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Abstract

Significance: Colorectal cancer incidence has decreased largely due to detection and removal of
polyps. Computer-aided diagnosis development may improve on polyp detection and discrimi-
nation.

Aim: To advance detection and discrimination using currently available commercial colonos-
copy systems, we developed a deep neural network (DNN) separating the color channels from
images acquired under narrow-band imaging (NBI) and white-light endoscopy (WLE).

Approach: Images of normal colon mucosa and polyps from colonoscopies were studied.
Each color image was extracted based on the color channel: red/green/blue. A multilayer DNN
was trained using one-channel, two-channel, and full-color images. The trained DNN was then
tested for performance in detection of polyps.

Results: The DNN performed better using full-colored NBI over WLE images in the detection
of polyps. Furthermore, the DNN performed better using the two-channel red + green images
when compared to full-color WLE images.

Conclusions: The separation of color channels from full-color NBI and WLE images taken
from commercially available colonoscopes may improve the ability of the DNN to detect and
discriminate polyps. Further studies are needed to better determine the color channels and
combination of channels to include and exclude in DNN development for clinical use.
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1 Background

Colorectal cancer (CRC) is the second leading cause of cancer and third leading cause of cancer
deaths in the US. Over the last five years, there has been a steady decline in the incidence of
CRC.! Most of this is attributed to ability to prevent CRC through the use of screening colonos-
copies. By identifying polyps, the precursors of CRC, and removing the polyps at the same time,
colonoscopy use has been shown to decrease the incidence of CRC by 90%? and risk of CRC-
related death by 53%.’

However, variability in the ability to identify polyps from normal mucosa and to differentiate
those polyps as cancerous versus non-cancerous remains challenging. Image analysis using
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machine learning has emerged, with the potential to improve on polyp detection and classifi-
cation.* Universal application and clinical adoption have been limited by the need for “training”
the machine learning algorithm, which requires hand-crafted feature extraction and a consider-
able hand-engineering of imaging features to generate polyp classification.®” Furthermore, other
technology such as high-magnification endoscopy and laser-induced fluorescence spectroscopy
may be required for better image feature extraction, which is not routinely performed in clinical
practice.>

More recently, artificial intelligence (Al), in particular deep learning (DL) and resultant deep
neural networks (DNN), has enabled more detailed image analysis by the autonomous extraction
of relevant image features, transforming the field of pattern recognition for complex images in
the colonoscopy detection and discrimination of polyps.”!! We hypothesize that development of
a DNN from already available images in full color and separated by color channels, taken during
routine colonoscopy using commercially available scopes, will improve on polyp identification
and discrimination. In this paper, we describe our initial development and performance of a DNN
in the detection of colonic polyps.

2 Methods

2.1 Clinical Study

The clinical study was completed after institutional approval and conducted under the super-
vision of the institutional regulatory committees. Sixteen patients scheduled to undergo screen-
ing or surveillance colonoscopy were accrued to the clinical study. Informed consent was
obtained from all subjects.

2.2 Clinical Study Workflow

Once the patient was sedated per colonoscopy protocol, the colonoscope was inserted. Under
insufflation, the scope was advanced to the ileocecal valve. The colonoscope was slowly with-
drawn to evaluate the epithelial surface. Polyps identified and determined to require biopsy,
based on the clinician’s judgment, were photographed using white-light endoscopy (WLE) and
under narrow-band imaging (NBI). The WLE images are RGB images because they have three
channels: red (wavelength range: 664 to 680 nm); green (wavelength range: 534 to 545 nm); and
blue (wavelength range: 420 to 440 nm). The NBI image contains two narrow color filters cen-
tered at 415 and 540 nm, respectively. Each polyp was imaged 12 times, six times under WLE,
and six times under NBI. WLE and NBI images of the normal mucosa along the length of the
colon were obtained for comparison. The polyps removed were evaluated through the pathology
department and clinical treatment was per standard-of-care.

The colonoscopic images were stored on the hard drive of the commercial colonoscopy unit
in Joint Photographic Experts Group format. The image resolution is 96 dpi and the image size
is 720 x 480 pixels.

