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Abstract

Significance: X-ray Cherenkov–luminescence tomography (XCLT) produces fast emission data
from megavoltage (MV) x-ray scanning, in which the excitation location of molecules within
tissue is reconstructed. However standard filtered backprojection (FBP) algorithms for XCLT
sinogram reconstruction can suffer from insufficient data due to dose limitations, so there are
limits in the reconstruction quality with some artifacts. We report a deep learning algorithm for
XCLT with high image quality and improved quantitative accuracy.

Aim: To directly reconstruct the distribution of emission quantum yield for x-ray Cherenkov-
luminescence tomography, we proposed a three-component deep learning algorithm that
includes a Swin transformer, convolution neural network, and locality module model.

Approach: A data-to-image model x-ray Cherenkov-luminescence tomography is developed
based on a Swin transformer, which is used to extract pixel-level prior information from the
sinogram domain. Meanwhile, a convolutional neural network structure is deployed to transform
the extracted pixel information from the sinogram domain to the image domain. Finally, a local-
ity module is designed between the encoder and decoder connection structures for delivering
features. Its performance was validated with simulation, physical phantom, and in vivo
experiments.

Results: This approach can better deal with the limits to data than conventional FBP methods.
The method was validated with numerical and physical phantom experiments, with results show-
ing that it improved the reconstruction performance mean square error (>94.1%), peak signal-to-
noise ratio (>41.7%), and Pearson correlation (>19%) compared with the FBP algorithm. The
Swin-CNN also achieved a 32.1% improvement in PSNR over the deep learning method
AUTOMAP.

Conclusions: This study shows that the three-component deep learning algorithm provides an
effective reconstruction method for x-ray Cherenkov-luminescence tomography.
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1 Introduction

X-ray Cherenkov-luminescence tomography (XCLT) is a new tomographic imaging technology
that provides a tool for monitoring the biological characteristics of tumor in vivo with very high
energy megavoltage (MV) x-rays as the excitation source.1,2 It uses a clinical linear accelerator
(LINAC) to generate the MV x-rays, which produce Cherenkov light as they pass through
biological tissues, and this Cherenkov light becomes an internal excitation optical source that
excites molecular phosphors or fluorophores for tomographic imaging. Perhaps even more
importantly, when treatment occurs with a dynamic modulated treatment plan with full rotational
delivery of the x-rays, there can be a near complete tomographic dataset produced from the
multiple angles, producing sinogram like data. However, unlike x-ray tomography, the detectable
fluorescence generated in biological tissues for XCLT experiences multiple scattering as it
leaves, so it is highly diffused. This results in limited unique measurement sets. As a result,
the XCLT reconstruction approach is a severely illposed problem. Because XCLT uses x-ray
beams generated by a LINAC to scan the imaging objects, we can increase the number of scan-
ning sheets or optimize the scanning mode to minimize the illposedness and improve the quality
of the reconstructed images. In therapeutic use, the scan sequence would be limited to the goal of
the therapeutic delivery, but it is common to have hundreds of beam angles in a modern intensity
modulated radiotherapy or volumetric modulated arc therapy treatment plan. When used as a
pure diagnostic, it is still limited by the delivered dose that would be tolerable to the subject
being imaged. These limits to x-ray flux result in limits to the useable data for reconstruction.

Recently, a novel rotational XCLT was proposed; it used a multi-leaf collimator (MLC) to
shape high-energy x-ray beam into a thin vertical sheet and scanned the imaging object by trans-
lating and rotating the sheet at different positions.3–7 Meanwhile, it used a single-pixel detector to
acquire fluorescence or luminescence signals. This scanning method is similar to parallel beam
computed tomography (CT); therefore, a filtered back projection (FBP) algorithm was used for
image reconstruction.6 However, its performance largely depended upon the accuracy of col-
lected sinogram data, and as in all CT reconstructions, more projections always yield a better
reconstruction. To reduce the radiation dose from x-rays for XCLT, an incomplete dataset for the
sinogram would be acquired with a limited number of projections,6 which leads to significant
artifacts in reconstructed images.8,9 Therefore, creative introduction of reconstruction algorithms
that can improve the image quality with limited projection datasets, as is well developed in the
CT reconstruction literature, is needed.

Inspired by deep learning, the data-driven supervised learning methods have attracted great
attention in medical image reconstruction.10–13 In general, there are two kinds: image-to-image
models10,11 and data-to-image models.12,13 For the image-to-image model, it takes low-quality
images reconstructed by traditional algorithms as network input and outputs high-quality
images. In this case, the deep learning model is identified as a denoiser. The advantages of the
image-to-image model are its fast-training fitting time and easy deployment. However, an image-
to-image model directly operates on an image to suppress artifacts, and its performance critically
depends on the quality of the input image. Information that is lost during traditional algorithms’
reconstruction cannot easily be recovered. For a data-to-image model approach, such as
AUTOMAP,12 it takes acquired raw signals as the network input and outputs high-quality images
through training a deep neural network, which has more information than an image-to-image
model approach. However, it requires a large number of training datasets. In general, both of the
models use the convolutional neural network (CNN)-based deep learning architecture to learn
hierarchies of structured images and sinogram representations.14,15

