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Abstract

Significance: Raman spectroscopy has been developed for surgical guidance applications inter-
rogating live tissue during tumor resection procedures to detect molecular contrast consistent
with cancer pathophysiological changes. To date, the vibrational spectroscopy systems devel-
oped for medical applications include single-point measurement probes and intraoperative
microscopes. There is a need to develop systems with larger fields of view (FOVs) for rapid
intraoperative cancer margin detection during surgery.

Aim: We design a handheld macroscopic Raman imaging system for in vivo tissue margin char-
acterization and test its performance in a model system.

Approach: The system is made of a sterilizable line scanner employing a coherent fiber bundle
for relaying excitation light from a 785-nm laser to the tissue. A second coherent fiber bundle is
used for hyperspectral detection of the fingerprint Raman signal over an area of 1 cm2. Machine
learning classifiers were trained and validated on porcine adipose and muscle tissue.

Results: Porcine adipose versus muscle margin detection was validated ex vivowith an accuracy
of 99% over the FOV of 95 mm2 in ∼3 min using a support vector machine.

Conclusions: This system is the first large FOV Raman imaging system designed to be inte-
grated in the workflow of surgical cancer resection. It will be further improved with the aim of
discriminating brain cancer in a clinically acceptable timeframe during glioma surgery.
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1 Introduction

The current standard treatment for malignant tumors involves the surgical resection of the com-
promised tissue. Tumor resection can alleviate patient suffering related to tumors pressing on
healthy organs1–3 and is shown to improve patient prognosis in breast4 and pancreatic5 cancer.
Improved prognosis is especially true when maximizing the extent of cancer resected since
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residual cancer cells can lead to tumor recurrence.6–9 Prior to surgery, diagnosis of the tumor is
usually achieved through means of palpation, structural imaging [e.g., magnetic resonance im-
aging (MRI), computer tomography, and ultrasound], molecular imaging (e.g., positron emission
tomography), or histology (e.g., biopsy). These methods serve to evaluate the location, severity,
and extent of disease, to determine surgical success, and to assess postoperative disease progres-
sion. Surgeons then establish their surgical plan and proceed to the tumor site through open or
minimally invasive surgery in which the bulk of the tumor is often identified by visual inspection
and palpation. Additional tools such as frozen section histology and intraoperative MRI are also
used in some tumor sites to further help in assessing disease margins. Tumor grade and location
may warrant the resection of complete organs, as can be the case for prostate and breast cancer,
while other sites (e.g., brain cancer) require meticulous maximal resection of malignant tissue
while preserving the neighboring healthy tissue.10 Histopathological analysis of the resected
tissue during surgery (i.e., Mohs micrographic surgery) or after surgery is used to assess the
presence of positive margins, defined as cancer cells located at the periphery of the resected
tissue. It is estimated that 15% to 60% of surgeries for head, neck, liver, oral, breast, and prostate
cancers will result in positive margins following the principal surgery.11 To improve patient prog-
nosis, positive margins can require an additional surgery from which ensues further patient
trauma and complication risks.12–14 On the other hand, it has been suggested that reducing
healthy tissue resection can lead to fewer surgical complications, lower the hospital length
of stay, and decreased patient discomfort, which motivates tissue conservation surgery in rectal
cancer as an alternative to radical surgeries.15 It is apparent that extending cancer resection dur-
ing the principal surgery while preserving healthy tissue is a clinical need for surgical oncology
and such a need can be addressed by real-time and in situ surgical guidance technology.

Methods showing potential for real-time surgical guidance involve molecular imaging
modalities that recover, non-invasively, distinct molecular characteristics of tissue and provide
surgeons with tissue-specific information to visualize in situ tumor extent. Such methods
currently employed for medical treatment include fluorescence-guided surgery (FGS), in which
precursors to endogenous fluorescent molecules or fluorescent molecular probes [e.g., 5-amino-
levulinic acid (5-ALA) or indocyanine green (ICG)] are administered orally or injected preop-
eratively into the blood stream. These probes accumulate in organs in different concentrations
and emit fluorescence (e.g., green light for ICG) upon illumination with an excitation light
source. In glioma surgery, 5-ALA is metabolized preferentially in tumors into the fluorescent
protoporphyrin IX to identify residual dense cancer within the surgical cavity. Such approaches
have demonstrated their effectiveness by increasing the occurrence of complete resection of the
tumor (i.e., no visible contrast in postoperative MRI) in glioma surgery.16,17 However, FGS does
not always show surgeons the full extent of cancer in part due to luminescence quenching, fluo-
rescence probe breakdown, or a lack in specificity of probe distribution in healthy and diseased
tissue. This translates to absent or hard to detect fluorescence contrast in tissue in which only
subtle oncological, morphological, and/or molecular changes occurred.18 Studies have shown
that postoperative imaging such as MRI, even when employed with contrast agents, is also
unable to detect areas associated with a low density of cancer cells associated with tumor infil-
trations. When used as a gold standard for evaluating complete tumor resection in glioblastomas,
tumor volume measured with MRI may confirm the resection of the tumor, but it does not guar-
antee the absence of residual cancer cells at the surgical site.19,20 This clinical reality is associated
with the high tumor recurrence rate (85%) at the resection margin in glioblastoma patients and its
very poor prognostic even when complete tumor resection is achieved.16,21 Efforts are currently
being employed to develop new contrast-enhancing molecular probes (e.g., OTL38, LUM015,
and SGM-101) with increased specificity for various cancer sites including prostate, breast, and
colon.22

