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Abstract

Significance: Tumor heterogeneity poses a challenge for the chemotherapeutic treatment of
cancer. Tissue dynamics spectroscopy captures dynamic contrast and can capture the response
of living tissue to applied therapeutics, but the current analysis averages over the complicated
spatial response of living biopsy samples.

Aim: To develop tissue dynamics spectroscopic imaging (TDSI) to map the heterogeneous
spatial response of tumor tissue to anticancer drugs.

Approach: TDSI is applied to tumor spheroids grown from cell lines and to ex vivo living
esophageal biopsy samples. Doppler fluctuation spectroscopy is performed on a voxel basis
to extract spatial maps of biodynamic biomarkers. Functional images and bivariate spatial maps
are produced using a bivariate color merge to represent the spatial distribution of pairs of signed
drug-response biodynamic biomarkers.

Results: We have mapped the spatial variability of drug responses within biopsies and have
tracked sample-to-sample variability. Sample heterogeneity observed in the biodynamic maps
is associated with histological heterogeneity observed using inverted selective-plane illumination
microscopy.

Conclusion: We have demonstrated the utility of TDSI as a functional imaging method to mea-
sure tumor heterogeneity and its potential for use in drug-response profiling.
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1 Introduction

Tumor heterogeneity presents a challenge for the successful treatment of cancer using
chemotherapeutics.1 For instance, genetic variability in tumors caused by clonal outgrowth of
selected genotypes within a tumor may cause subsets of cells with genetic variations to be resist-
ant even while the majority of the tumor responds to treatment. Selective pressure and genetic
drift of the cancer cell population during treatment often lead to patient relapse and the
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emergence of broad chemoresistance and refractory disease.2–4 In addition to genetic hetero-
geneity, there is also spatial heterogeneity in tumor tissue arising from varying tissue constituents
as well as varying microenvironments, including differences in extracellular matrix and connec-
tive tissues. The tumor microenvironment5,6 and epigenetic variations5,7–9 pose significant chal-
lenges to the selection of treatment based on genetic profiles. This has led, as an alternative, to
phenotypic profiling10–12 of cancer tissue that captures the systemic response of cancer tissue to
applied therapy. The challenge for phenotypic profiling of cancer tissue is the need to image
intact microenvironments deep inside tissue, far from surface damage caused by surgical resec-
tion, and deep inside transport-limited regions that experience hypoxia, nutrient depletion, and
metabolite build-up.

Optical coherence imaging (OCI)13,14 is a deep-tissue coherence-domain imaging approach
based on digital holography15–17 that is a form of full-frame optical coherence tomography.18,19

Dynamic speckle in OCI images caused by dynamic light scattering from intracellular motions
enables biodynamic imaging (BDI)20 to use intracellular dynamics as a unique form of image
contrast. The changes in intracellular motions caused by applied therapeutics have been studied
using tissue dynamics spectroscopy (TDS)21 to separate the effects of drugs across broad spectral
bands and to capture specific signatures from different classes of drugs with different mecha-
nisms of action.22 Preclinical trials of therapy responsivity assessment have been completed
using TDS in spontaneous canine B-cell lymphoma and in ovarian xenografts.23,24 In a substan-
tially different setting, assisted reproductive technology correlates the viability of cumulus-
oocyte complexes with parameters from sample fluctuation power spectra.25

The methodology of TDS is usually applied to entire samples that can be as large as 1 mm3 in
volume (e.g., biopsies). However, intrasample variability in the TDS signatures poses a challenge
for the prediction of patient response to therapy. While previous work using TDS has identified
and characterized the different baseline conditions and drug responses in the “shell” and “core”
areas of the samples,21,22,25 in that analysis, the boundary between the shell and core was arbi-
trarily defined. Some samples have a more complicated drug response structure than a simple
“shell” and “core” model, as shown in Fig. 1, where the sample shows variation in both strength
and pattern in its drug response in the two areas.

