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Abstract

Significance: The multimodality imaging system has become a powerful tool for in-vivo
biomedical research. However, a conventional multimodality system generally employs two in-
dependent detectors, which is costly and bulky. Meanwhile, the geometric cocalibration and
image registration between the imaging modalities are also complicated.

Aim: To acquire the multimodality images for small animals with only one visible light sensed
single-pixel detector.

Approach: The system is built based on a structured detection Fourier single-pixel imaging
architecture. A cesium iodide doped with thallium [CsI(Tl)] scintillator plate is placed behind
the sample in x-ray imaging, so the x-ray images can be converted to be visible and sensed with
the same single-pixel detector as applied in fluorescence imaging.

Results: The spatial resolution of x-ray imaging was measured to be 1.81 mm, the sensitivity and
the imaging depth of fluorescence imaging was evaluated to be ∼1.48 nmol∕ml and 4 mm,
respectively. In vivo multimodality imaging of a C57BL/6 female mouse bearing tumor targeted
with mCherry was carried out.

Conclusions: We proposed an x-ray and fluorescence multimodality imaging system for small
animals via the structured detection FSI architecture. The system is low cost, with a more com-
pact structure, and free of image registration from different modalities. In vivo multimodality
imaging results of a mouse bearing tumor demonstrate its capability for small animal research.
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1 Introduction

In-vivo imaging of small animals plays an important role in biomedical research including dis-
ease treatment and drug discovery.1–3 Fluorescence imaging is a widely used modality with the
advantage of noninvasive detecting, flexible fluorescent probes options, and providing molecular
information.4 However, a single fluorescence imaging modality lacks precise anatomical infor-
mation and may lead to incorrect experimental results.4 X-ray imaging acquires anatomical infor-
mation by analyzing the relative attenuation distribution of x-ray passing through the sample. It
has been validated in the diagnosis and treatment of skeleton,5 stomatology,6 and heart diseases.7

Combining x-ray imaging with fluorescence imaging to form a multimodality system, we can
not only obtain the additional anatomical information but also improve molecular information
revealed by fluorescence imaging with much fewer artifacts.

Conventional multimodality imaging systems combining optical and x-ray imaging require
two pixelated detectors, charge-coupled device, or complementary metal–oxide-semiconductor
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in the visible range and flat-panel detector in x-ray range.4,8,9 However, pixelated detectors at
nonvisible wavebands such as x-rays are costly and complicated to manufacture.10 Furthermore,
the configuration of this kind of multimodality imaging system employing two pixelated detec-
tors is bulky, especially for those tomography systems, which require the rotation of the whole
imaging system.11

Single-pixel imaging (SPI) is a computational imaging approach reconstructing two-
dimensional (2D) images with only one single-pixel detector. SPI has been proved to be a
cheaper alternative for applications in nonvisible wavebands, especially for infrared, terahertz,
and x-ray imaging,12–18 as the corresponding single-pixel detectors are low cost and easy to
acquire.10 Meanwhile, many SPI architectures have demonstrated more compact configurations
than conventional systems employing independent detectors for multispectral imaging.19,20

SPIs provide the possibility of lower cost in nonvisible wavebands imaging and a more compact
configuration in multiband imaging.

In this work, we propose an approach to achieve x-ray and fluorescence multimodality
imaging via the structured detection Fourier single-pixel imaging (FSI) architecture. In x-ray
imaging modality, a CsI (Tl) scintillator plate is placed behind the sample, so the x-ray images
can be converted to visible and sensed with the same single-pixel detector as applied in fluo-
rescence imaging modality. The system only requires one single-pixel detector to capture multi-
modality imaging data. The spatial resolution of the x-ray imaging, the detection sensitivity, and
the imaging depth of fluorophore in the proposed system are evaluated. We also used a female
C57BL/6 mouse bearing tumor targeted with mCherry fluorescence protein to demonstrate the
feasibility of our system for small animal research.

