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Abstract

Significance: Confocal endoscopy images often suffer distortions, resulting in image quality
degradation and information loss, increasing the difficulty of diagnosis and even leading to
misdiagnosis. It is important to assess image quality and filter images with low diagnostic value
before diagnosis.

Aim: We propose a no-reference image quality assessment (IQA) method for confocal endos-
copy images based on Weber’s law and local descriptors. The proposed method can detect the
severity of image degradation by capturing the perceptual structure of an image.

Approach: We created a new dataset of 642 confocal endoscopy images to validate the perfor-
mance of the proposed method. We then conducted extensive experiments to compare the accu-
racy and speed of the proposed method with other state-of-the-art IQA methods.

Results: Experimental results demonstrate that the proposed method achieved an SROCC of
0.85 and outperformed other IQA methods.

Conclusions: Given its high consistency in subjective quality assessment, the proposed method
can screen high-quality images in practical applications and contribute to diagnosis.
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1 Introduction

Confocal endoscopy employs laser scanning confocal imaging technology to achieve real-time
observation of mucosal cells and subcellular structures with micron-scale resolution to accu-
rately locate lesions.1,2 Probe-based confocal endoscopes are commonly used. They transmit
laser and fluorescence images via a fiber bundle,3 which has flexibility and accessibility for
in vivo clinical imaging. The miniature objective system is the core component of confocal
endoscopy for high resolution to directly visualize cells and is often assembled from multiple
optical elements to correct aberrations.4 It improves biopsy accuracy and contributes to the early
diagnosis of cancer in various clinical fields such as human brain tumors5 and gastrointestinal
cancer.6

However, distortions, such as blur, noise, and decreased contrast, are common in confocal
endoscopy imaging. Blur is the most common type of distortion in confocal endoscopy, which is
caused by defocus, probe fiber core cross coupling,7 and motion caused by the difference in
movement speed between the investigated anatomical structures and the physician.8 Owing
to the small field-of-view of the confocal endoscopy,9 to obtain a comprehensive view, a typical
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endoscopy examination produces thousands of images, most of which are not useful for
diagnostic purposes5 owing to image degradation and information loss caused by the above
distortions. Manual removal of nondiagnostic and low-quality images is time-consuming and
labor-intensive. Therefore, it is desirable to automatically screen high-quality images accurately
and efficiently. An image enhancement method is observed to be beneficial in the automatic
diagnosis of confocal endoscopy images,10 and its development and evaluation also require the
involvement of image quality assessment (IQA). Furthermore, the imaging performance evalu-
ation of the confocal endoscopy also requires the participation of IQA; for example, Wang et al.
analyzed the image histogram distribution to assess image contrast to validate the proposed
confocal microendoscope.11 Therefore, it is essential to develop an IQA method because it can
benefit clinical applications of confocal endoscopy.

IQA is mainly divided into full reference (FR) and no reference (NR) methods. FR-IQA
requires an ideal undistorted image when evaluating the quality, which is difficult to obtain
in practical applications. NR-IQA is gaining attention because it does not require the use of
reference images. The feature extraction and prediction model form the general NR-IQA frame-
work. Common features describe poetry of images, including natural scene statistics (NSS)
feature,12,13 gradient feature,14 frequency domain feature,15 curvelet domain feature,16 and dis-
crete cosine transform (DCT) domain feature.17 In addition, there are methods based on analysis
of the perceptual process of image reception by the human eye, that is the human vision system
(HVS), such as free energy theory18 and phase congruency.19 Owing to the powerful ability of
image description, local descriptors in IQA have aroused extensive attention, such as local binary
pattern (LBP),20,21 from accelerated segment test (FAST),22 speeded-up robust features (SURF),23

Weber local descriptor (WLD),24 and they have remarkable performance in multiply-distorted
images.