Label-free molecular imaging (e.g., diffuse reflectance and endogenous fluorescence detec-
tion) has gained interest as an alternative surgical guidance solution due in part to its independ-
ence from labels and dyes, which require risky, expensive, and lengthy safety studies prior to use
in patients. Among label-free molecular imaging technologies, Raman spectroscopy (RS) stands
out with its ability to recover a molecular specific fingerprint from interrogated tissue. RS is
capable of discriminating in real-time cancer from normal tissue23 and has been shown to be
superior to diffuse reflectance and endogenous fluorescence combined in discriminating between
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breast tissue histopathologic categories.24 This non-invasive and non-destructive method
employs a laser source to interrogate the intrinsic molecular vibrations of tissue content, i.e.,
DNA, lipids, and proteins, and exploits this tissue-specific information to map tissue hetero-
geneity accordingly. RS relies on recovering signal from inelastic scattering in interrogated sam-
ples, a relatively rare event (∼1 in 107 photonic events) that is often difficult to decouple from
high-intrinsic tissue fluorescence. Improvements in data preprocessing methods, spectrometer
resolution, camera sensitivity, and laser excitation sources have led to the development and
implementation of RS systems for in vivo discrimination of tissue.25 RS for surgical guidance
has been demonstrated with handheld single-point probes in humans and has already shown
across several studies its potential to extend cancer resection effectively following the main
tumor resection such as during glioma surgery,25 gastrointestinal inspections,26 early lesions
detection in oral cancer,27 and breast cancer lumpectomy.28 However, point measurements do
not offer spatial context, which can make difficult the identification of margins and localized
cancer infiltrations linked to subtle molecular changes.29 The need for spatial context motivates
the development of Raman imaging to accomplish the task of identifying residual cancer and its
margins. Surgical time constraints and user adoption impose the challenging requirement of
making Raman imaging a rapid modality that can quickly interrogate large surgical cavities
(i.e., several cm2).

Many Raman microscopes have been developed with the intention of guiding surgery by
assisting pathologists in the visualization of tissue margins in excised tissue (e.g., breast,30 skin,31

and oral32 cancer). These systems can cover areas up to several mm2, but they are unsuitable
for performing molecular imaging in vivo. Handheld stimulated Raman scattering microscopy
systems have been developed and tested successfully to address precise tissue margin localiza-
tion in vivo in mice for skin33 and brain34 cancer. These systems have a restricted field of
view (FOV), i.e., <4 mm2, which requires numerous measurements to cover the entire surgical
area.35 It was demonstrated by our group in 2016 that coherent fiber bundles, which coherently
relay images from one end to the other, can be used for Raman imaging probes for the purpose
of wide-field and line scanning collection in biological tissue.36 The most recent system had an
FOV of 14 mm2 and spectral resolution of 6 cm−1. It was shown that acquisition times of 700
to 900 ms per line were required to discriminate, based on tissue Raman band ratios, porcine
adipose from muscle tissue, as well as bovine white and gray matter.37 Raman imaging over
a large FOV was also validated in vivo in mice with the use of injected nanoparticles for
signal enhancement.38 However, there remains a lack of Raman imaging systems with large
FOV for in vivo human clinical use. The only Raman imaging system with a large measure-
ment area (1 cm2) that was developed and tested for a human in vivo application is reported
by Schmälzlin et al. (2018)35 for skin cancer although no cancer margin detection was
demonstrated.

Here we present the design and characterization of a novel Raman line scanning system
developed with the aim of being integrated in a human clinical study. The line scanning handheld
imaging probe has a spatial resolution of 250 μm and a spectral resolution of 6 cm−1 allowing
Raman imaging to be performed over an FOVof 95 mm2. The probe is sterilizable and acquires
spectra in the fingerprint region from 400 to 1900 cm−1. It is designed to accommodate an appa-
ratus for contact measurement with a head diameter of 20 mm while offering non-contact mea-
surements with a working distance of 40 mm. A bright-field channel allows for visualization of
tissue structures under white-light reflectance. The probe also uses a flexible coherent fiber bun-
dle for collection and is the first to use a flexible fiber bundle for custom laser profile excitation,
e.g., a scanned laser line. The system optical design and corresponding performance metrics, i.e.,
laser line profile and optical transfer functions (OTFs), employed for design validation are first
presented. Raman hyperspectral images of porcine adipose and muscle tissue were acquired, and
band assignments are presented with their corresponding biological interpretation in terms of
molecular bonds. The system’s ability to discriminate between tissue types is then demonstrated
using support vector machine (SVM) technology. A detailed photonic budget analysis is finally
presented comparing the system against a proven handheld single-point surgical guidance
Raman system.39 The future development steps required to achieve in vivo human tissue imaging
are finally discussed to obtain a comparable level of Raman signal-to-noise ratio (SNR) within an
acceptable clinical timeframe.
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2 Methods

2.1 Imaging System

The line scanning system consists of three main parts (Fig. 1): an excitation branch, an im-
aging probe, and a collection branch. Each component of the system is controlled via custom
software developed using LabVIEW (National Instruments, USA) and a graphical user
interface. Components including the laser, the broadband source, a motorized translation
stage (TS), a galvanometer, a charge-coupled device (CCD) camera, and a color (RGB) cam-
era are synchronized with the help of a digital acquisition device (USB-6351, National
Instruments, USA).

The excitation branch [Fig. 1(c)] consists of light sources for RS or bright-field imaging, a
series of optics, and a motorized linear TS (A-LSQ075A-E01, Zaber, Canada). The excitation
branch generates either a scanning laser line or a widefield white light illumination injected in a
4 × 4 mm2 imaging fiber bundle (IG-154, Schott, USA). The laser source is a custom 785 nm
continuous-wave laser (Innovative Photonic Solutions, USA) with 1.8-W power, a spectral width
of <0.2 nm, and a numerical aperture (NA) of 0.5. The broadband source consists of a 3000-K
light emitting diode (LED) (MWWHL4, Thorlabs, USA) that is turned off during Raman mea-
surements to avoid contamination. Optics (cylindrical lenses and dichroic mirror) are used to
generate a laser line on the surface of an imaging fiber bundle, with the secondary role of

Fig. 1 (a) Handheld Raman imaging probe and schematic of the imaging system consisting of
(b) the imaging probe with its EFB, a series of optics [LLF, mirror (M), and long-pass filter
(LPF)] to propagate white light and laser light onto the sample to interrogate the tissue, a series
of optics (LPF, optical window, and notch filter) to collect the generated Raman signal and
reflected white light, and a CFB; (c) the excitation branch generating a line-shaped laser excitation
at the entrance of the EFB mounted on a TS while also shining white light into the EFB; and (d) the
collection branch capturing white light and Raman signal from the CFB, separating the two optical
components with a scanning high-pass filter, obtaining a white light image on an RGB camera
while extracting spectral features with an imaging spectrometer. All illustrated lenses are spherical
unless labeled LH for cylindrical lenses with their curvature in the horizontal direction or LV for
cylindrical lenses with their curvature in the vertical direction.
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coupling the 785-nm laser line and widefield white light sources into the fiber bundle. Finally,
the imaging bundle is mounted onto a motorized TS responsible for repositioning the bundle
surface relative to the laser line and thus ensuring line scanning in the excitation branch.