To address this problem, we introduce a functional imaging method called tissue dynamics
spectroscopic imaging (TDSI) that evaluates sample response on a pixel level. In addition to a
full-duration response map, the response can be segmented along the time axis to derive the time-
lapse evolution of drug response, which can reveal the different rates at which a drug acts on each

Fig. 1 (a) An OCI image of a human esophageal biopsy and differential spectrograms (defined
below) for the two circled areas. At time t ¼ 0 (black line), 100 μL of 25 μM cisplatin and 25 μM
fluorouracil (5fu) combined solution is added to the sample. The two regions have significantly
different responses: region 1 shows enhancement in low frequency and suppression in high fre-
quency (redshift), while region 2 has suppression across all frequencies. (b) The terminal spectra
of regions 1 and 2, respectively, compared to the average sample baseline spectrum.
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area. This methodology offers a quick, intuitive visualization of sample heterogeneity and
drug effects. TDSI differs from dynamic-contrast OCT performed with off-axis holography,26

full-field OCT,27 or conventional OCT28–33 because its imaging contrast arises from shifts in
intracellular dynamics caused by applied therapeutics rather than from baseline intracellular
dynamics. In this way, TDSI is functional imaging that is specific to drug efficacy and displays
the heterogeneous response of tissue to therapies.

2 Materials and Methods

2.1 Sample Preparation

Biological samples used in this paper include tumor spheroids grown from the DLD-1 intestinal
adenocarcinoma cell line (ATTC, Manassas, Virginia) and human esophageal tumor biopsies.
(IRB-approved IUCRO-0486 clinical trial. Written consent was obtained for each patient.)
The multicellular DLD-1 spheroids mimic small avascular in vivo tumors by having an active
growth zone on the outside of the spheroid and regions of apoptotic and necrotic cells progres-
sively toward the core as nutrients and oxygen become rate-limiting for cell growth, but other-
wise the spheroids are highly homogeneous. In contrast, the esophageal tumors are highly
heterogeneous, with complex physiology and consist of different cell types. DLD-1 spheroids
were grown in Corning U-bottom 96-well spheroid plates, and esophageal tissues were obtained
by pinch biopsy from human patients. Tumor biopsies were collected and transported in chilled
RPMI-1640 medium with HEPES buffer and cut into small pieces of 1 mm size or less. Both
types of samples were immobilized in 1% low-gel-temperature agarose in the RPMI-1640 basal
medium. Immobilized samples were overlaid with RPMI-1640 containing 10% heat-inactivated
fetal calf serum (Atlanta Biologicals), penicillin (100 IU), and streptomycin (100 μg∕mL).

Sample heterogeneity observed using TDSI was verified with high-resolution three-
dimensional (3-D) images obtained from inverted selective plane illumination microscopy
(iSPIM). To prepare samples for iSPIM imaging, 10% neutral buffered formalin was injected
into each well to fix the tissues. After being washed with PBS, the samples were stained with
50-μM DRAQ5 (Biostatus, Ltd.) overnight with gentle agitation, then 0.5 mg∕mL 80% ethanol-
based Eosin Y (E4009, Sigma-Aldrich) for 4 h. Afterward, the agarose embedding the samples in
the dish wells was removed, and samples were then washed with DI water three times, and PBS
once followed by being immersed in X-CLARITY mounting solution (Logos Biosystems) for
15 min. Finally, the samples were fixed in the imaging chamber with silicone glue and immersed
in X-CLARITY mounting solution for iSPIM imaging. After being imaged, the samples were
processed for traditional H&E through the Tulane Medical School Histology Department. Four-
micrometer-thick sections were cut and stained until each tissue was exhausted. The total
processing time is about 16.5 h in total after fixation, including the PBS/di-water washing time.
Imaging of each sample takes about 1 min average scanning time. Full-resolution image process-
ing of each sample takes ∼50 min, including time for reconstruction, making pseudocolor
images, and visualization.

2.2 Tissue Dynamics Spectroscopy

Speckle fluctuation dynamics of biological samples were measured and analyzed using a BDI
system. The system optical configuration is a Mach–Zehnder interferometer, shown in Fig. 2.
The light source is a Superlum S840-B-I-20 superluminescent diode with a center wavelength at
836.2 nm and a full power output of 22.9 mWwith a bandwidth of 50 nm and a coherence length
of ∼10 μm. A QImaging EMC2 camera is used for image acquisition. Lenses L5 and L6 con-
stitute a 4f imaging system to an image plane (IP). The IP is subsequently transformed by lens
L7 to the Fourier plane located at the CCD pixel array. A single sample image is obtained by
performing a two-dimensional (2-D) FFT on the hologram captured by the CCD camera located
on the Fourier domain, and one of the two conjugate images is stored as a 256 × 256 array.21