2.3 Materials/Equipment

The colonoscopy equipment and processing unit were manufactured by Olympus® America Inc.
(Southborough, Massachusetts), Three colonovideoscope models were used: EVIS EXERA III
(CF-HQ190L/I—Sn: 2876181), EVIS EXERA II (PCF-H180AL/I—Sn: 2109101), and EVIS
EXERA III (PCF-HI190DL/I—Sn: 2840944, 2840948). The Imaging System Video Processor
model used is EVIS EXERA IIT CV-190.

2.4 DNN Development

For the polyp detection and segmentation, a DNN model, mask region-based convolutional neu-
ral network (Mask-RCNN), was used to identify and segment or delineate objects within
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Fig. 1 Schematic of Mask-RCNN.

images.'? This network was used due to its performance and ability to identify objects and gen-
erate precise segmentation masks. In instance segmentation, a mask is generated around each
object along with a bounding box. From this approach, information on the location, pixel boun-
dary, and quantities of the objects can be obtained (Fig. 1).

In this research, a special implementation of Mask-RCNN was used for training and testing
on the NBI images and compared with the WLE images.” Mask-RCNN expands upon Faster-
RCNN by adding an additional mask branch to the existing bounding box branch. Mask-RCNN
outputs a class label, bounding box, and precise boundary mask for each object. Figure 1 shows
the network architecture of a Mask-RCNN, which comprises of the convolutional neural network
(CNN), region proposal network, bounding box head, and mask head.

Multiple training sessions using the Mask-RCNN were conducted using full-color NBI and
WLE images, individual color channel images, and combination of the two-color channel
images. The best performing DNN in full color, each color channel, and combined color chan-
nels were saved and tested using separate testing image sets that were not in the training data.
Accuracy, sensitivity, specificity, and precision were calculated for each DNN as measures of
performance.

3 Results

Over a 12-month period, 16 patients were accrued into the study. Patient demographics and
clinical characteristics are given in Table 1.

The mean age of the patients was 65 (+14.5) years, and 56% (9/16) of the patients were
female. The indication for the colonoscopy was screening in 12 patients and surveillance in
four patients with a history of colon cancer. The colonoscopies were completed by three inves-
tigators (James Lin, Kurt Melstrom, and Trilokesh Kidambi). Histopathologic data on the
imaged polyps, which were then removed, are given in Table 1. Images were taken of normal
colon and identified polyps. There was a total of 15 polyps in the 16 patients (Table 1). Of the 15
polyps, nine lesions were <5 mm; four lesions were 6 to 9 mm; and two lesions were >10 mm.
The polyps were tubular adenomas (n = 11), tubulovillous adenomas (n = 2), sessile serrated
(n = 1), and hyperplastic (n = 1).

3.1 Training DNN for NBI Image Recognition

A training image set of 50 images (20 negatives, 30 positives) of NBI images were selected for
training a DNN based on the Mask-RCNN model described above. The training images were
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Table 1 Demographic and clinical data.

Polyp description

Record Number Anatomic Size
ID Age Gender of polyps location (mm)  Polyp type Diagnosis
1 60 M 0
2 64 M 3 Right colon 3 Tubular Tubular adenoma
Right colon 7 Tubular Tubular adenoma
Left colon 8 Tubular Tubular adenoma
3 74 F 3 Right colon 8 Tubulovillous Tubulovillous adenoma
Right colon 3 Serrated Sessile serrated adenoma
Left colon 8 Tubular Tubular adenoma
4 51 M 2 Sigmoid 5 Hyperplastic Hyperplastic polyp
Rectum 10 Tubulovillous Tubulovillous adenoma
5 70 M 1 Right colon 2 Tubular Tubular adenoma
6 51 M 0 — — — —
7 52 F 0 — — — —
8 62 F 1 Rectum 2 — Adenoma
9 80 M 0 — — — —
10 59 F 1 Right colon 3 Tubular Tubular adenoma
11 65 F 2 Right colon 3 Tubular Tubular adenoma
Rectum 3 Tubular Tubular adenoma
12 55 M 2 Sigmoid 14 Tubular Tubular adenoma
Sigmoid 5 Tubular Tubular adenoma
13 55 F 0 — — — —
14 73 F 0 — — — —
15 67 F 0 — — — —
16 65 F 0 — — — —

carefully selected so that the network learns the variance of the polyps and background but not
to be confused by ambiguities. The DNN was trained on a GoogleCloud server with graphics
processing units (GPUs). The learning rate is 0.0025. The DNN was trained for a total of
1500 iterations. Examples of NBI images are provided (Fig. 2). Training images both include
images with or without a polyp as well as a segmentation mask around the boundaries of
the polyp.