2 Materials and Methods

2.1 Experimental Setup

The schematic diagram of the proposed x-ray and fluorescence imaging system is shown in
Figs. 1(a) and 1(b). The two imaging modalities share the same optical path. An x-ray tube
(Oxford Instruments Ultrabright, 50 kV, 0.8 mA) and a mercury lamp (Lumen Dynamics
X-Cite Exacte, 200 W, 340 to 675 nm) are employed as the corresponding excitation source.
The x-ray beam is conical, and the excitation light emitted from the mercury lamp is collimated.
The sample is positioned horizontally and imaged on a digital micromirror device (DMD,
X-digit XD-ED01N, 0.7 in., 768 × 1024 micromirrors, pixel size 13.6 × 13.6 μm2) with a lens
(Thorlabs AC254-035-A, focal length 35 mm). Structured detection is achieved by the micro-
mirrors in DMD, turning on and off separately about the diagonal axis. And the modulated image
is collected by a photomultipliers tube (Thorlabs PMM02, 300 to 800 nm) as the single-pixel
detector.

Fig. 1 X-ray and fluorescence multimodality FSI system. (a) X-ray imaging configuration.
(b) Fluorescence imaging configuration.
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In x-ray imaging, the spatial modulation of x-ray is hard to realize due to the lack of effective
modulator.21 Here, we place a CsI (Tl) scintillator plate (Hamamatsu Photonics J8734, effective
area of 48 × 48 mm2, 150-μm-thick CsI scintillator) behind the sample. And the nonvisible
x-ray containing the anatomical information can be converted to visible light and detected
by the photomultipliers tube. The structured detection of x-ray image with the FSI architecture
using DMD can be realized. To maximize the imaging field of view, the sample is placed along
the diagonal of the scintillator plate, and the DMD chip is tilted for binary modulation. In this
way, we can acquire the nonvisible x-ray and visible fluorescence images with only one visible
light sensed single-pixel detector.

2.2 Data Acquisition and Image Reconstruction

The principle of structured detection with three-step phase-shifting FSI architecture is shown in
Fig. 2. Instead of sampling in the spatial domain, FSI acquires the Fourier spectrum of the object
image.22,23 For a certain Fourier coefficient Fðu; vÞ of an M × N pixels image I, three
Fourier basis patterns P∅ðx; y; u; vÞ with initial phase ∅ (∅ ¼ 0;2π∕3; 4π∕3 rad) are needed
for structured detection:

EQ-TARGET;temp:intralink-;e001;116;530P∅ðx; y; u; vÞ ¼
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u; v, and x; y separately represent the 2D Cartesian coordinates in the Fourier and space
domain. The patterns are binarized by Floyd–Steinberg dithering for fast FSI, and the
corresponding responses D∅ can be shown as

EQ-TARGET;temp:intralink-;e002;116;448D∅ ¼
XM
x¼1

XN
y¼1

Iðx; yÞP∅ðx; y; u; vÞ þ n; (2)

where n represents the noise term. The Fourier coefficient Fðu; vÞ can be obtained with the
calculation

EQ-TARGET;temp:intralink-;e003;116;373Fðu; vÞ ¼ ð2D0 −D 2π∕3 −D 4π∕3Þ þ
ffiffiffi
3

p
jðD 2π∕3 −D4π∕3Þ; (3)

and the object image can be reconstructed by the inverse Fourier transform using the acquired
Fourier spectrum. Differential detection in FSI reduces the noise term, making the architecture
more robust, and the sparsity of natural scenes in Fourier domain also accelerates the imaging
process.22,24

2.3 Animal Preparation

A C57BL/6 mouse (female, SPF, 4 weeks, 10 g) was subcutaneously inoculated with 5 × 105

B16 cells targeted by mCherry fluorescence protein. Once the tumor reached a volume of
100 mm3, the mouse was anesthetized, and in vivo imaging was carried out using our system.
All animal experiments were performed according to the animal experiment guidelines of the
Animal Experimentation Ethics Committee of Huazhong University of Science and Technology.