Due to the use of a thin sheet in the rotational XCLT, the sampling is extended along the
depth direction inside the imaging object, such that each measurement contains all of the signals
disturbed along the sheet.6 Specifically, each line of a sinogram is sequentially sampled with
overlapping information of surrounding sinograms. In other words, one-dimensional compo-
nents of sinograms heavily correlate with each other. The global characteristic of a sinogram
image makes it difficult to be captured with traditional CNNs due to the limited size of the
convolution receptive field, which reduces the quality of the reconstructed image. In contrast,
transformer-based approaches introduce an attention mechanism to handle the sequential
inference tasks in natural language processing16 and achieve state-of-the-art performance,17–19
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especially in several recent medical imaging tests.20–24 However, self-attention has a quadratic
complexity to it. To overcome this, the Swin transformer was developed;25 it uses the shifted
window attention to model cross-window relationships.26 The Swin transformer has the advan-
tage of long-range dependency modeling capability with the shifted window scheme.25,26

Therefore, it can extract the high-quality global information, which is effective for improving
the reconstruction performance of XCLT. Thus in this study, a transformer-based deep learning
method was applied to this optical tomography, which has a limited data problem.

Considering that the value of each pixel in the sinogram is the sum of the fluorescent signal
along the x-ray sheet direction and that the information about fluorescence emission yield is
recorded in an intermediate representation, we propose a data-to-image model based on a
Swin transformer to directly reconstruct the distribution of emission quantum yield, named
Swin-CNN. It has three parts: (1) the basic structure of the Swin transformer is used to extract
pixel-level prior information from the sinogram domain; (2) a CNN structure is deployed to
transform the extracted pixel information from the sinogram domain to the image domain;
(3) a locality module is designed between the encoder and decoder connection structures for
delivering features. Its performance was validated with simulation, physical phantom, and
in vivo experiments.

The remainder of the paper is organized as follows. The forward model and the proposed
Swin-CNN reconstruction algorithm are introduced in Sec. 2. In Sec. 3, numerical simulation,
physical phantom, and in vivo experiments are performed to validate its performance. Section 4
presents the discussion and conclusions.

2 Methods

2.1 Forward Model

XCLT can be mathematically modeled with a set of coupled continuous wave-domain diffusion
equations, which are expressed as follows:27–30

EQ-TARGET;temp:intralink-;e001;116;393∇Dxð~rÞ∇Φxð~rÞ − μaxð~rÞΦxð~rÞ ¼ −Sð~rÞ; (1)

EQ-TARGET;temp:intralink-;e002;116;349∇Dmð~rÞ∇Φmð~rÞ − μamð~rÞΦmð~rÞ ¼ −Φxð~rÞημafð~rÞ: (2)

Equation (1) is the Cherenkov excitation field, and Eq. (2) is the fluorescence emission field.
Subscripts x and m denote the excitation and emission wavelengths, respectively. Φxð~rÞ is the
excitation field at position ~r. Φmð~rÞ is the emission field at position ~r. μaxð~rÞ and μamð~rÞ are the
absorption coefficients, and Dxð~rÞ and Dmð~rÞ are the diffusion coefficients. μafð~rÞ is the fluo-
rophore absorption at the excitation wavelength, and η is the fluorophore quantum efficiency.
ημafð~rÞ is fluorescence quantum yield. Sð~rÞ is Cherenkov light, which is an internal excitation
source induced by a sheet-shaped LINAC beam.

Modeling the thin parallel sheet scan and rotating gantry of the LINAC for different angles,
sinogram projections can be obtained by accumulating all of the optical signal intensity gen-
erated by each sheet beam along each angle. The forward sinogram projection can be calculated
by the Radon transform as

EQ-TARGET;temp:intralink-;e003;116;201pðθÞ ¼
Z
L
Φmð~rÞdl; (3)

where Φmð~rÞ is the intensity of fluorescence emission and pðθÞ is the measured sinogram pro-
jection data. Discretizing Eq. (3), the XCLT projection model is reformulated in matrix form as

EQ-TARGET;temp:intralink-;e004;116;133P ¼ Wμη; (4)

where μη represents the vectorized fluorescence quantum yield image to be reconstructed, P is
the vectorized sinogram projection, and W is the forward projection operator and represents
the discrete Radon transform.
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2.2 Filtered Backprojection (FBP) Algorithm

The aim of the XCLT reconstruction is to recover the distribution of quantum field μ̂η from the
measured sinogram P. When the FBP algorithm is adapted, μ̂η has the form of

EQ-TARGET;temp:intralink-;e005;116;691μ̂η ¼ WTCP; (5)

where C denotes the discrete filter. However, the FBP tends to generate images with artifacts and
intensity imbalance.

2.3 Swin-CNN Algorithm

To improve the quality of the reconstructed XCLT image, we develop a deep learning technique
to reconstruct fluorescent image through training sonogram projection. It is modeled as follows:

EQ-TARGET;temp:intralink-;e006;116;573f∶P → μ̂η; (6)

where f is a model with an encode–decode structure, which is shown in Fig. 1(a).