Currently, NR-IQA has promising performance for images with a single distortion, such as
blur, noise, and JPEG compression, while it is unsatisfactory when it comes to authentic and
multiply distorted images25 owing to joint distortion interactions. Deep learning techniques for
IQA have been studied; however, the size of the dataset limits the network structure.26 Bianco
et al.27 proposed the DeepBIQ method that uses a fine-tuned convolutional neural network
(CNN) to exact features and feeds it to support vector regression (SVR) to predict the image
quality. Liu et al.28 proposed RankIQA, first pretrained the network on a large-scale self-build
image pair database for an quality comparison of image pair task and fine-tuned the network to
achieve promising performance. Ma et al.29 proposed MEON, which first pretrained the network
by an image distortion classification task on synthetic distortion images and then fine-tuned the
network to achieve end-to-end image quality prediction. Zhu et al.30 proposed MetaIQA method,
first adopted the meta-learning strategy to learn the prior knowledge from different NR-IQA
tasks and fine-tuned the network to address the small sample problem. In general, deep learning
requires a great number of training images, and the scale of the image quality database severely
limits the performance of deep networks. Establishing larger datasets and designing a new
method to reduce the requirement for training images is a direction that needs further exploration
for deep IQA.

Medical images are multiply distorted because of variable imaging conditions; meanwhile,
the content of medical images is distinct from that of natural images, mainstreaming IQA may
decline in performance.31 It is necessary to develop IQA of medical images. The study of medical
IQA has increased because of the development of deep learning techniques, and it mainly fo-
cuses on ultrasound imaging, MRI, and OCT images. Zhang et al.32 proposed DCNN-IQA-14
and ResNet-IQA based on traditional networks to predict the quality of ultrasound images.
To overcome overfitting, a transfer-learning strategy was employed. Liu et al.33 proposed a non-
local residual neural network to assess slicewise MRI image quality and applied random forest
for the volumewise quality grade. Semisupervised learning and iterative self-training strategies
were used for a few quality-annotated images. Wang et al.34 analyzed the performance of four
classic deep networks for assessing the quality of retinal OCT images by transfer learning, and
the ResNet-50 network achieves highest performance. Medical images are more difficult to
acquire and label than natural images, making the deep learning IQAmethod difficult to develop,
transfer learning strategies based on traditional networks are widely adopted, and the potential of
deep learning has yet to be fully explored.
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The analysis of confocal image quality has made some progress. Aubreville et al.8 proposed
an improved Inception v3 network to detect motion artifacts in confocal endoscopy images.
Kamen et al.35 screened high quality and information-rich images by calculating image entropy
before classifying images. Izadyyazdanabadi et al.36 proposed a binary classification network to
classify diagnostic and nondiagnostic images and applied fine-tuning and ensemble modeling
techniques to improve performance and achieve high accuracy.37 Despite this, none of these
methods can quantify image quality, which limits the applications for screening and evaluating
image enhancement algorithms. The signal-to-noise ratio is determined by a confocal endoscopy
IQA38 that can quantify image quality. However, regions of interest need to be manually selected
before calculation, which does not apply to practical applications.

To meet the needs of practical applications, in this paper, we propose a new NR confocal laser
endoscopy IQA (CEIQA) method, which combines local descriptors and Weber’s law. First, we
used a differential excitation (DE) map to describe the local variation information, calculated the
LBP map of the image to describe structure information, and then computed the joint distribution
histogram of DE and LBP as the first feature set. Second, for better perception of the ability to
describe image information, we improved local ternary pattern (LTP) by changing its threshold
function by referring to Weber’s law and computed the histogram and entropy of improved LTP,
which was used to measure the distribution of local variation patterns. Finally, SVR was applied
to map the perceptual features to the quality score. Our main contributions are summarized as
follows:

1. An NR-IQA method using local descriptors for confocal endoscopy images is proposed.
The relationship between the local descriptors and image quality is detailed and analyzed.

2. A new dataset containing 642 confocal endoscopy images with corresponding subjective
mean opinion score (MOS) from eight experienced researchers is established.

3. An extensive evaluation was conducted for the proposed method and other state-of-the-art
NR-IQA methods. The experimental results show that CEIQA significantly outperforms
other state-of-the-art methods.

The remainder of this paper proceeds as follows. In Sec. 2, we present the feature-extraction
method for the proposed IQA. In Sec. 3, we present the details and results of the performance
experiments. In Sec. 4, we discuss the limitations of the study and future work. Finally, in Sec. 5,
we conclude the main contributions and provide potential application prospects for the pro-
posed IQA.

