0.92.

The types of errors that the algorithm is likely to make can be seen from the confusion matrix
in Fig. 7. As expected, the performance on the healthy tissue classes is worse than that of cancer
classes, likely due to the small number of healthy samples in the dataset. Even though fat has the

Table 1 The 10 SVMs used in the classification scheme, along with their respective input data.
Not all available data are given to all SVMs, as this proved detrimental to the scheme’s
performance.

SVM Input class 1 Input class 2 Input data

1 Cancer cells Cancer connective tissue SHG + CARS

2 Cancer cells Fat TPF + CARS

3 Cancer cells Healthy cells TPF + CARS

4 Cancer cells Healthy connective tissue SHG + CARS

5 Cancer connective tissue Fat SHG + CARS

6 Cancer connective tissue Healthy cells SHG + CARS

7 Cancer connective tissue Healthy connective tissue SHG + CARS

8 Fat Healthy cells TPF + CARS

9 Fat Healthy connective tissue SHG + CARS

10 Healthy cells Healthy connective tissue SHG + CARS
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lowest number of spectra of any class in the dataset, it still had the highest performance. This is
owed to the highly distinguishable CARS spectrum of fat, making it easy to identify even when
relatively few examples are available to learn from. Moreover, we can see that the algorithm is
most likely to make mistakes between two classes of the same tissue type, i.e., it mistakes cancer
cells for healthy cells and cancer connective tissue for healthy connective tissue. This means that
good separation is achieved between cells and connective tissue as a whole.

To calculate the predicted majority class per sample, the best performing algorithm (the one
with SHG, TPF, and CARS 2892, 2943, 3093, and 3192) was used to make a prediction on
unseen data. Afterward, the number of pixels that were identified as cancer (either cancer cells

Fig. 7 (a) Influence of the number of parameters (including SHG and TPF) on the classification
and (b) row-normalized confusion matrix for a data set with six features (SHG, TPF, and CARS
2892, 2943, 3093, and 3192).

Fig. 8 Image classification for (a1)–(a3) a healthy and (b1)–(b3) cancer samples. Column (1)
shows the H&E stained counter slice, column (2) shows the color coded predicitions. Orange,
healthy connective tissue; green, healthy cells; violet, cancer cells; light blue, cancer connective
tissue; and yellow, fat. Column (3) shows an overlay of the SHG, TPF, and CARS image.
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or cancer connective tissue) was summed, as are the pixels that were identified as healthy (either
healthy cells or healthy connective tissue). The final sample classification is given by whichever
class (i.e., cancer or healthy tissue) has the most pixels. Out of the 16 samples in the dataset, 15
were correctly classified. Only one sample in the dataset was misclassified as cancer tissue, while
containing tissue that was classified as healthy by pathology. The feature importance analysis
exhibited result similar to the SVM-RFE. The best performance was achieved already when four
CARS wavenumbers were combined with the SHG data. The accuracy and sensitivity were 0.87,
whereas specificity was as high as 0.95; and MCC, 0.87.

3.3.2 Image reconstruction

To visualize the achieved tissue discrimination results, we applied the trained classifiers to a raw
dataset. This visual interpretation of the algorithm’s output can also be compared with H&E
annotated slices to check fidelity. As pointed out, the best performance for both machine learning
algorithms was achieved with a feature set of SHG, TPF, and four CARS wavenumbers, thus this
set was used for classification prior to image reconstruction. The sample data for the recon-
structed image were excluded from the training set. Figure 8(a) shows an example of healthy
tissue; the connective tissue is generally classified correctly, but the performance on the cells is
not as accurate. A lot of pixels were classified as cancer cells. As discussed before, this mis-
classification can be expected as the algorithm suffers from the shortage of data on normal cells.
In the cancer tissue sample [Fig. 8(b)], the cancer cells and cancer connective tissue are classified
with good accuracy. Some patches of healthy connective tissue (orange) remains, however, in
general the image is conclusive. In both cases, the reconstructed image had clear separation and
easily recognizable patterns matching the H&E image.

4 Conclusions and Outlook

Using four CARS wavelengths in combination with SHG and TPF directly on excised (thick)
tissue, we achieve a sensitivity of 0.87 and a specificity of 0.95 independent of sample treatment.
This shows that nonlinear multispectral imaging can be used to accurately determine tumor
boundaries. The analysis (using the trained algorithm) only took minutes and could be even
faster on a more powerful PC. In BCS, the limiting factor would probably be the acquisition
of the four CARS wavelengths, SHG, and TPFE. In our setup, this took 90 min for 5 × 5 mm of
tissue. Using a dedicated system with shorter pulses (1 ps rather than 6 ps) and more sensitive
PMTs would likely speed this up by a factor 10. In this work, we did not examine to what extent
the resolution could be sacrificed to improve imaging speed over larger areas. Since we do not
currently use any spatial information and all relevant areas appear to extend over more than 5
pixels in both directions, the imaging density could be brought down by a factor 10. This would
further improve the analysis time by a factor 10. If those two factors are realized, a sample of
10 × 10 mm could be analyzed in <5 min, which seems acceptable for analysis during BCS.
This demonstration brings this technology one step closer to clinical implementation.
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