Because of the use of long focal lengths (f5 ¼ f6 ¼ 150 mm), the speckle size on the camera
plane is ∼60 μm, and the reconstructed object-plane point-spread function is ∼15 μm spanned
by three pixels.
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Two data acquisition formats are used for data presented in this paper: a format containing
2048 frames captured at 25 fps, and a format with 500 frames at 25 fps and 50 frames at 0.5 fps.
The second format has a smaller data storage requirement but requires a stitching algorithm to
create a single spectrum.34 Within this paper, only DLD samples use the 2048 frame format,
while the esophageal samples used the 500/50 frame format to assure comparability among spec-
tra within a given study. A typical experiment has six time-frames of baseline measurements and
15 time-frames of drug response measurements looping repeatedly through 16 wells in a 96-well
plate format. A single loop through all 16 samples takes about 40 min.

The fluctuation power spectrum from one pixel at position ði; jÞ in the sample is calculated as
the square of the FFT of the intensity time series:

EQ-TARGET;temp:intralink-;e001;116;408Sði; j; fÞ ¼ jF t½Iði; j; tÞ�j2: (1)

The average spectrum of a region σ is calculated as

EQ-TARGET;temp:intralink-;e002;116;363Sσ;rawðfÞ ¼ hSði; j; fÞii;j ¼
P

ði;jÞ∈σSði; j; fÞP
ði;jÞ∈σ1

; (2)

where σ is a spatial mask segmenting the entire sample. The “raw” spectrum is normalized based
on Parseval’s theorem:34

EQ-TARGET;temp:intralink-;e003;116;291Sσ;normðfÞ ¼
Sσ;rawðfÞP
f
Sσ;rawðfÞ

; (3)

i.e., dividing the raw spectrum by the sum of all frequency components (including the DC com-
ponent). The full-length spectrogram of segment σ is a time-lapse sequence of differential spectra
where each spectrum at time τ is calculated as a normalized logged spectrum subtracted by the
baseline spectrum averaged over the full sample:

EQ-TARGET;temp:intralink-;e004;116;190dSσðf; τÞ ¼ log Sσ;normðf; τÞ − log
1

N

XN
i¼1

Sσ;normðf; τ ¼ τiÞ; (4)

where N is the number of baseline loops.

2.3 Biodynamic Biomarkers and TDS Visualization

Biomarkers that evaluate sample preconditions, also called baseline conditions, before a treat-
ment is applied include backscatter brightness, normalized standard deviation, spectrum knee

Fig. 2 A schematic of the interferometer with a Mach–Zehnder off-axis digital holography configu-
ration. The camera is on the Fourier plane. Optical sections are reconstructed using a 2-D spatial
Fourier transform. ND, neutral density filter; L1 − L7, lenses; BS1 − BS3, beam splitters; M1 −M5,
mirrors; FP, Fourier plane; IP, image plane; f5 ¼ f6 ¼ 150 mm; f7 ¼ 50 mm. The translation stage
defines the coherence gate for time-domain ranging.
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frequency, and spectral slope (S).32 Biomarkers that evaluate drug responses include changes in
these biomarkers after application of drugs as well as features extracted from spectrograms. This
paper focuses mainly on the drug response and features from spectrograms.

Despite the differences in drug responses related to sample baseline conditions and drug
mechanisms, a biodynamic drug spectrogram usually has one of a limited number of patterns.
Spectroscopic masks (time-frequency filters) are designed to match the characteristics of the
spectrograms, a few of which are shown in Fig. 3(a). The top three patterns G0, G1, and G2
form a set of “orthonormal” masks that are related to the broadband (in the sense of frequency
components) pattern of a spectrogram, while the bottom three patterns FL, FM, and FH form
another set of masks related to local response patterns. These frequency bands, and their asso-
ciated frequency cutoffs, can be related to changes in intracellular motions and their related
speeds.23,35 Although the individual biomarker values depend on the choice of cut-off frequen-
cies, the orthonormal character of the masks provides a unique representation of the spectrogram,
and this representation is used in pattern recognition algorithms. For each mask, a feature value is
obtained by calculating the inner products of the spectrogram and the mask, i.e., projecting the
spectrogram onto the mask,22 and the features of a spectrogram are represented by a vector of
feature values.