The imaging probe [Fig. 1(b)] consists of a series of illumination optics and imaging optics.
Illumination optics include an excitation fiber bundle (EFB) to reproduce the laser excitation
pattern from the excitation branch end of the excitation bundle to the probe end and a laser
line filter (LLF) centered at 785 nm (LL01-785-12.5, Semrock, USA) with a transmission spec-
tral range from 425 to 600 nm. The excitation pattern (laser line or widefield) is then projected
through the probe illumination optics onto the sample at a working distance of 40 mm. The
imaging optics include a series of optics designed to collect white light (400 to 650 nm) as well
as fluorescence and Raman scattering (810 to 922 nm) through another fiber bundle. A dichroic
mirror allows for a maximum reflection of the laser source onto the sample while maximizing
fluorescence/Raman collection efficacy. The dichroic mirror ensures that a portion of broadband
light (50%) is reflected onto the sample and collected for bright-field imaging. The probe was
designed to accommodate a sterilizable and detachable nose with a Raman grade MgF2 window
(i.e., with no Raman peaks between 400 and 1900 cm−1 and low intrinsic fluorescence) (Batch
#61973, Crystran, USA). This was designed for future in vivo applications for which ensuring
tissue contact might be more practical. In the overall optical design, mobile parts, electronics,
and mechanical components were avoided to facilitate cleaning and sterilization and to ensure
patient safety. The probe [Fig. 1(a)] weighs 0.6 kg without the fiber bundles and has a volume of
∼4.5 (width) × 7 (height) × 18 (length) cm.

The collection branch [Fig. 1(d)] is composed of a collection fiber bundle (IG-163, Schott,
USA), a series of optics, a dichroic mirror (FLD 748 DSP, Iridian, Canada) mounted on a
galvanometer scanner (6870M, Novanta, USA), a spectrometer (HT, EmVision, USA), a
cooled CCD camera (Newton 920, Oxford Instruments, USA), and a high-sensitivity
CMOS RGB camera (DCC1240C, Thorlabs, USA). The CFB transmits the bright-field image
and fluorescence/Raman signal collected by the imaging probe to the collection branch. From
the bundle collection end, the optics relay the collected image onto the dichroic mirror gal-
vanometer through which visible light is transmitted through a series of optics into the RGB
camera for bright-field imaging. Raman scattering (810 to 922 nm or 400 to 1900 cm−1) is
reflected into the Raman spectrometer, and spectral components are separated onto the cooled
(−70°C) camera sensor. The image captured by the sensor thus possesses a spatial axis (y axis)
and spectral axis (λ axis). The rotation of the mounted dichroic mirror controls which area of
the imaging probe’s FOV (x axis) is aligned with the spectrometer slit and is synchronized with
the excitation branch’s TS position during measurements.

2.2 Optical Design

Specific lens sizes and focal lengths were determined via the optical design software Zemax
(Zemax, USA) to meet requirements in each of the system subcomponents (i.e., excitation
branch, imaging probe, and collection branch). Off-the-shelf components were selected when
applicable.

The excitation branch requirements involved producing a uniform 100 μm (x axis) × 4 mm
(y axis) laser excitation profile at the entrance of a 4 × 4 mm excitation bundle, from a multi-
mode fiber of 400 μm core diameter with 0.22 NA to be relayed through the 4 × 4 mm2 EFB into
the imaging probe. The laser line profile relative intensity was first simulated with the optical
design software and was then measured at the face of the EFB with an RGB camera.

The imaging probe optical design was subdivided into two parts: the illumination branch and
the imaging branch, although they had some optical components in common. Lenses and their
positions within the illumination and imaging branches were selected according to the resulting
OTF and evaluated through the optics of each branch, from sample to bundle face, across the
circumradius of each branch’s fiber bundle face (4 × 4 mm2 for the illumination branch and 10 ×
10 mm2 for the imaging branch). The normalized OTF was evaluated using the optical design
software and used to optimize the spatial resolutions (along the x and y directions) of the system.
The optimal optical configurations were those for which the OTF—for specific spatial resolu-
tions and wavelengths—were above 0.5 across the entire circumradius of the fiber bundles. The
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illumination branch’s targeted spatial resolution for 785 nm was set at 2 cycles∕mm or 250 μm.
No resolution limit was set for visible light (400 to 650 nm) illumination since the excitation
branch would generate widefield broadband illumination of the sample. The imaging branch’s
target spatial resolution for bright-field imaging (400 to 650 nm) was set at 10 cycles∕mm or
50 μm while the minimum resolution for Raman fingerprint imaging (800 to 940 nm) was set at
2 cycles∕mm or 250 μm. An additional design criterion for the imaging branch consisted of
maintaining a >70% relative illumination profile across the circumradius of the FOVof the im-
aging probe.

The collection branch requirements included maintaining the bright-field image spatial res-
olution relayed by the CFB of at least 10 cycles∕mm or 50 μm onto the sensor of the RGB
camera while also maintaining the relayed Raman image’s spatial resolution of 2 cycles∕mm

or 250 μm onto the 75 μm (x axis) × 7.2 mm (y axis) slit of the Raman spectrometer. The
selected optics were deemed acceptable if the OTF for the above-mentioned spatial resolutions
and their corresponding wavelengths was above 0.5 for the entire circumradius of the white
light.

