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Artificial Intelligence (AI) methods, including machine learning (ML) and deep learning (DL),
are quickly evolving, and impacting a very wide range of scientific endeavors. Biomedical optics
is no exception and AI methods are currently transforming our discipline on an almost daily
basis. From changing data acquisition1,2 and image reconstruction methods,3 to segmentation
and interpretation of optical images,4 AI methods are providing improved solutions to estab-
lished problems and enabling new problems to be addressed.

Structured light can be combined with AI methods to probe and interpret the interaction of
light with biological tissues. For example, the coupling of AI methods with hyperspectral and
multispectral systems can enable the detection of specific molecular signatures in tissue, cells,
and biofluids.5,6 Supervised ML/DL methods are well-suited for this purpose, since they can
implicitly learn high-dimensional image statistics and complicated mappings that describe
optimal decision strategies for a variety of inferences of relevance to basic science and clinical
applications.

Enhancing advanced optical methods with AI will enable the clinical translation of new opti-
cal sensing and imaging technologies. Label free optical imaging, such as stimulated Raman
histology, hyperspectral imaging, and convolutional neural networks (CNNs), has been success-
fully employed for intraoperative automated brain tumor diagnosis with near real-time
detection.7,8 Integrating ML/DL methods with optical methods such as coherent anti-Stokes
Raman scattering imaging, optical colonoscopy and fluorescence lifetime imaging has shown
to be effective in the differential diagnosis of lung cancer,9 colorectal cancer,10 and cervical
neoplasia,11 respectively. Another AI-enabled game-changer will be the use of DL methods for
computational staining of label-free optical images, resulting in all-digital histopathology.12–14

In clinical decision making, where accuracy and timing can be critical, spatial frequency
domain imaging coupled with ML has been employed for predicting the severity of burn
injuries.15 The combination of multi-photon imaging with ML/DL has further enabled improved
lymphedema diagnosis,16 skin cancer screening17 and atopic dermatitis.18 ML combined with
emerging feature engineering approaches has become the mainstay in tissue, cells, and biofluids
interrogation in spectroscopic methods. Examples of such applications range from neurosurgical
guidance using spontaneous Raman spectroscopy for cancer detection19 to detection of aggres-
sive variants of prostate cancer in pathology using Raman micro-spectroscopy.20

Merging optical coherence tomography (OCT) imaging with AI provides a unique oppor-
tunity to analyze this plethora of information and assist in making clinical decisions in the field
of ophthalmology with applications in retinal imaging,21 glaucoma22 and age-related macular
degeneration.23
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Most recently, AI methods are proving to be invaluable for a variety of tasks related to the
detection and management of COVID-19.24–26 Combining AI with optical breathalyzers may
yield a rapid and accurate test for COVID-19, which is currently lacking and greatly needed.

This JBO special series brings together late breaking research that describe the use of arti-
ficial intelligence in biophotonic applications, with an emphasis on ML and DL approaches. The
series highlights the important role that ML and DL methods are playing in accelerating the
development of innovative biophotonic technologies. This series is timely, for it comes as a
growing number of the biomedical optics scientific community are starting to tackle the multiple
challenges associated with the responsible adoption of AI methods. Issues such as robustness,
reliability, and interpretability remain largely unaddressed but are critical for safe and effective
deployment of AI-enabled biophotonic imaging and sensing systems. We hope you enjoy this
special series, which includes the following twelve articles:

C. Canavesi, A. Cogliati, and H. B. Hindman, “Unbiased corneal tissue analysis using Gabor-
domain optical coherence microscopy and machine learning for automatic segmentation of
corneal endothelial cells,” doi 10.1117/1.JBO.25.9.092902

A. Hauptmann and B. T. Cox, “Deep learning in photoacoustic tomography: current
approaches and future directions,” doi 10.1117/1.JBO.25.11.112903

B. O. L. Mellors et al., “Applications of compressive sensing in spatial frequency domain
imaging,” doi 10.1117/1.JBO.25.11.112904