After condensed-data-format files are generated (refer to Sec. S.1 in the Supplemental
Material), a differential spectrogram for each TDSI pixel (referred to as a “microspectrogram”)
is calculated as

EQ-TARGET;temp:intralink-;e005;116;496dSσðĩ;j̃Þðf; τÞ ¼ log Sσðĩ;j̃Þ;normðf; τÞ − log
1

N

XN
i¼1

SΣ;normðf; τ ¼ τiÞ; (5)

where the average baseline spectrum of the entire sample is used instead of the TDSI pixel’s
“own” baseline. For a given mask, a feature value (discussed above) can be calculated for each
pixel, and the feature values of an entire sample produce a 2-D image called a TDSI. Two
TDS images under the “G0” mask and “G1” mask (blueshift associated with increased intra-
cellular speeds) are shown in Fig. 3(b). For the “G0” TDS image, the area in the blue circle
has negative values, indicating broadband decrease in activity, which matches the differential
spectrogram of the circled area of the same sample as shown in Fig 1(a). Similarly, the spec-
tral response in the red circle area agrees with the positive values in the same area in the “G1”
TDS image.

As discussed above, the sample in Fig. 3 has a large variation in drug response in terms of
strength and spectral patterns, displayed by the distribution of values in the TDSI of Fig. 3(b).
Both “G0” and “G1” images show a change in magnitude and sign from bottom left to top
right (corresponding to changes in the strength of drug response, referred to as “intramask

Fig. 3 (a) A subset of the spectrogram masks used in the color merge. (b) Two maps of drug
response of an esophageal sample “150903-14” (same as in Fig. 1) exposed to cisplatin and flu-
orouracil combination therapy under masks G0 and G1. (c) A “merged” bivariate color image with
its 2-D color map.
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heterogeneity”), and the “G0” image has a different pattern than “G1,” where “G0” has strong
negative values on the bottom right while “G1” has strong negative values in the upper left
(corresponding to changes in pattern, referred to as “intermask heterogeneity”). To better visu-
alize the variation, bivariate color images are introduced to produce a single visualization that
captures drug responses across the entire sample, where each “variable” is a feature value of a
mask. Feature values from two masks are a convenient way to illustrate drug-response hetero-
geneity within a sample, and the following discussion will focus on bivariate representations of
drug response.

Bivariate color maps are used in cartography36,37 and medical imaging,38 and many studies
have addressed how to choose proper colormaps for bivariate data visualization.39–41 We have
elected to use the “Teuling3” colormap in the following visualizations, which is generated by
linearly interpolating four colors at the four corners in the sRGB space plus a “whitening” core in
the center.39,42 This color map has good color saturation, relatively equal visual impact, and a
zero value appears as white, which is consistent with the diverging “blue-red” one-dimensional
colormap used in our spectrograms and univariate TDS maps. Figure 3(c) shows a bivariate
image of a human esophageal biopsy sample “merged” from the two univariate TDS maps in
Fig. 3(b).

When a sample has areas with spectrograms that are the inverse of each other, they cancel
each other out in an average over the full sample, resulting in a mild spectrogram and near-zero
feature values. In this case, the weak average response belies the strong change in the intracel-
lular dynamics and the fluctuation spectra, and this can lead to the misinterpretation that the
sample does not respond to the drug. To address this problem, two new biomarkers that evaluate
sample heterogeneity are added to the “traditional” average spectrogram-based biomarkers. The
two biomarkers evaluate the “intramask” and “intermask” heterogeneity, respectively. To achieve
a high signal-to-noise ratio, TDS images are first (re)generated with an 8 × 8 pixel averaging
(instead of the standard 2 × 2 px). The coarse eight-pixel averaging is used only to calculate the
heterogeneity biomarker values of a sample at a scale of 40 μm and above. Finer scale is not
necessarily meaningful for quantifying spatial heterogeneity across a millimeter sample. The
feature values are bounded to a range ½−Ath; Ath� and then assigned “scores” ranging from
0 to 1 for both heterogeneity evaluations, calculated using the following steps:

1. Select a set of n masks
2. For each mask u, calculate Δau and Δ½sgnðauÞ�
3. For each mask pair u-v, calculate jρðau; avÞj and jρ½sgnðauÞ; sgnðavÞ�j
4. The first biomarker denoting overall intramask heterogeneity is calculated as

EQ-TARGET;temp:intralink-;e006;116;314h1 ¼
1

2n

�
m1

Xn
i¼1

Δau þm2

Xn
i¼1

ΔsgnðauÞ
�
: (6)