2 Materials and Methods

2.1 Weber’s Law and Differential Excitation

The perceptual process is sensitive to relative variations in pixel intensity in images when record-
ing to the HVS. Weber’s law can be used to describe this mechanism,39 which is expressed as
follows:

EQ-TARGET;temp:intralink-;e001;116;231

ΔIth
I

¼ k; (1)

where ΔIth represents the perceptual threshold, I represents the initial stimulus intensity, and k is
a constant. Based on Weber’s law, Chen et al.40 proposed the WLD to extract local variation
information in the image. One of the components is DE, which is calculated as follows:

EQ-TARGET;temp:intralink-;e002;116;156IDE ¼ arctan

�
ΔI
I

�
¼ arctan

�Xp−1
i¼1

xi − xc
xc

�
; (2)

where I denotes the original image, ΔI characterizes the image local variation, IDE is the DE
map, xc is the central pixel, xi is the neighborhood pixels, p is the number of neighborhood
pixels, and arctan function is used to prevent computation instability. After the above calculation,
the range of IDE becomes ½−π∕2; π∕2�. Compared to Weber’s law, DE regards the sum of the
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difference between the neighbors and the center as the change in the image. In this study, we
adopted DE to describe the local variation in confocal endoscopy images. Figures 1(a) and 1(d)
show two confocal endoscopy images with different MOSs and DE maps, respectively.

Figures 1(b) and 1(e) show that DE highlights the variation region in the image; thus, the
distribution of the DE values shown in Figs. 1(c) and 1(f) represents the distribution of levels of
local variation in the image. A low variation region means “the expected” according to the free
energy theory,18 which carries less information than a high-variation region. Figures 1(c) and 1(f)
demonstrate that the DE value of the low-quality image is more often located around the zero
point, whereas that of the high-quality image is more evenly distributed. In conclusion, the dis-
tributional characteristics of DE can be used as perceptual features that indicate image quality.

Nonetheless, Eq. (2) shows that during the accumulation phase, positive and negative variations
will counteract each other, resulting in image variation information loss; meanwhile, the pattern and
direction of local variation are ignored. Therefore, further analysis based on a DE map is required.

2.2 Improved LBP by Differential Excitation

The LBP41 is a local descriptor with remarkable performance and has attracted considerable
attention in IQA studies20,21 owing to its ability to describe the local structure of an image.
By comparing the interpixel relationships between the central pixel and its neighbors, LBP
divides pixels into different patterns. The general form of LBP is rotation-invariant uniform
LBPðLBPriu2Þ,41 defined as follows:

EQ-TARGET;temp:intralink-;e003;116;141LBPriu2P;R ¼
�P

P−1
i¼0 Sðgi − gcÞ; uðLBPP;RÞ ≤ 2

Pþ 1; else
; (3)

where gc and gi are the central and circular neighborhood pixels, respectively, R is the radius of
circular neighborhood, P is the number of gi, and Sð·Þ is the thresholding function defined as
follows:

Fig. 1 DE of confocal endoscopy images. (a) and (d) Image with MOS of 2.125 and 2.625, respec-
tively. (b) and (e) Corresponding DEmap. DEmap value is turned to 0 − π∕2 by taking the absolute
value and is scaled to 0 to 255. (c) and (f) Frequency histogram of DE map.
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EQ-TARGET;temp:intralink-;e004;116;735Sðgi − gcÞ ¼
�
1; gi − gc ≥ 0

0; gi − gc < 0
; (4)

where uð·Þ defined in Eq. (5) is a bitwise transition function that recognizes a uniform pattern
whose number of bitwise transitions is less than two. Uniform patterns contribute more to the
description of the image structure than basic patterns. LBPriu2 has Pþ 1 uniform patterns and
one other pattern, coding from 0 to Pþ 1:

EQ-TARGET;temp:intralink-;e005;116;651uðLBPP;RÞ ¼ kSðgP−1 − gcÞ − Sðg0 − gcÞk þ
XP−1
i¼0

kSðgi − gcÞ − Sðgi−1 − gcÞk: (5)