I. Fredriksson, M. Larsson, and T. Strömberg, “Machine learning for direct oxygen saturation
and hemoglobin concentration assessment using diffuse reflectance spectroscopy,” doi
10.1117/1.JBO.25.11.112905

D. S. Gareau et al., “Deep learning-level melanoma detection by interpretable machine learn-
ing and imaging biomarker cues,” doi 10.1117/1.JBO.25.11.112906

M. Chen and N. Durr, “Rapid tissue oxygenation mapping from snapshot structured-
light images with adversarial deep learning,” doi 10.1117/1.JBO.25.11.112907

B. Lyu et al., “Domain adaptation for robust workload level alignment between sessions and
subjects using fNIRS,” doi 10.1117/1.JBO.26.2.022908

S. Guo et al., “FLIM data analysis based on Laguerre polynomial decomposition and
machine-learning,” doi 10.1117/1.JBO.26.2.022909

M. S. Durkee et al., “Quantifying the effects of biopsy fixation and staining panel design on
automatic instance segmentation of immune cells in human lupus nephritis,” doi 10.1117/1
.JBO.26.2.022910

F. Daoust et al., “Handheld macroscopic Raman spectroscopy imaging instrument for
machine learning based molecular tissue margins characterization,” doi 10.1117/1.JBO
.26.2.022911

M. H. Nguyen et al., “Machine learning to extract physiological parameters from multispec-
tral diffuse reflectance spectroscopy,” doi 10.1117/1.JBO.26.5.052912

B. X. Guan et al., “Human embryonic stem cell classification: random network with autoen-
coded feature extractor,” doi 10.1117/1.JBO.26.5.052913.
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Bioengineering Integrated Review Group. There, he was responsible for the review of applica-
tions in the development of methods for a wide variety of medical imaging modalities and bio-
engineering, including SPECT, PET, MRI/MRS, ultrasound, CT, photonics, image-guided
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Mark A. Anastasio is the Donald Biggar Willett Professor in Engineering at University of
Illinois Urbana–Champaign (UIUC), where he also heads the Department of Bioengineering.
His lab within the Grainger College of Engineering at UIUC, the Computational Imaging
Science Laboratory, performs research in computational and theoretical image science and pur-
sues the advancement of emerging imaging methods. He is an elected fellow of the International
Society for Optics and Photonics (SPIE) and of the American Institute for Medical and
Biological Engineering (AIMBE).

Baowei Fei is a professor of bioengineering, the Cecil H. and Ida Green Chair in Systems
Biology Science, and Dean’s Fellow at the Erik Jonsson School of Engineering and Computer
Science at the University of Texas at Dallas. He is also a professor of radiology at UT Southwest
Medical Center. He is the director of the Quantitative BioImaging Laboratory (https://fei-lab.org/).
He is the director of the Center for Imaging and Surgical Innovation at UT Dallas and UT
Southwestern Medical Center. He is a national leader in quantitative imaging and image-guided
interventions. He served as conference chair for the International Conference of SPIE Medical
Imaging—Image-Guided Procedures, Robotics Interventions, and Modeling from 2017 to 2020.
He is a fellow of SPIE and the AIMBE.

Frédéric Leblond is a professor in the Department of Engineering Physics at Polytechnique
Montréal, where he heads the Optical Radiology Laboratory. He works mainly in biomedical
optics (including diffuse optics and spectroscopy), designing new surgical and pathology meth-
ods, enhancing medical imaging, and studying light propagation in biological tissues. He is the
co-founder and was—until 2020—technical director of ODS Medical Inc., which is tasked with
commercialization of his Raman-spectroscopy-based cancer-cell detection device. He is cur-
rently working with a number of industrial partners on development of several medical imaging
techniques, fiber optical systems, and software. He also holds several patents. As his work also
involves human subjects and is greatly useful to medical personnel, he has collaborative projects
with many hospitals across North America.

Special Series Guest Editorial

Journal of Biomedical Optics 052901-4 May 2021 • Vol. 26(5)

https://fei-lab.org/
https://fei-lab.org/