5. And the second biomarker representing overall intermask heterogeneity is calculated as

EQ-TARGET;temp:intralink-;e007;116;250h2 ¼ 1 −
1

nðn − 1Þ
X

i−j pairs
fjρðau; avÞj þ jρ½sgnðauÞ; sgnðavÞ�jg; (7)

where au ¼ fauð~i; ~jÞg are values of the TDS image of mask u, sgnðauÞ is a map of signs of
au,Δau is the standard deviation of au, ρðau; avÞ is the correlation coefficient of au and av,
and m1 and m2 are normalization factors

EQ-TARGET;temp:intralink-;e008;116;166

�
m1 ¼ 1

Ath

m2 ¼ 1
; (8)

based on Popoviciu’s inequality on variances.43 We use Ath ¼ 0.3 and n ¼ 3, and the local
masks FL, FM, and FH are used for heterogeneity scores.

Based on these definitions, the extreme values are achieved under these cases: h1 ¼ 0when n
TDS images are completely uniform (totally homogeneous), and h1 ¼ 1 when TDS images have
only two values of opposite signs in an equal number of pixels. When the TDS images are
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completely nonlinearly correlated to each other, then h2 ¼ 0. In the opposite case when all values
are completely correlated then h2 ¼ 1. Examples will be provided in the next section to illustrate
these two heterogeneity benchmarks.

2.4 Time-Lapse Drug Response Visualization

After a drug is added to a biopsy sample, the change in its intracellular dynamics is usually not
immediate and depends on the drug mechanism of action, especially for drugs targeting DNA
that produce slow cellular responses. Also, some parts of the sample may respond to a drug faster
than the entire sample. TDSI allows us to study both the time delay and nonuniformity in drug
action, which is called time-lapse TDSI. Instead of extracting feature values from full-length
spectrograms, time-lapse TDSI uses responses within a small moving time “window” of the
spectrogram. Examples are included in the following sections.

2.5 Inverted Selective Plane Illumination Microscopy

The iSPIM system is constructed around a commercially available diSPIM platform (ASI) and
has been described in previous publications.44,45 In brief, two immersion objectives (CTO, ASI/
Special Optics, 15.3X − 17.9X) are orthogonally mounted above the sample, with each at a
45-deg angle from the norm, enabling traditional sample preparation. Dual-view imaging is pos-
sible by alternating roles of the two objectives as illumination and detection, but only single-view
was adopted for this paper. Volumetric images were obtained by moving the sample with respect
to the objectives. To cover the whole area of the sample, multiple y strips were acquired with
about 20% overlap between two adjacent strips. After imaging was completed, the images were
first shifted and interpolated with custom MATLAB code to recover its 45-deg angle.46 Multiple
paths were then stitched with Fiji plugin.47 The DRAQ5 and eosin images (D&E) were remapped
to a composite RGB stack to simulate the traditional H&E colors.48 Finally, 3-D reconstruction
of the D&E images was obtained from the alpha blending mode of 3-D viewer of Vaa3D.49,50 The
mounting media is Xclarity with a refractive index of 1.45, that when combined with the NA of
0.4, gives a magnificationM of 16.7×with a lateral resolution of 0.76 μm and an axial resolution
of 3.8 μm.

3 TDSI Results

A large number of esophageal biopsies display spatially heterogeneous responses to drugs. In
Fig. 4(a), two biopsy samples that have large intramask heterogeneity are presented in univariate
and bivariate forms. Sample “151208-6” has a weak response when averaged over the whole-
sample spectrogram [Fig. 4(b) “global”], because the local areas “1” and “2” have strong but
opposite responses that tend to cancel in the sample average.

An assortment of bivariate TDS images is shown in Fig. 5. Some samples have relatively
uniform color in the “merged” map, indicating smaller variation in the biomarker values, while
others have a rainbow-like smooth transition across the sample, which is related to high hetero-
geneity in the drug response.

There are roughly three types of heterogeneity, shown in Fig. 6 along with their h1 and h2
scores: (i) Type I are samples that have almost uniform responses under all masks. (ii) Type II
samples have spatial variability but show similar patterns across different masks. (iii) Type III
samples have TDS images with nonoverlapping strongly responding areas. Types I and III are the
most common.