2.3 Raman Imaging of Biological Samples

The biological sample used for this study was a pork chop from a butcher shop, 1-cm-thick, flat,
and with a visually clear margin between adipose and muscle tissue at its surface. The tissue was
placed over a low Raman activity aluminum slide (Miro5011, Anomet, Canada) to prevent any
background generated from under the sample. Raman images were acquired in three separate
areas of the sample: muscle, adipose, and a margin essentially composed of a mixture of adipose
and muscle tissue. Bright-field images of the sample were visually inspected, and all pixels were
labeled as either pure adipose, pure muscle, or tissue margin. The sample was humidified with
buffered blood bank saline (312-651, Thermo Scientific, USA) drops between measurements.
Bright-field images before and after line scanning were acquired to confirm that the sample
margins had not shifted during measurements and the sample’s color had not changed, which
would have been indicative of tissue damage.

The measurement parameters are presented in Table 1. The entire FOV of the system
(95 mm2) was imaged by scanning a total of 40 lines on the sample. Binning over 6 pixels along
the spatial axis of the CCD (y axis) was done to increase SNR, resulting in a 250-μm effective
spatial resolution. Translation distance between line measurements was 250 μm. Binning along

Table 1 Raman imaging system technical parameters selected for the ex vivo
experiments.

Specifications

FOV 95 mm2

Working distance 40 mm

Number of lines 40 lines (9.5 mm × 400 μm each)

Translation distance 250 μm between line measurements

Spatial resolution NIR x axis: 250 μm and y axis: 250 μm

Spectral resolution NIR 6 cm−1 (at 1085 cm−1)

Number of pixels x axis: 40, y axis: 42

Spectral range λ axis: 400 to 1900 cm−1

Exposure time Adjustable but 5 s per line
(total: 200 s) in this study

Spatial resolution bright field 50 μm
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the spectral axis (3 pixels) also increased SNR with minor degradation of the spectral resolution.
The resulting hyperspectral cube dimensions from line scanning were 40 (x axis) × 42 (y axis) ×
341 (λ axis). The laser line profile was of a 400 μm × 9.5 mm with a total power of 230 mW
corresponding to an average intensity of 6.1 W∕cm2 at the sample surface. The luminescence
(i.e., Raman and background fluorescence resulting from 785-nm laser line illumination) from
400 to 1900 cm−1 (810 to 922 nm) was collected for each line during a 5-s exposure time. An
external broadband light LED was used to uniformly illuminate the sample. The bright-field
images were used as a reference to place the sample at the focus of the imaging system.
The broadband source, along with any other sources of ambient light, was turned off throughout
the duration of the line scanning measurements.

2.4 Spectral Data Preprocessing

The data preprocessing pipeline began with applying a median filter to each spectrum of the
image to eliminate cosmic rays. Following this, a Raman shift (λ axis) calibration was performed
from a reference measurement of acetaminophen, which has a very well characterized Raman
spectrum with low background and is one of the Raman shift standards identified in the
American Society for Testing and Materials’s (ASTM) Standard Guide for Raman Shift
Standards for Spectrometer Calibration (ASTM E1840). This calibration was achieved by per-
forming a cubic spline interpolation using the six most prominent peaks from the acetaminophen
Raman fingerprint spectrum. The spectra were then corrected for system response and relative
intensity variation across the image with a smoothed reference measurement on a NIST standard
for 785-nm excitation (SRM 2241, NIST, USA). The NIST reference measurement was
smoothed using a 2D Gaussian filter of second order to reduce artifacts introduced by scratches
on the NIST standard. Spectra at the borders of the corrected hyperspectral cube were rejected
due to border artifacts generated by the Gaussian filtered system response. A fifth-order poly-
nomial fit was then applied on each system-corrected spectrum to approximate the background
before removing it with a rolling-ball algorithm40 using a ball size of 16. Spectra were then
normalized using the standard normal variate method prior to use for training, validating, and
testing a classifier to distinguish adipose from muscle tissue.

2.5 Classification

As a proof of concept for tissue margin detection, two classification algorithms were used:
SVM and random forest (RF). The classifiers were trained and validated to perform pixel-wise
classification (i.e., no spatial features were used, only spectral ones). The training set consisted
of half an image of adipose tissue (20 lines) and half an image of muscle tissue (20 lines). The
validation set was composed of the remaining half of the image of adipose tissue (20 lines), the
remaining half of the image of muscle tissue (20 lines), and the entire image of a tissue margin
(40 lines). The Raman images of only adipose or muscle tissue consist of an average of 10
acquisitions (total acquisition time of 2000 s) at the same spatial location to maximize SNR.
The margin image [Fig. 6(a)] consists of a single Raman image acquisition (total acquisition
time of 200 s) in which the margin location is centered in the system FOV to ensure an
even class distribution. Assigning class labels to images of solely porcine adipose or muscle
tissue was straightforward since each image contained one class, whereas labeling of the tissue
margin was executed visually using tissue color and structure changes across the bright-field
image. In total, the training set consists of 1482 spectra (741 for each class) and the validation
set consists of 2964 spectra [741 for each class and 845 (adipose) + 637 (muscle) from the
margin image]. Including data from adipose, muscle, and margin images into the validation set
forces the models to learn to classify spectra coming from single-class images (i.e., only
adipose or muscle tissue) and from margin images for which there might be interclass
cross-talk.