Fig. 2 Principle of structured detection with three-step phase-shifting FSI architecture.

Huang et al.: Multimodality system of x-ray and fluorescence based on Fourier single-pixel imaging. . .

Journal of Biomedical Optics 090501-3 September 2022 • Vol. 27(9)



3 Results

3.1 System Performance Evaluation

To evaluate the performance of the proposed system, we measured the spatial resolution
of x-ray imaging and the detection sensitivity as well as the imaging depth of fluorescence
imaging. In the following experiments, we reconstruct the image with 96 × 128 pixels.
The pixel size in object space is 0.52 × 0.52 mm2, and the sampling ratio is 14% with circular
sampling method applied in the Fourier domain. DMD refreshes at 20 Hz, and the acquisition
time is 2 min for each image. No postprocessing methods were applied to the following results of
our system.

As shown in Fig. 3(a), to estimate the spatial resolution of x-ray imaging, a metal wire with
diameter of 0.4 mm was imaged. Reconstructed intensity along the line in Fig. 3(a) is shown in
Fig. 3(b). Gaussian fitting to the profile of the metal wire indicates the spatial resolution of x-ray
imaging is about 1.81 mm.

Then, we evaluated the detection sensitivity of fluorophore of the system in fluorescence
modality. 200-μl Rhodamine 6G solution with the serially diluted concentration of 11.86,
5.93, 2.97, 1.48, and 0.74 nmol/ml and pure water as the control group were imaged with the
excitation light of 520 to 540 nm. The detected fluorescence ranges from 560 to 580 nm.
As shown in Fig. 3(c), the pure water is placed leftmost with the concentration of rhodamine
6G solution reduced from right to left. We calculated the reconstructed intensities of different
samples with 5 × 5 pixels averaging in Fig. 3(c). Linear fitting of the reconstructed fluorescence
intensity with R2 ¼ 0.98 suggests that the minimum detectable concentration of rhodamine
6G solution is better than 1.48 nmol/ml.

Next, to demonstrate the imaging depth of fluorophore in fluorescence modality, the intra-
lipid solution with 1 wt% was chosen as an optical phantom of biological tissue.25 The optical

Fig. 3 The spatial resolution and fluorescence sensitivity evaluation of the proposed multimodality
FSI system. (a) X-ray imaging result of a 0.4-mm-diameter metal wire, 96 × 128 pixels.
(b) Intensity profile with the corresponding Gaussian fit along the line indicated in (a), the full width
at half maximum is 1.81 mm. (c) Fluorescence imaging result of five serially diluted rhodamine 6G
solutions and pure water, from right to left, 96 × 128 pixels. (d) Reconstructed intensity of the five
rhodamine 6G solutions and pure water with 5 × 5 pixels averaging. Linear fit to the four detectable
Rhodamine 6G solutions’ fluorescence intensity, R2 ¼ 0.98. Scale bars: 10 mm.
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property of the phantom can be characterized by the absorption coefficient μa ¼ 0.03 cm−126

and reduced scattering coefficient μ 0
s ¼ 12.3 cm−1.27 Rhodamine 6G solution with the concen-

tration of 11.86 nmol/ml was injected to a glass tube with diameter of 1 mm as the fluorescence
probe. As shown in Figs. 4(a)–4(d), the glass tube was immersed at the depth of 2, 4, 6, and 8 mm
in intralipid solution, respectively, the phantom test was carried out with the excitation light of
520 to 540 nm and detected fluorescence ranges from 560 to 580 nm. In Figs. 4(a) and 4(b), the
glass tube can be clearly distinguished from the intralipid solution, so the imaging depth of the
system in fluorescence modality can reach 4 mm.