3.2 Training DNN for WLE Image Recognition

A training image set of 74 WLE images (34 negatives, 40 positives) were used for training a
DNN. Similarly, the DNN was trained on a GoogleCloud server with GPUs. The learning rate is
0.0025. The DNN was trained for a total of 1500 iterations. Examples of WLE images are pro-
vided (Fig. 2).
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Polyp 1

Polyp 2

Fig.2 (a), (b), (e), and (f) DNN recognition of polyps in WLE and in (c), (d), (g), and (h) NBI. (a) and
(e) WLE images of polyps. (b) and (f) DNN recognition of the polyps. The gray shading demon-
strates the DNN detection of the polyp and the boundaries of the polyp. (c) and (g) NBl images of
polyps. (d) and (h) DNN recognition of the polyps. The gray shading demonstrates the DNN detec-
tion of the polyp and the boundaries of the polyp.

3.3 Training DNN on Separate Color Channels for NBI and WLE Images

In this experiment, a total of 112 NBI were divided into 93 training images and 19 testing
images. A total of 150 WLE images were divided into 127 training and 23 testing images.
The NBI and WLE images are color images with three channels: red/green/blue (RGB). The
resolution of the images is 480 X 720 pixels. Each pixel has an RGB value, such that an image
is expressed as a 480 x 720 X 3 array. A single 480 X 720 X 1 channel was extracted correspond-
ing to each color, and the other two channels were padded with zeros so that only the data from
each color channel is retained. In this way, the original size of the image is retained. For a com-
bination of two color channels, two of the three channels were retained, and the third channel
was padded with zeros. Examples of full color, single and two-channels NBI, and WLE images
are shown in Fig. 3.

A 101-layer DNN, as described in Mask-RCNN Model section, was trained around 3000
epochs with the training set to learn the images features and to thereby distinguish the polyps
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Fig. 3 Examples of NBl and WLE images: (a) full color, (b) red channel, (c) green channel, (d) blue
channel, and (e) red + green channel.
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Table 2 Performance of the DNN polyp detection in NBl and WLE images.

NBI image testing (Total TP = 14 Total TN = 5)

Full color Red Green Blue Red + green

True positive (TP) 13 12 12 10 13
True negative (TN) 5 5 5 5 5

Sensitivity TP/(TP + FN) (%) 93 86 86 71 93
Specificity: TN/(TN + FP) (%) 100 100 100 100 100
Precision: TP/(TP + FP) (%) 100 100 100 100 100
Accuracy: (TP + TN)/(TP + TN + FP + FN) (%) 95 89 89 79 95

WLE image testing (Total TP = 15 Total TN = 8)

Full color Red Green Blue Red + green

True Positive (TP) 9 9 7 6 13
True Negative (TN) 8 8 7 7 8
Sensitivity TP/(TP + FN) (%) 60 60 47 40 87
Specificity: TN/(TN + FP) (%) 100 100 87 87 100
Precision: TP/(TP + FP) (%) 100 100 87 86 100
Accuracy: (TP + TN)/(TP + TN + FP + FN) (%) 74 74 61 57 91

from normal tissue in both NBI and WLE images. After multiple training sessions to train the full
color, single channel, and combination channel DNNs on NBI and WLE images, the best per-
forming DNNs were tested with separate sets of testing images. The testing results of NBI and
WLE images are shown in Table 2.

3.4 DNN Performance in Polyp Detection

For both the full-color and individual color channel, we classify whether the DNN has identified
the presence or lack of a polyp within an image. The accuracy is determined by the percentage of
correctly classified images. In the NBI testing, there were a total of 14 polyp images and five
normal images. The DNN identified 13 out of 14 polyp images and five out of five normal images
in the full-color test images with an accuracy of 95%. The DNN performed less well in the single
red (accuracy 89%), green (accuracy 89%), and blue (accuracy 79%) channels. The DNN per-
formed the worst in blue channel. There was no difference in DNN performance between the two-
channel red + green (accuracy 95%) than in the three-channel full-color images (Table 2).