The classification models were built by constructing the following pipeline: feature selection,
feature standardization, and classifier development. The feature selection step allows for reduc-
ing the dimensionality of the dataset to simplify and improve the classifier performance. Here
a linear SVM penalized with the L1-norm regularization (L1-SVM)41 was used as a feature
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selector. L1-SVMs have sparse solutions: many weights assigned to the features are zero.
Features having non-zero weights were kept for model building. Then features were independ-
ently standardized by subtracting their mean and dividing by their standard deviation. The final
step of the pipeline is the classification model (SVM or RF). SVMs with two different kernels
were explored: the linear and the radial basis function (RBF) kernels, where the optimized hyper-
parameters consisted of the regularization parameter (C) with the values C = [0.001, 0.01, 0.1, 1,
10] evaluated for both kernels and the gamma parameter (γ) with the values γ = [0.001, 0.01, 0.1,
1, 10] evaluated for the RBF kernel. The RF optimized hyperparameters that were evaluated
were the number of trees (n_estimators) using the values n_estimators = [100, 200, 300] and
the subsample size (max_samples) using the values max_samples = [0.6, 0.7, 0.8]. A grid search
was performed to obtain the optimal hyperparameters for both models. These hyperparameters
consisted of parameters given to models to control the learning process (i.e., to avoid under/
overfitting). During the grid search, for a given set of hyperparameters, the model was trained
on the training data and then validated on the validation set. Optimal hyperparameters were
chosen based on the validation accuracy of both models. The machine learning algorithms
employed for this classifier-generating pipeline were retrieved from the Python library
Scikit-learn.42 The model was trained and validated with training and validation sets independent
of each other.

The model having the optimal validation accuracy was kept, and its pixel-wise predictions on
the margin image along with the corresponding class probabilities of each pixel were computed
to visually interpret the classification results. Class probabilistic outputs were computed using
Platt scaling,43 resulting in probability scores varying from 0.5 to 1.0, where 1.0 corresponds to
an absolute class membership probability and 0.5 is the lowest class membership probability.
The algorithms used for class probability assignment were retrieved the Python library Scikit-
learn.42 No testing set was available in this study.

3 Results

3.1 Optical Design

The optical design of each subcomponent of the imaging system, the excitation branch, the im-
aging probe, and the collection probe, was evaluated individually. Figure 2 presents the laser line
profile generated by the excitation branch through the EFB. The laser line profile was simulated
according to the optical configuration within the excitation branch, showing the theoretical exci-
tation laser line profile at the distal end of the fiber bundle with an x axis (line width) of 160 μm
and a y axis (line height) of 4 mm. The measured normalized intensity profile was obtained for
the x axis and the y axis, resulting in a laser line width of 160 μm and line height of 3.8 mm. Line
width and line height are characterized according to their measured full-width at half-maximum.
There is a slight disparity of intensity distribution at the extremities of the laser line height
between the real and simulated laser profiles.

The OTF was evaluated for five optical configurations [Fig. 3(a)]. Figure 3(b) presents the
OTF of the imaging probe from the imaging plane to the EFB face across its circumradius for
a spatial resolution of 2 cycles∕mm (or 250 μm) and an illumination wavelength of 785 nm.
The OTF of the imaging probe from the imaging plane to the CFB face across its circumradius
is shown for Fig. 3(c) IR light (800 to 950 nm) at a spatial resolution of 2 cycles∕mm

(or 250 μm) and for Fig. 3(d) visible light (400 to 650 nm) at a spatial resolution of
10 cycles∕mm (or 50 μm). Figure 3(e) presents the OTF of the collection branch from the
collection bundle face to the RGB camera for visible light (400 to 650 nm) at a spatial res-
olution of 10 cycles∕mm (or 50 μm) (black). Figure 3(f) shows the OTF from the collection
bundle face to the spectrometer slit for IR light (800 to 950 nm) at a spatial resolution of
2 cycles∕mm (or 250 μm). Tangential and sagittal polarization of light are presented for each
OTF simulated. OTF modulus remained above 0.5 in most optical configurations for their
respective target spatial resolutions.
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Fig. 3 (a) Schematic of the imaging probe and collection branch illustrating components marking
the start and end of the optical path selected for OTF simulation. (b) OTF of the imaging probe from
1 to 2 for a spatial resolution of 2 cycles∕mm and for an illumination wavelength of 785 nm. OTF
from 1 to 3 for (c) IR light (800 to 950 nm) at a spatial resolution of 2 cycles∕mm and (d) visible light
(400 to 650 nm) at a spatial resolution of 10 cycles∕mm. (e) OTF from 4 to 5 for visible light (400 to
650 nm) at a spatial resolution of 10 cycles∕mm (black) and (f) from 4 to 6 for IR light (800 to
950 nm) at a spatial resolution of 2 cycles∕mm.

Fig. 2 (a) Laser line profile relayed through the EFB and imaged at the distal face of the EFB.
Simulated laser line profile generated by the excitation branch at the distal end of the 4 × 4 mm
fiber bundle on the (b) x axis and (c) y axis. Measured laser line profile on the (d) x axis and (e) y
axis.
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3.2 Raman Imaging of Biological Samples

Figure 4 shows a photograph of the porcine sample interrogated with the imaging system: a
bright-field image, an uncorrected (no calibration or preprocessing applied) line scan lumines-
cence (Raman and background fluorescence resulting from 785-nm laser line illumination)
intensity image, an estimated line scan background intensity image, and a line scan Raman inten-
sity image. Each intensity value within the intensity images corresponds to the integral over the
entire spectral range of the system. Although no tissue contrast is perceived in the overall lumi-
nescence and the background intensity images, there is a visually distinct contrast of Raman
scattering intensity between porcine adipose and muscle tissue.

Figure 5 presents the average Raman spectra and standard deviation of the training data set
for this study showing common and distinct spectral features (i.e., Raman bands) associated with
protein and lipid content for each tissue type. Several spectral features and their biological rel-
evance are shown in Table 2. From these spectra, several classifiers were trained. and the spectral
features most important for tissue discrimination were extracted from the L1-SVM feature
selector.

3.3 Margin Identification

A Raman image was then acquired on a tissue margin between adipose and muscle tissue
[Fig. 6(a)]. The corresponding mean spectra and standard deviation for regions in both tissue
types were extracted [Fig. 6(b)]. This measurement revealed that spectra in muscle tissue were
not entirely consistent with the training data set introduced in Sec. 3.2. Pearson coefficients were
calculated to evaluate the correlation between the average spectra of pure tissue types in the
training set in Fig. 5(c) with those of adipose and muscle tissue of the margin in Fig. 6(b).
The Pearson coefficients for adipose tissue within the margin compared with pure muscle and
pure adipose tissue were 0.776 and 0.995, respectively, whereas those for muscle within the
margin compared with pure muscle and pure adipose tissue were 0.889 and 0.955, respectively.
This indicates that the muscle spectra within margins correlate more with the spectra of the pure
adipose tissue.