The image structure contains information, and quality degradation will affect it, resulting in
pattern shifts in the LBP.20 Therefore, LBP can be used in the representation of image quality.
The obtained LBP map is defined as follows:

EQ-TARGET;temp:intralink-;e006;116;564ILBP ¼ LBPriu2P;RðIÞ: (6)

DE only calculates the intensity information and ignores local variation information of pat-
tern and direction; meanwhile, LBP contains interpixel relationships without pixel intensity
information. Therefore, it is helpful to calculate the joint distribution histogram of DE and
LBP to compensate for both the shortage in describing the structure and preserving the local
variation intensity and pattern of pixels. The joint distribution histogram was calculated as
follows:

EQ-TARGET;temp:intralink-;e007;116;458Hðm; nÞ ¼ PðILBP ¼ m ∩ IDE ¼ nÞ; (7)

where Hðm; nÞ is a two-dimension joint histogram, Pð·Þ indicates the frequency function.
m ∈ f0; : : : ;Mg, where M ¼ Pþ 1 is the number of uniform patterns of ILBP and
n ∈ f1; : : : ; Ng, where N is the number of bins in the histogram of the IDE. After the joint histo-
gram Hðm; nÞ is obtained, it is an M × N dimension feature to characterize the local variation
and structure of the image.

2.3 Improved LTP by Weber’s Law

The LTP42 is the generalization of LBP by changing the threshold function to obtain more
detailed information of the local interpixel relationship. LTP was calculated as follows:

EQ-TARGET;temp:intralink-;e008;116;306LTP ¼
XP−1
i¼0

3i · Tðgi − gcÞ; (8)

EQ-TARGET;temp:intralink-;e009;116;244Tðgi − gcÞ ¼
(
1; gi − gc > t
0; jgi − gcj ≤ t
−1; gi − gc < −t

; (9)

EQ-TARGET;temp:intralink-;e010;116;198LTPup∕low ¼
XP−1
i¼0

2iCup∕low: (10)

The obtained LTP map contains 38 patterns when P ¼ 8 because LTP codes C ¼ Tðgi − gcÞ can
be −1, 0, and 1. For lower computational complexity, the original LTP map is converted to an up-
pattern and low-pattern map. The up-pattern map is obtained by turning the LTP code C from −1
to 0 in Eq. (10), and a low-pattern map is obtained by turning the LTP code C from 1 to 0 and −1
to 1. Therefore, the up-pattern and low-pattern maps both contain 28 patterns with values ranging
from 0 to 255 as LBP. Figure 2 shows the LTP map of the two confocal endoscopy images with
different MOSs. Note that because of the threshold in the threshold function, LTP emphasizes the
high variation region and underestimates the low variation region, which is similar to DE, while
the choice of threshold value affects the screening strength of local variations. However, Fig. 2
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shows that the LTP map retains an image structure like LBP; thus, LTP can describe image
quality degradation. Considering that LTP captures the local variation before extracting the struc-
ture, we apply Weber’s law to the threshold function of LTP as follows:

EQ-TARGET;temp:intralink-;e011;116;155TWBðgi − gcÞ ¼

8>><
>>:

1; gi−gc
gc

> t

0; jgi−gcj
gc

≤ t

−1; gi−gc
gc

< −t
; (11)

where TWBðgi − gcÞ consults the form of Weber’s law regarding gi − gc as ΔI, gc as I, and t as
threshold k. To prevent the instability of the results, the overall image I is added by one. After

Fig. 2 LTP of confocal endoscopy images at different thresholds, the thresholds of LTP are 0, 1, 5,
and 10 from top to bottom. (a) and (c) Up pattern. (b) and (d) Low pattern.

Dong, Fu, and Liu: No-reference image quality assessment for confocal endoscopy images. . .

Journal of Biomedical Optics 056503-6 May 2022 • Vol. 27(5)



introducing Weber’s law in the threshold function, the judgment of local variation is under
the HVS.