Time-lapse images offer an additional layer of understanding of the spatial evolution of drug
effects or sample conditions. In Fig. 7 for sample “170317-9” treated with nocodazole, the blue
response pattern (mid-frequency suppression and low- and high-frequency enhancement) grows
stronger over time before saturation, which indicates that nocodazole’s suppression of micro-
tubule polymerization begins at the outer periphery and slowly penetrates the core of the sample.
As another example, the red area in the TDS image of sample “170606-15” becomes stronger
until around 9 h, when the sample displays an overall suppression across the entire sample.
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4 Comparison with Inverted Selective-Plane Illumination Microscopy

Given that BDI is a 3-D imaging technology that uses low-coherence light, the different drug
response phenotypes revealed by TDSI may be related to different types of tissues in a certain
region of a sample. A complementary 3-D imaging technique is iSPIM that produces micro-
scopic images of 3-D slices with high lateral and axial resolutions, which allows us to distinguish
features in the images. Therefore, by comparing TDSI with iSPIM, we can investigate whether
the heterogeneity related to drug response variability from TDSI is also present in microscopic
images, i.e., link dynamic information from functional imaging with the histology of biological
tissues.

As an example, TDSI maps for sample 190801-15 are compared against its iSPIM images
and H&E histology images in Fig. 8. This sample is a pinch biopsy from a patient who was

Fig. 5 More examples of bivariate TDS images showing sample-to-sample variability in drug
responses. Masks are designated in the lower left corners of images, while lower right corners
designate drug treatments. Drug abbreviations: DMSO, 0.1% DMSO in growth medium (used
as a negative control); cisp, 25 μM cisplatin; 5fu: 25 μM fluorouracil; tax, 5 μM paclitaxel; carbo,
25 μM carboplatin. “+” indicates a combination of two drugs. The color map and scale are the
same as in Fig. 3.

Fig. 4 (a) Bivariate color representation of drug responses of two samples treated with different
drugs, showing two univariate maps and a “merged” bivariate color map. The first sample was
refreshed with DMSO, while the second sample was treated with 25 μM fluorouracil (5fu).
(b) Global and regional spectrograms of sample “151208-6” from (a). The global spectrogram has
a relatively weak response (max < 10%), while the two circled areas have 30% to 60% enhance-
ment or suppression. Drugs were added at t ¼ 0 (black line on spectrograms).
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resistant to neoadjuvant therapy. The biodynamic response is mapped for the tissue response to
5-fluorouracil. In the TDSI map, there is a distinct central region (purple) contrasted with the
outer regions (orange). In the bivariate colormap, purple represents broadband excitation with a
blue shift, indicating an activated response of the tissue to the 5-fu. The central region is likely to
be naturally hypoxic, which can affect the mechanism of the drug. In a related study of esopha-
geal cancer patients, a blueshift induced by 5-fu is representative of a beneficial response to the

Fig. 7 Time-lapse TDS image of samples responding to drugs. Sample “170317-9”: response of a
DLD spheroid sample treated with 10 μM nocodazole [same as in Fig. 3(d)] with the G2 mask,
showing a silent core shortly after drug was added (0.7 h), which was “invaded” by the drug and
later achieved a spatially homogeneous response (2.7 to 8.7 h). Sample “170606-15”: response of
an esophageal biopsy sample in the control medium, also under the G2 mask.

(a) (b) (c) (d)

Fig. 8 TDSI map, iSPIM 3-D-reconstructed image and H&E histology image for an esophageal
biopsy sample. All scale bars are 100 μm. (a) Bivariate colormap representing G0 (broadband
inhibition) and G1 (blue shift). (b) Bivariate TDSI map of human esophageal biopsy responding
to 5-fluorouracil (5-fu) with G0 and G2 as the two masks. The color map and color scale are the
same as in Fig. 3. (c) The iSPIM image with DRAQ 5 (blue) and Eosin (pink) for the same sample in
(a), and (d) histology image. The orientations of the images are not registered.

Fig. 6 Three types of samples that have different levels of same-mask heterogeneity and cross-
mask heterogeneity, with scores on the right.
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chemotherapy. In contrast, in the peripheral tissue, that is hyperoxic, the broadband excitation is
accompanied by a redshift. Furthermore, the green region indicates overall suppressed activity
(broad inhibition accompanied with a redshift of slower intracellular speeds). In comparison to
the TDSI, in the iSPIM image the lower part matches the lower part of the histology image
containing a large concentration of DNA. The upper part of the iSPIM image is cytoplasm
or unstained tissues, matching the lack of nuclei in the upper part of the histology image, which
potentially indicates collagenous connective tissues. Although the image orientations were not
registered between the techniques, the images in Fig. 8 demonstrate spatial polarity in the tissue
types. Future studies to compare TDSI with iSPIM would register sample orientation to identify
TDS spectral signatures of connective tissue relative to epithelial tissue. The work presented here
is proof-of-principle that spatial heterogeneity can be observed in both imaging modalities.