Following the training dataset standardization, the feature selection step retained only three
non-zero-weighted features (i.e., Raman bands): 1001, 1437, and 1442 cm−1. These features
were then used to train the classification models. The optimized SVM and RF models achieved

Fig. 4 Study of the imaging system using a pork chop: (a) photograph of the full pork chop;
(b) bright-field image of the FOV; (c) uncorrected line scan luminescence (Raman and background
fluorescence resulting from 785 nm laser line illumination) intensity image; (d) line scan back-
ground intensity image; and (e) line scan Raman intensity image. Each intensity value within the
intensity images corresponds to the integral over the entire spectral range of the system. Black
column on the right of (b)–(d) corresponds to pixels with relative illumination intensity of <40%.

Daoust et al.: Handheld macroscopic Raman spectroscopy imaging instrument. . .

Journal of Biomedical Optics 022911-10 February 2021 • Vol. 26(2)



accuracy scores of 0.990 and 0.967 on the validation set, respectively. Because it had the highest
validation accuracy score, the SVM, with hyperparameters C ¼ 0.1 and γ ¼ 10, was chosen as
the model to generate and illustrate the prediction results and their respective class probabilities
over the tissue margin in Fig. 7. The accuracy, sensitivity, and specificity of the classification
model to discriminate adipose tissue from muscle within the margin are 0.980, 0.996, and 0.958,
respectively.

4 Discussion

4.1 Optical Design

An apparent weakness of the system consists in the resulting line profile at the face of the EFB,
for which the laser line width (160 μm) is 60% larger than what was targeted (100 μm). The
optics for the excitation branch were designed to accommodate a multimode fiber input of 0.22
NA and 400-μm core. However, the only available laser at the time had a 0.5-NA and a multi-
mode core of 400 μm, which resulted in a larger line width spread in the laser line profile. The
impact of this line spread is the generation of a laser line with a width of 400 μm at the sample
(after a magnification of 2.5 by the imaging probe optics) as opposed to a targeted width at the
sample of 250 μm. A larger laser line produces more in-depth signal from neighboring tissue,
which translates into unwanted noise. Additionally, a total of 87% of the laser power is lost
through the optics of the excitation branch and the imaging probe due to this difference in fiber

Fig. 5 Training set imaged samples: (a) bright-field image of porcine adipose tissue; (b) bright-
field image of porcine muscle; and (c) corresponding averaged spectrum and standard deviation
(shading) of each tissue obtained following 10 repeat measurements. Blue triangles designate
Raman bands associated with protein content while red circles designate Raman bands mostly
associated with lipid content. An arbitrary vertical offset was added to the adipose tissue mean
spectrum and standard deviation to facilitate the visualization of the spectra from both tissue.
Variations across adipose tissue spectra are too small to observe the standard deviation (red
shading) in the figure.
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specifications. These limitations are expected to be rectified with the integration of a 785-nm
laser designed to relay 5 W of power through a 0.22-NA multimode fiber of 400 μm.

A further limitation of the system is the use of fiber bundles for both excitation and collection.
Although fiber bundles offer the much-needed range of motion of an imaging probe designed for
a clinical context, they present significant optical loses (55% to 65%): first, through the limited

Table 2 Prominent Raman features for porcine muscle and adipose tissue. Bands highlighted in
boldface correspond to peaks most relevant to tissue classification.

Raman
band (cm−1) Molecular bonds Molecular family Reference

620 C─C twist of phenylalanine Protein 44 and 45

824 C─C stretch of proline and hydroxyproline Protein 44 and 45

853 C─C stretch of proline and tyrosine ring Protein 44 and 45

886 CH2 rocking Lipid and protein 44 and 45

967 CH2 out of plane bend and C─C wagging Lipids 44 and 46

1001 Phenylalanine breathing mode Protein 44 and 45

1063 C─C anti-symmetric stretch and C─N Stretch Lipid and protein 44 and 46

1082 C─C stretch and C─N stretch Lipid 44 and 46

1126 C─C symmetric stretch and C─N stretch Lipid and protein 44–46

1264 ═CH2 in plane deformation and amide III band Lipid and protein 44–46

1298 CH2 twist Lipid and protein 44–46

1346 CH deformation and CH2∕CH3 wagging Protein 44 and 45

1442 CH2 symmetric deformation, CH2∕CH3
antisymmetric deformation, and CH2 Bending

Lipid and protein 44–46

1604 C═O stretch of amide I and C═C bending
mode in tyrosine and phenylalanine

Protein 44 and 45

1657 Amid I band, C═C stretch and C═O stretch Lipid and protein 44–46

1739 C═O ester stretch Lipid 44 and 46

Fig. 6 (a) Bright-field image of the sample tissue margin and (b) corresponding mean and stan-
dard deviation (shading) of 126 Raman spectra for pork adipose tissue (red) and muscle (blue).
Rectangle area corresponds to the selected areas from which the spectra were selected. Black
triangles correspond to the two most important features for tissue discrimination identified by the
L1-SVM feature selection tool.
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effective collection area of the several thousand fibers within the fiber bundles and, second,
through the propagation losses within the bundle itself, which are dependent on bundle length.
However, the ability to generate the laser line scanning at the excitation branch through fiber
bundles offers the advantage of not having any electrical or moving components in the imaging
probe, therefore, significantly reducing risks to the patient and allowing for a more robust probe
design. Flexibility versus optical loses is a trade-off deemed necessary for user practicality in a
surgical context and, therefore, requires significant efforts to mitigate additional optical losses.