Threshold t in the threshold function of LTP determines the ability to capture an image varia-
tion and further affects the image description. Therefore, the threshold t plays a key role in the
performance of WB-LTP. Referring the form of Weber’s law, the threshold t is calculated as
follows:

EQ-TARGET;temp:intralink-;e012;116;663t ¼ tanðmeanðIDEÞÞ
256

; (12)

where IDE is the DE map in Eq. (2), meanðIDEÞ denotes the average variation intensity of image
I. Function tan() and factor 1/256 are used to transfer the range of t from ½−π∕2; π∕2� to the range
of ΔI

I for corresponding to Eq. (11). The threshold t indicates that the region above or below
average variation intensity of the image will be regarded as the high variation or low variation
region, respectively.

After LTP improvement, we conducted further analysis to enrich the information expression
of images. Considering that the up and low channels denote different directions of patterns, we
referred to the calculation of the gradient magnitude14 and computed the magnitude channel
IMAG as follows:

EQ-TARGET;temp:intralink-;e013;116;512IMAG ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
I2UP þ I2LOW

q
: (13)

Because LTP reveals local structure distribution, it is useful to calculate the entropy of LTP to
characterize image information as follows:

EQ-TARGET;temp:intralink-;e014;116;447E ¼ −
X255
i¼0

pi log2 pi; (14)

where pi denotes the frequency of grayscale value i in the image. We calculated Eup, Elow, and
EMAG. Finally, we obtained the WB-LTP feature fWB−LBP ¼ fhup; hlow;hMAG;Eup;Elow;EMAGg,
where hup, hlow, and hMAG are the histograms of Iup, Ilow, and IMAG, respectively.

2.4 Feature Extraction and Quality Model

Because the field-of-view of confocal endoscopy is circular, acquired images appear as circular
effective regions surrounded by black regions, and the latter interferes with the image descrip-
tion. Therefore, before feature extraction, the image should be preprocessed by adopting the
square inscribed in the valid circle region, as shown in Fig. 3. After preprocessing, the
DE-LBP of the image was calculated using p ¼ 8 in DE, R ¼ 1, and P ¼ 8 in LBP and

Fig. 3 Flowchart of feature extraction. Hðm; nÞ denotes DE-LBP feature, hLTP and ELTP denote
WB-LTP feature.
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M ¼ N ¼ 10 to obtain 100-dimensional features. Then, computing the WB-LTP of the image
with 15 bins in the histogram and acquire 48 dimension features.

To obtain multiscale information of the image, the image is downsampled twice beside the
origin scale. Features are extracted in three scales; thus, the features have 444 dimensions. In
WB-LTP, the structure information differs from the three scales of images, leading to different
thresholds. Therefore, the thresholds of different scales ts was calculated as ts ¼ t∕2s, where
1∕2s is the scale factor, s ∈ f0;1; 2g is the number of image downsampling.

After obtaining the image features, SVR43 with a radial basis function kernel was adopted to
build a quality prediction model.

2.5 Confocal Endoscopy Image Database

To compare the performance of IQA methods, we established a database of confocal endoscopy
images. The imaging experiment was conducted using a confocal endoscope designed by Wang
et al.1 The confocal endoscope has a field of view of 300 × 300 μm and a resolution of 4.4 μm,
and the image was obtained with 1024 × 1024 pixels at a frame rate of 4 to 16 fps. Imaging
experiments were conducted with ex vivo imaging of colonic and gastric tissues of female spe-
cific pathogen free and Sprague Dawley rats weighing ∼150 g. Imaging experiments obtained
656 images with blur, contrast distortion, and motion artifacts. All imaging experiments were
approved by the animal experiment guidelines of the Animal Experimentation Ethics Committee
of Huazhong University of Science and Technology (HUST, Wuhan, China).

To obtain meaningful MOS, eight researchers with extensive experience in instrument oper-
ation and image processing of confocal endoscopy rated the quality of images. Subjective quality
assessment experiments apply single-stimulus (SS) methods. Every observer watches one con-
focal image 10 s on a computer monitor every time and gives a quality index ranging from one to
five, where one denotes the lowest quality and five denotes the highest quality. To avoid observer
exhaustion, a session lasted for half an hour and the observers watched 180 images. After a
session, the observers rested for 8 min. Thus, there were four sessions in subjective quality
assessment experiments.