In this comparison, the advantage of iSPIM is the ability to acquire microscopic image with
high resolution and detailed cellular-level structural information with acceptable speed. This is in
contrast to TDSI which achieves only tissue-scale imaging resolution (∼15 μmvoxel size). On
the other hand, TDSI is a functional imaging method that is highly specific to the action of drugs
on tissue dynamics, while iSPIM can only provide structural information without being specific
to drug response. Furthermore, TDSI is nondestructive, allowing longitudinal studies that can
span several days, including the ability to apply drugs and to clear them. Both techniques have
the advantage of imaging into 3-D tissues, which is a key aspect of maintaining the tumor micro-
environment during imaging.

5 Discussion

BDI is a tool that is sensitive to intracellular dynamics and has been applied successfully to
phenotypic profiling to predict patient outcomes. For instance, sample motility and dynamic
biomarkers have been shown to be consistent and reliable indicators of pharmacodynamics
effects. However, these biomarkers are usually calculated as whole-sample averages when used
in classification and similarity analyses, overlooking intrasample heterogeneity. The introduction
of TDSI solves this problem by evaluating the responses of subregions of the sample to reveal
new information on the complex spatial structures in sample drug response, which is supported
by evidence from other imaging techniques such as iSPIM and histology. Visualization of sam-
ple heterogeneity is facilitated with a bivariate color representation and is quantitatively char-
acterized by h1 and h2 scores. This imaging method is further extended to generate whole-
sample time-lapse TDSI maps, providing a method to monitor drug mechanisms.

In addition to visualizing sample heterogeneity, TDSI maps can provide additional informa-
tion and improve classification accuracy when evaluating anti-cancer drug effectiveness on a
patient level. For samples with regions of opposite responses, the whole-sample average spectro-
gram may suggest a mild response to the drug, making the sample and the patient appear to be
less sensitive to the treatment. The proposed solution here is to introduce additional biomarkers
that characterize regional drug responses. As an example, the sample shown in Fig. 3(b) can be
split into two regions based on the sign of G1 biomarker values (which can be related to the
sample’s heterogeneous structure), and the feature values of these two regions can be calculated.
The set of feature values that capture both sample average response as well as regional response
would provide a more comprehensive assessment of the patient.

TDSI can be extended for further imaging and analysis applications. Since BDI is a 3-D
imaging technique and achieves depth selection with coherence gating, a volumetric TDS image
can be generated by scanning different slices of a sample. Also, time-lapse TDS analysis is a
quantitative approach to visualize drug-action time dependence. Features such as delay and dis-
tribution related to pharmacokinetics and pharmacodynamics (PK/PD) could be obtained from
time-lapse images to provide insight into processes such as dose-response relationships.

Challenges to TDSI include sample immobilization and multiple light scattering. TDSI eval-
uates the drug spectral response on the pixel level and requires that the same part of the sample is
imaged throughout the experiment. This requires the sample to maintain the same lateral and
axial positions. In addition, multiple light scattering induces aberrations of the image and
reduces the signal-to-noise ratio, which makes TDSI more effective at shallower depths.

Li et al.: Tissue dynamics spectroscopic imaging: functional imaging. . .

Journal of Biomedical Optics 096006-10 September 2020 • Vol. 25(9)



TDSI is an important extension to the current suite of BDI modalities (OCI, MCI, and TDS).
MCI maps are simple and intuitive functional images that visualize sample motility and have
revealed the contrast between a viable shell and a necrotic core for rat tumor spheroids.26 TDSI,
by comparison, generates a set of more detailed functional maps that complement MCI because
the critical frequencies in spectral masks used in TDSI are related to specific types of intracel-
lular components and motions, offering a comprehensive view of changes occurring in the
sample. TDSI is a versatile functional imaging method that could provide new information for
drug-response profiling and has the potential for improving predictions of response to therapy
and drug screening.
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