3.2 In Vivo Multimodality Imaging of Tumor Bearing Mouse

To further examine the feasibility of the proposed system for small animal research, a C57BL/6
female mouse bearing tumor targeted with mCherry was imaged using our system. A commer-
cial scientific complementary metal-oxide-semiconductor camera (Hamamatsu Photonics
ORCA-Flash4.0 V3, 2048 × 2048 pixels, pixel size: 6.5 × 6.5 μm2) was employed to validate
our experimental results.

In fluorescence imaging modality, the fluorescence of the targeted tumor was excited with
light from 560 to 580 nm and detected in the 600 to 620 nm range. The same experimental set up
and parameters concerning the reconstructed image of our system were employed as mentioned
in Sec. 3.1. The imaging results are shown in Fig. 5. The original FSI results are rotated to a
specific angle for better comparison and framed by the red dotted line. Figures 5(a)–5(c) show
the x-ray image, fluorescence image, and merged image, respectively. And Figs. 5(d) and 5(e)
show the corresponding images captured with the sCMOS camera, respectively. When we
acquired the images with an sCMOS camera, the results were resized to 165 × 165 pixels with
pixel size of 0.52 × 0.52 mm2 in the object space. And the exposure time of the sCMOS camera
is 5 s and 10 s for x-ray imaging and fluorescence imaging, respectively.

As shown in Fig. 5(a), the x-ray imaging is able to provide the necessary anatomical infor-
mation, including oral cavity, skeleton, and soft tissue. Figure 5(b) shows the molecular infor-
mation of the small animal, which indicated the location of the tumor cell. And the merged image
from the two modalities will provide the anatomical and molecular information simultaneously.
The images acquired from the sCMOS camera confirm the results from our system.

Fig. 4 The imaging depth evaluation of the proposed multimodality FSI system using a phantom
test. (a)–(d) The imaging results of a glass tube with diameter of 1 mm injected with rhodamine 6G
solution and immersed at the depth of 2, 4, 6, and 8 mm in 1 wt% intralipid solution,
96 × 128 pixels. Scale bars: 10 mm.
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4 Discussion and Conclusion

We proposed a novel 2D x-ray digital radiography combined with the planar reflective fluores-
cence multimodality imaging system for small animals via the FSI architecture. Compared
with a conventional multimodality imaging system employing two pixelated detectors, only one
visible light sensed single-pixel detector is used in our system. The nonvisible x-ray containing
the anatomical information is converted to be visible light by a CsI (Tl) scintillator plate.
Therefore, x-rays and fluorescence images can be reconstructed by the structured detection
FSI architecture using DMD. The spatial resolution of x-ray imaging is measured to be 1.81 mm,
and the detection sensitivity as well as the imaging depth of rhodamine 6G is approaching pico-
molar and 4 mm. A C57BL/6 female mouse bearing tumor targeted with mCherry is used to
demonstrate the feasibility of our system for small animal studies.

Except for the low cost and compact structure, we have shown that free of image registration is
also an advantage of our system, given by the detection with the same detector. It is worth noting that
the imaging speed and imaging resolution of the two modalities in our system are worse than the
conventional ones. Recently, the SPI architectures employing the deep learning method have been
demonstrated to achieve fast imaging with high resolution. Meanwhile, traditional methods of opti-
mizing the sampling strategy also accelerate the imaging procedure. With the approaches mentioned
above, we may improve the imaging speed and imaging resolution of our system and expect better
performance in further three-dimensional imaging, time domain imaging, and multispectral imaging.
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Fig. 5 Multimodality imaging results of a C57BL/6 mice bearing tumor targeted with mCherry fluo-
rescence protein using the proposed FSI system (top row, rotated to a specific angle and framed
by the red dotted line, 96 × 128 pixels) and the commercial sCMOS camera (bottom row,
165 × 165 pixels). (a)–(c) The x-ray, fluorescence, and merged images, respectively. (d) and
(e) The corresponding images captured with the sCMOS camera. Scale bars: 10 mm.
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