After obtaining the eight rates of every image, the standard deviation (STD) of every image
quality score was calculated. The image with STD higher than 1.5 was discarded because the
result cannot reflect objective image quality. Eight images were discarded in this process, and
642 images remained. Finally, the MOS of the images was computed by averaging the scores of
the researchers, and the distribution of the image quality scores is shown in Fig. 4(a). The rela-
tionship between STD and MOS is shown in Fig. 4(b), which we can see that the consistency of

Fig. 4 (a) MOS distribution of the established confocal endoscopy image database. (b) The rela-
tionship between MOS and corresponding STD of images in the confocal image database.
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observers’ opinions is higher when faced with relatively high-quality and low-quality images
compared with images of medium quality.

3 Results

3.1 Experimental Protocol

We compared the proposed method with 11 state-of-the-art NR-IQAs with publicly available
source codes. The methods used for comparison were the NSS feature-based IQA methods
including BRISQUE12 and SINQ44 in the spatial domain, NBIQA13 in the spatial and DCT
domains, and CurveletQA16 in the curvelet domain. There are local descriptor-based IQA meth-
ods including GWH-GLBP20 using a gradient magnitude-weighted LBP feature, ORACLE45

using the FAST algorithm, and the fast RetinaKeypoint descriptor (FREAK), NOREQI23 using
the SURF algorithm, and RATER46 using FAST. In addition, there are image spatial and spectral
entropy feature-based method SSEQ,15 free-energy feature-based NFERM,18 and gradient mag-
nitude feature-based GM-LOG.14

All the above methods follow the process of feature extraction, SVR training, and prediction.
Before feature extraction, all IQA models apply the same preprocessing method. For IQA employ-
ing color space information, grayscale values were used as inputs to the three color channels.

In the performance experiment, a confocal endoscopy image dataset was applied. First, 80%
of the dataset were randomly chosen to train the SVR model, and the rest were used to test the
performance. During the training phase of all IQA methods, SVR parameters were optimized
using a grid search to achieve the best performance for fair comparison.

In the performance evaluation, Spearman rank order correlation coefficient (SROCC),
Pearson’s linear correlation coefficient (PLCC), and root mean square error (RMSE) were used
to characterize the monotonicity and accuracy of prediction. SROCC and PLCC values closer to
1 and RMSE closer to 0 indicates better performance. Before the PLCC and RMSE are calcu-
lated, the nonlinear logistic regression shown in Eq. (15) is required,47 where x is the predicted
score, fðxÞ is the fitting score, and β1−5 is the regression parameter:

EQ-TARGET;temp:intralink-;e015;116;381fðxÞ ¼ β1

�
1

2
−

1

expðβ2ðx − β3ÞÞ
�
þ β4xþ β5: (15)

The random 80% to 20% train-test is repeated 1000 times, and the median of performance cri-
teria are reported. For a fair comparison, all methods use the same training and testing sets in
each repeat.

3.2 Performance Comparison

Table 1 shows the performance of NR-IQA, and the best method is shown in bold. As shown in
Table 1, CEIQA outperforms the other IQAs in all criteria, followed by NOREQI.

To further verify whether the performance difference is significant, we conducted the cor-
rected resampled paired Student’s t-test48 between different methods of SROCC values of 1000
train-test repeats. The results are shown in Fig. 5, where symbols “1,” “−1,” and “0” mean that
the method in the row is statistically (with 95% confidence) better, worse, or similar to the
method in the column, respectively. Figure 5 shows that CEIQA is significantly superior to all
other NR-IQA methods on the confocal endoscopy image dataset, followed by NOREQI.

To further analyze the relationship between the algorithm’s performance and the consistency
between the predicted quality scores and MOS, the scatter plots of MOS against the predicted
quality scores of the test dataset from the IQA methods in a train-test repeat are shown in Fig. 6.
The corresponding SROCC values were labeled in the plots. For a clear view, we only show the
results of BRISQUE, SSEQ, CurvletQA, NOREQI, GWHGLBP, ORACLE, GMLOG, and the
proposed CEIQA method.