Off-the-shelf lenses were selected when available, and two custom lenses were manufactured
for the imaging probe design. The aluminum probe casing was fabricated to accommodate the
selected optics. The resulting probe size and weight of 0.6 kg could be considered cumbersome
for some clinical applications, especially if the probe is to be handheld. Lens size customization
will contribute to reducing the probe body’s footprint while a plastic mold approach may reduce
overall probe dimensions constrained by machining tolerances and component assembly that are
required by a metal casing. The mounting of the probe on a custom apparatus, which is itself
mounted on a surgical table (e.g., with a Mayfield® skull clamp), could provide a suitable alter-
native to a lighter handheld probe.

The resolution criterion through the OTF for illumination and collection across the different
parts of the system was easily met across the entire circumradius of the different components
with the exception of bright-field imaging spatial resolution within the imaging probe in which
the criterion was not quite met in the corners of the FOV. However, the reduction of spatial
resolution in the corners of the FOV in bright-field imaging does not hinder the ability to visu-
alize tissue structures.

4.2 Raman Imaging of Biological Samples

Raman spectra in both adipose tissue and muscle tissue were collected and totaled 5040 spectra.
In the averaged spectra recovered from adipose and muscle tissue, 16 prominent Raman bands
along with their biological relevance were identified. The spectra and selected bands showed
strong correspondence to previous works in the literature,37,45–47 in which several Raman bands
(620, 824, 853, 1001, and 1604 cm−1) are prominent and are associated with the high protein
content of muscle, whereas others (967, 1082, 1298, 1346, and 1739 cm−1) are associated with
the high lipid content of adipose tissue. Many Raman bands (886, 1063, 1126, 1264, 1442, and
1657 cm−1) are prominent in both tissue types with varying relative intensities. Sixteen promi-
nent Raman bands were identified although the SNR for each averaged spectrum allowed for the
identification and interpretation of many more Raman bands. These other Raman bands were not
presented in this work since its aim was to present the imaging system’s ability to acquire high
SNR Raman spectra within tissue and use few Raman features for tissue discrimination within an
image. Within the entire FOV, spectra were acquired with negligible variance in the highly scat-
tering adipose tissue, whereas muscle tissue spectra showed slightly more variance, which is
indicative of a difference of overall SNR for identical acquisition parameters. Comparing

Fig. 7 (a) Bright-field image of the sample tissue margin; (b) classification map with red indicating
predicted adipose tissue and blue indicating predicted muscle tissue; and (c) classification con-
fidence map ranking from 0.5 (lowest confidence) to 1.0 (highest confidence). The green line
shows the ground truth for the tissue margin location.
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adipose and muscle tissue spectra, we observe several distinct high SNR Raman bands, such as
the phenylalanine band at 1001 cm−1, which was only present in muscle tissue, and the
1442 cm−1 band with a higher relative intensity in adipose tissue. These molecular contrasts
expressed in the Raman spectra suggest that a low-complexity classifier should successfully
discriminate these tissue types.

4.3 Margin Identification

Although spectra were significantly distinct when line scanning pure tissue types, this was not
the case when the imaged tissue contained margins, i.e., several tissue types within one image.
The mean spectra of adipose and muscle tissue interrogated within a tissue margin both
correlated much stronger with spectra acquired in pure adipose images. This can be attributed
to the orientation of the line measurement in accordance with the tissue margin (in this case
perpendicular to the margin), which introduces an in-depth contribution of signal due to the
penetration depth of scattered light within tissue (laser and tissue luminescence) and the optical
properties of these tissue.48 The line profile of the laser generates an in-depth signal within the
sample that is ultimately collected across the detection line of the system. This is a phenomenon
exploited in spatially offset Raman spectroscopy (SORS) when specific in-depth interrogation is
the goal, but in this study, it is an undesirable confounding factor. One notable contribution to an
unwanted in-depth signal originates from using a wider laser line profile (400 μm) than that of
the collection line (104 μm). The larger the mismatch between the illumination and collection
area is, the larger the contribution from in-depth tissue to the overall Raman signal is. It was
reported that adipose tissue possesses a very strong Raman cross section 49 and is a higher scat-
tering tissue than muscle for the range of 810 to 922 nm,50 which would explain the high SNR
observed in adipose tissue and its significant spatially offset signal recovered across the detection
line in the margin image. If line scanning was performed parallel to the margin presented in
Fig. 6, such cross contamination of signal may not have been so apparent. Even so, it was shown
that validation results for pure tissue and tissue margin, i.e., accuracy, specificity, and sensitivity,
all exceeded values of 97%, with only three selected Raman bands identified to achieve these
results: 1001 (phenylalanine breathing mode), 1437 (CH2 symmetric deformation), and
1442 cm−1 (CH2∕CH3 antisymmetric deformation). Although only three bands were selected
by the feature selector, this does not exclude the biological relevance and the pertinence of other
Raman bands identified in Sec. 4.2 for adipose and muscle tissue discrimination. It does, how-
ever, signify that, from the data available, we can generate a very simple yet effective classifier
using only these three Raman features, although it is likely that including more spectral features
would help in providing accurate tissue class predictions in spectra with an inferior SNR. This
classification model could further be simplified by acknowledging that 1437 and 1442 cm−1 are
both indicative of the same biological content of tissue. Considering the prevalence of phenyl-
alanine in muscle in opposition to its absence in adipose tissue and the large cross section of the
long hydrocarbon chains in adipose tissue, rich in CH2 symmetric deformation and CH2∕CH3

antisymmetric deformation, these extracted Raman bands are biologically relevant for tissue
discrimination using molecular imaging. The consideration of these tissue specific bands and
successful classification validation shows that, in a worst-case scenario, i.e., significant contri-
bution of signal from neighboring tissue, a robust classifier can still successfully discriminate
tissue types in macroscopic line scanning with very few Raman bands.