In the WLE testing, there were a total of 13 polyp images and eight normal images. The DNN
identified nine out of 13 polyp images and eight out of eight normal images in the full-color test
images with an accuracy of 74%. The DNN performed as well in single red (accuracy 74%), less
well in green (accuracy 61%), and less well in blue (accuracy 57%) channels. The DNN per-
formed the worst on the blue channel. The DNN performed better in the two-channel red + green
images with an accuracy of 91% compared with the lower accuracy (74%) in the three-channel
full-color WLE images (Table 2).

4 Discussion

Over the last two decades, there have been technology advances such as NBI and confocal
microendoscopy to improve on polyp detection and discrimination.'® In addition, careful
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characterization of polyp features has led to classification schemes that better identify polyps
with higher malignant potential requiring additional clinical management.*'* Computer-aided
diagnosis (CAD) and Al have been applied to colonoscopy images and videos with resultant
near real-time ability to detect and differentiate types of polyps captured in still images as well as
in video.>!®> These systems remain investigational, without direct implementation yet into the
clinical workflow, but with great potential to improve on current detection and discrimination
of polyps.

Our study furthers the work of other groups by applying an artificial neural network to enable
detection of colonic polyps. The principle is to train a DL algorithm to extract features from the
full color, single channel, and two-channel images of an endoscope to enhance the differences
between the polyp and surrounding normal tissue in captured in colonoscopy images. The DL
algorithm automatically selects the best combination of image components to enhance the
contrast between normal and abnormal tissues. Then, the DL algorithm performs automatic
detection and segmentation of the polyps in the full color, single channel, and two-channel color
images. Traditional neural networks contain one to three hidden layers, whereas DL models can
contain as many as 100 hidden layers. As a result, this type of model is often referred to as a
DNN.'® Typically, DNN models learn classification tasks from labeled datasets of images
through a process called feature extraction. The multi-layer nature of a DNN allows for each
layer to encode distinctive features.!”

Our DNN was trained on full-color NBI and WLE images. In addition, images obtained from
separating the color channels into single-channel red, blue, or green or into two-channel red +
green were used to train the DNN. Consistent with the results of other studies,'®!"!> the DNN
was more accurate in detecting polyps when using full-color NBI images with an accuracy of
95% compared with an accuracy of 74% using full-color WLE images. Overall, the accuracy of
DNN detection did not improve with the separation of the images to single color channels for
either NBI or WLE images. Instead, the DNN was more accurate when testing with the two-
channel red + green images than with full-color WLE images, arguing that the addition of the
blue channel may mask distinguishing features used by the DNN to make discriminations and
negatively contributes to the WLE polyp detection process. As such, the DNN was least accurate
when tested with the single-channel blue WLE images (accuracy 57%).

The main drawback of DNN is the requirement for a large number of training samples. In this
work, a DNN model was built and trained with a small number of polyps and normal mucosa
images. However, the overall accuracy of the DNN, even with the small number of images so far
studied, argues that further training will increase the ability of the DNN to accurately detect
polyps. In addition, the ability to separate the images into single-channel images and two-
channel images for testing and training increases the dataset available for the DNN to learn.
Another weakness of this current DNN is the level of computational processing required.
Each single training process currently requires 2 h in a dedicated CPU + GPU environment and
is completed off-line in a server given the data processing demands.

To optimize certain parameters such as the learning rate, multiple time-consuming training
sessions were required. However, prediction of new images, requiring about 200 ms per image
for classification and 2 to 3 s with segmentation, is rather quick. For clinical implementation, a
scanning mode can be developed in which the trained DNN classifies the image. When there is a
positive classification of a polyp in an image, the DNN can then search for the specific location
and segment the boundary of the polyp. With improved data processing capabilities and appli-
cation of a trained DNN, DNN-enabled real-time automated detection and diagnosis of CRC
polyps and cancer into the clinical workflow may soon be reality.

5 Conclusions

We have built a DNN and trained it with images taken from commercially available colonos-
copies. The images of polyps and normal tissue from 16 patients undergoing standard screening
and surveillance colonoscopies. Initial testing results using the DNN on full-color NBI and
WLE images, single color channel, and two-channel color images have shown high accuracy
in the detection of polyps. Overall, the accuracy was greater in the NBI images than in the WLE
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images. However, the DNN demonstrated improved performance when tested on two-channel
red + green WLE images compared with full-color WLE images. Further development of the
DNN on other color channel combinations and on multi-band filtering may improve on accuracy
of detection and may enable polyp discrimination. Additional validation studies are needed to
test and refine the DNN.
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