As shown in Fig. 6, the CEIQAwith the highest SROCC shows the promising performance
with most densely and evenly distribution of points around the fitting curve, which indicates the
great consistency between MOS and the predicted quality scores. From Fig. 6, we can also see
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Fig. 5 Results of statistically significant experiments using corrected resampled paired Student’s
t -test. Symbols “1,” “−1,” and “0” mean that the method in the row is statistically (with 95%
confidence) better, worse, or similar than the method in the column, respectively.

Table 1 Performance comparison of NR-IQA methods. The best IQA methods are highlighted
in boldface.

IQA SROCC STD PLCC STD RMSE STD Time (s)

BRISQUE12 0.8002 0.0346 0.8194 0.0301 0.5263 0.0343 0.0454

SSEQ 15 0.7324 0.0409 0.7510 0.0370 0.6042 0.0372 0.6583

CurvletQA16 0.7837 0.0361 0.7970 0.0319 0.5541 0.0344 1.3147

SINQ44 0.8094 0.0320 0.8249 0.0270 0.5175 0.0322 1.8766

NBIQA13 0.8017 0.0328 0.8175 0.0281 0.5292 0.0326 9.5719

GWH-GLBP20 0.8007 0.0305 0.8047 0.0280 0.5438 0.0335 0.0645

ORACLE45 0.8054 0.0307 0.8185 0.0273 0.5248 0.0310 0.3492

NOREQI23 0.8259 0.0286 0.8370 0.0250 0.5017 0.0304 0.3310

RATER46 0.6463 0.0476 0.6778 0.0429 0.6733 0.0350 11.8290

NFERM18 0.7948 0.0355 0.8137 0.0356 0.5309 0.0412 30.7871

GM-LOG14 0.7677 0.0367 0.7885 0.0327 0.5628 0.0355 0.0441

DE 0.7687 0.0379 0.7881 0.0347 0.5652 0.0374 0.0082

LBP 0.8286 0.0279 0.8454 0.0238 0.4916 0.0301 0.0696

DE-LBP 0.8401 0.0287 0.8552 0.0248 0.4771 0.0329 0.0799

LTP 0.8383 0.0282 0.8522 0.0235 0.4803 0.0292 0.0408

WB-LTP 0.8434 0.0253 0.8541 0.0217 0.4769 0.0288 0.0405

CEIQA 0.8543 0.0251 0.8648 0.0215 0.4615 0.0283 0.1166
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that the higher SROCC indicates better consistency between MOS and the quality scores pre-
dicted by the method.

The robustness of the algorithm is an important factor in the performance. To evaluate the
robustness of IQA, we calculated the STD of the three criteria across 1000 repeats, which are
shown in Table 1. The lower the STD, the more stable the algorithm performs for varying
images. According to Table 1, CEIQA is the most stable among the IQA methods.

The rightmost column of Table 1 shows the time taken by different algorithms to extract the
confocal endoscopy image features, which accounts for most of the total algorithm runtime.
CEIQA has a promising speed and runs faster than NOREQI with the second-best performance.
Experiments were performed on MATLAB R2017a with an Intel i7-8750HQ CPU at 2.20 GHz.

The experimental results demonstrated that CEIQA with a combination of perceptual laws
and local descriptors has promising performance. Furthermore, to verify the enhancement of the
proposed method using perceptual laws and the performance of the IQA components, we com-
pared the performance of LBP and LTP before and after being improved using perceptual laws
using the same 1000 train-test procedure. The results are presented in Table 1.

According to the results, the performance of LBP and LTP is remarkable, which demonstrates
that the local descriptor is suitable for the quality prediction of confocal endoscopy images with
multiple distortions. The same conclusion can be drawn from the fact that the NOREQI with the
second-best performance also uses the local descriptors SURF, as shown in Table 1. Note that
LTP uses the threshold calculation method proposed by Freitas et al.49 Furthermore, DE-LBP,
which combines LBP and DE, significantly outperforms origin LBP, while WB-LTP also per-
forms better than origin LTP owing to Weber’s law engagement. Introducing perceptual laws
enhances the capability to describe image information and assess image quality.