The implementation of a class probabilities map in Fig. 7(c) visually and clearly presents the
location of the tissue margin. The biological relevance of this class probability map is that in
measurement conditions in which tissues can be discriminated effectively with a classifier, there
is a diffuse area corresponding to the margin between tissue types for which a well-trained clas-
sifier will gradually have more difficulty in making a prediction from one tissue to the next, due
in part to a contribution of Raman scattering that is gradually occurring from a new class of
tissue. As the predicted pixel gets closer to the margin, the prediction probability for that class
will drop toward its minimum of 50% until the predicted class changes to the new tissue type,
gradually increasing as the measurement is further from the margin and as the signal occurs only
from the other tissue type. In fact, we observe that, in both tissue types, the classifier confidence
is overall near perfect when moving away from the margin. It is acknowledged that visual
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identification of the margin location based on tissue color and texture does not take into account
the thickness or the heterogeneity of the tissue margin (i.e., mixture of adipose and muscle tissue)
in the imaged sample and only allows for an approximation of the margin location. Histological
analysis of the sample would provide the precise margin size and cellular content crucial for
clinical applications, but it was not considered relevant for the conclusions presented in this
work. It is estimated visually that the margin presented in Fig. 7 is <1 mm in width, which
corresponds to <4 pixels in the image. This is consistent with the probabilities map of
Fig. 7(c), which highlights the margin location with an average width of 4 pixels having a pre-
diction confidence of <90%.

Finally, this classification example was purposefully tested with tissue classes trivial to dis-
criminate, adipose versus muscle tissue, to illustrate the functionality of the system and an exam-
ple of margin recognition capability in only one sample. Using the same sample to interrogate
only one area of adipose and muscle tissue, as well as a tissue margin, presents limitations in
creating a machine learning classifier that generalizes well to other samples. In this study, mea-
surements resulted in relatively low spectra variance within tissue types and across all Raman
images. This led to the creation of classifiers with high validation scores (i.e., SVM and RF
accuracy of 99.0% and 96.7%, respectively) indicating that only three bands (i.e., 1001,
1437, and 1442 cm−1) can be used to discriminate adipose and muscle tissue. Raman spectra
of porcine tissue from previous publications also present the absence of 1001 cm−1 phenylala-
nine band in adipose tissue,37,46,47 suggesting that our selected features and model could be gen-
eralizable to other samples. This will be confirmed in a future study following system
improvements. In tissues that present more subtle differences in Raman SNR and band locations
such as in diffuse glioma, more imaged samples for training and testing are necessary to capture
intersample and intersubject variability.

4.4 Photonic Budget Limitation of the System

The results of this study have been observed in a novel line scanning system that was initially
designed to obtain comparable signal levels to a single-point probe system employed in surgical
guidance for glioma surgery.39 Although preliminary data to identify tissue margins is promising,
it was observed that the photonic budget (total Raman photons collected) of the line scanner is
likely insufficient to generate spectra with sufficiently high SNR spectra for margin identification
in tissue with more subtle molecular difference such as brain in an adequate timeframe
(<10 min). Table 3 illustrates the key differences in photonic budget for an equal interrogation
surface between the line scanner and the above-mentioned point system to explain the perfor-
mance differences. It is apparent that, in current conditions, the photonic budget collection of the
line-scanner when compared with that of the point probe is ∼9600% inferior for the same inter-
rogated unit area although the line scanner acquires 500% greater unit area per line. Although
fiber bundle-related losses and the number of collecting fibers (where collecting fibers refer to
the collection geometry of the point probe in which multiple fibers participate in the collection of
the same detection area) are inherent to these two systems, it is estimated that by implementing

Table 3 Parameter differences between Raman line scanning and Raman point systems com-
paring the overall photon collection budget for an identical interrogated area and acquisition time.

Parameters Point system Line scanning system Ratio point/line

Laser intensity on sample 38.2 W∕cm2 6.1 W∕cm2 6.3

Fiber bundle transmission N/A 37.5% 2.67

Collection branch NA 0.22 0.159 1.96

Number of collecting fibers 7 × 41.7%a 1 2.92

Photon budget — — 96

aThe point probe contains seven collection fibers that have an effective collection area of 41.7%.
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a more powerful fiber-coupled 785-nm laser (5 W) with a NA of 0.22 matching the NA of the
excitation branch we will decrease power losses and increase the total laser intensity at the sam-
ple by >600%. By additionally customizing the spectrometer to obtain an NA that matches that
of the collection branch, it is expected that these modifications will result in a realistic increase of
>1200% in the collected Raman signal for the same acquisition time and interrogated unit area.
A high-power laser (5 W at 785 nm) may cause concern for a clinical setting; however, what is
most important is that laser exposure to tissue never exceeds the maximum permissible exposure
for skin set by the American National Standards Institute Z136 laser safety standards. A higher
laser intensity offers the opportunity to quickly scan the target surface multiple times, leaving
ample time between scans for tissue to cool down and thus avoid thermal damage. Further mod-
ifications including increasing the NA of the system to 0.36 (f# ¼ 1.4) by means of a larger non-
contact probe with NIR collection independent of fiber bundles may reduce the photon budget
difference between the single-point system and the line scanner to only 50%. With an added
change in detection line dimensions, from 104 μm × 9.5 mm to 400 μm × 10 mm, such a line
scanner would interrogate the equivalent area of 20 point-probes for every line.

5 Conclusion

This paper reports the development of a label-free, large FOV line scanning Raman system,
created to address the clinical need of molecular image-guided surgery. The layout of the system
and its optical design are detailed, and a proof of functionality on porcine tissue is presented. The
system can acquire 1680 high SNR Raman spectra in the fingerprint region over an FOV nearing
1 cm2 in <3 min in tissue. With data from pure porcine adipose and muscle tissue, SVM and RF
classifiers were trained and validated on a tissue margin with a >97% accuracy, showing the
potential of this molecular imaging system to locate tissue margins based on machine learning
approaches. Feature selection led to the generation of simplified classification models using only
three Raman bands to discriminate porcine adipose from muscle tissue. A detailed discussion
addressed the necessary modifications to take this system to a clinical study in human patients to
evaluate its potential in locating disease margins in vivo.
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