3.3 Analysis of Parameters

There are two types of parameters in the proposed CEIQA method. The first is the neighborhood
radius R and the number of neighborhood pixels P in DE-LBP. The second is the number of bins
in the WB-LTP histogram. To verify if the performance of CEIQA is sensitive to the variations
of parameters, we performed two experiments with a variety of parameters. First, we compared
the performance of DE-LBP for different values of R and P. The 1000 train-test process, as in
Sec. 3.1, is conducted, and the median of the SROCC of the entire loop is shown in Fig. 7(a).
Then, the performance experiment of WB-LTP for different numbers of bins was conducted, and
the result is shown in Fig. 7(b).

As shown in Fig. 7, DE-LBP’s performance is stable across different settings of LBP and
WB-LTP’s performance is stable in different bins number of the histogram in a moderately large

Fig. 6 Scatter plots of MOS against the predicted MOS from the different IQA methods. The x axis
denotes the predicted score of IQA methods, and the y axis denotes the MOS. The SROCC is
reported in figures. The dashed line is the fitting curve calculated by Eq. (15).

Dong, Fu, and Liu: No-reference image quality assessment for confocal endoscopy images. . .

Journal of Biomedical Optics 056503-11 May 2022 • Vol. 27(5)



range. In conclusion, the CEIQA, that consists of DE-LBP and WB-LTP, is robust to parameter
variations and has good generalization capability.

4 Discussion

It is meaningful to analyze the relationship between the algorithm’s performance in predicting
MOS and screening images. In clinical practice, image screening was employed by setting the
quality threshold first, and then the images with a quality score lower than the quality threshold
are labeled as “the low-quality image” which should be screened out and the images with a
quality score higher than or equal to the quality threshold are labeled as “the high-quality image”
that need to be kept. Therefore, the high consistency of the predicted quality scores and MOS
indicates the high accuracy of image filtering. As shown in Table 1 and Fig 6, the proposed
CEIQA method with great consistency between the predicted quality scores and MOS has the
potential for practical application.

This study has some limitations. First, the confocal endoscopy images were obtained from a
single confocal endoscopy instrument and two tissue types. The type of distortion is limited. This
also limits the ability of the proposed CEIQA method to effectively characterize image quality.
The lack of image morphology can cause the overfitting of the IQA. For example, IQAwill pro-
vide higher quality scores to images with the tissue of high local variability and ignore distortion
during imaging. The algorithm also must be improved to ignore image content and focus on image
distortion. Second, the objectivity of subjective IQA of image MOS must be further improved,
which in turn will affect the performance evaluation and application potential of the algorithm.

Future work will focus on obtaining confocal endoscopy images of more tissues, imaging
conditions, and more detailed and clear types of distortion, as well as conducting more com-
prehensive subjective IQA experiments to obtain more meaningful MOS. With additional data,
CEIQA is expected to show better performance and can be universally applied. Other directions
of research could involve using the IQA method to evaluate and improve confocal endoscopy
image enhancement and deconvolution algorithms or using the IQA method to select high-
quality images in clinical practice and analyzing the effectiveness of the method.

5 Conclusion

In this study, we proposed a new NR-IQA method named CEIQA based on Weber’s law and a
local descriptor. The image structural information is measured using the local descriptor, which

Fig. 7 Performance of the proposed methods of different parameters. (a) SROCC of DE-LBP in
different radius R and number of neighboring pixels P. (b) SROCC of different numbers of bins
in WB-LTP histogram.
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is then improved by Weber’s law to extract perceptual features. The method is compared with 11
state-of-the-art NR-IQA methods on the introduced dataset of confocal endoscopy images. The
dataset contains 642 images with authentic distortion and the corresponding MOS assessed by
eight experimenters. As shown in the experimental results, CEIQA is significantly superior to
other NR methods in terms of accuracy and robustness, which demonstrates that CEIQA has
great potential for practical application and contributes to clinical diagnosis.
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