2.3.1 Encoder: Swin transformer

To extract the sinogram pixel feature, a self-attention mechanism is introduced into the encoder
based on the Swin transformer block, as shown in Fig. 1(b).

The encoder takes the sinogram image as input and encodes the pixel information into high-
level feature representations. More specifically, the sinogram P is first resized into the feature

Fig. 1 Architectures of (a) the Swin-CNN, (b) the Swin transformer block, and (c) the locality
module.
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space with the size of N × N × 1ðN ¼ 128Þ, and then a 1 × 1 basic convolutional layer is applied
on feature map for the channel dimension expanding with the size of feature map being
N × N × 3. Next, a patch embedding layer is used to transform the feature map into sequence
embedding, which consists of two steps: (1) the sinogram feature map is split into nonoverlap-
ping patches with the size of n × nðn ¼ 4Þ and (2) these patches are projected a sequence with
the number ofN2∕n2. After the patch embedding layer, the dimension of feature representation is
ðN2 × CÞ∕16. Following the patch embedding layer, the embedded patches pass through four
encoder stages, which consist of the Swin transformer block and patch merging (only in the
last three stages). The Swin transformer block uses window-based multihead self-attention
(W-MSA) and shifted window-based multihead self-attention (SW-MSA) to compute the
feature representations on the embedded patches. Each patch merging operation is used to
2× down-sample the embedding patches and expand to double the channels for the multiscale
self-attention feature representations. Therefore, the output dimension of sequence feature
representation for each encoder stage is ðN2 × CÞ∕16, ðN2 × 2CÞ∕64, ðN2 × 4CÞ∕256, and
ðN2 × 8CÞ∕1024, respectively.

2.3.2 Decoder: 2D convolutional

Because the resolution of the output image is higher than the resolution of feature maps from the
locality module (introduced later), a generative CNN structure is utilized as the basic unit in the
decoder stage. The decoder stage was built based on a 3 × 3 convolution with a stride of 1
followed by an up-sample layer. Specifically, after the last encoder stage, the feature map with
a size of N

32
× N

32
× 8C is up-sampled to N

16
× N

16
× 8C. At the following decoder stage, the feature

maps are concatenated with the feature maps from the up-sample layer, and then the concat-
enated features are passed through the CNN block sequentially.

Through the whole decoder process, the size of feature map is up-sampled from N
32
× N

32
× 8C

to N
2
× N

2
× C. Instead of simple interpolation for up-sampling for the last output layer, a trans-

posed convolution with a stride of 2 is applied. Finally, the image with the size of N × N × 1 is
obtained.

2.3.3 Locality module as skip connection

To concatenate the encoder features from sinogram pixels and the features from the reconstructed
image together for the decoder process, a locality module was first proposed instead of direct
concatenation,31 as shown in Fig. 1(c). The sequence feature representation of an encoder stage is
reshaped into 2D feature maps with N

4
× N

4
× C, N

8
× N

8
× 2C, N

16
× N

16
× 4C, and N

32
× N

32
× 8C,

respectively. Then the locality module was added at the exit of each encoder stage, which was
used to deliver the features to the decoder. As shown in Fig. 1(c), first, a CNN layer is used to
capture local pixel information of the feature map. Next, the new feature map that passed through
the CNN is reshaped into the flattened features, and a multilayer neural network (MNN) is used
to learn the feature representation. Finally, the features are reshaped into a 2D feature map and
passed into a CNN layer. Moreover, the residual learning mechanism is introduced to solve the
overfitting problem in the deep learning network,32 and a skip connection is added between
the input and output of the locality modules. The input and output of the locality module have
the same feature size.

2.4 Datasets Preparation

A circular phantom with a radius of 50 mm was used. The phantom was discretized into a mesh
with 5133 finite-element nodes and 10,013 triangles elements. The optical properties used for
simulation are shown in Table 1.33 Single or double fluorophores (contrast of 4:1 with back-
ground) with varied radii (from 4 to 8 mm) were placed at different positions inside the phantom.
In total, 10,000 phantoms were obtained. The open-source software Nirfast was modified to
generate sinogram data.34 50 parallel beam sheets (step of 2 mm) were rotated from 0 deg
to 170 deg in 10 deg intervals, and the emission signals were accumulated by integral detector
along each beam source, as shown in Fig. 2. 1% random noise was added to the sinogram data.
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A bilinear interpolation was used to upscale the sinogram image from 18 × 50 to 128 × 128 to
match the network input. Therefore, the size of the recovered fluorescein images was 128 × 128.
The 10,000 datasets were divided into 8000 sets for training, 1000 sets for cross-validation, and
1000 sets for testing.

2.5 Evaluation Metrics

To test the performance of the proposed reconstruction algorithm, three evaluation indicators
were used.

Mean square error (MSE) is used to characterize the accuracy of reconstructed images and
is defined as35

EQ-TARGET;temp:intralink-;e007;116;269MSEðGT; RÞ ¼ 1

N2

XN
i¼1

XN
j¼1

ðGTði; jÞ − Rði; jÞÞ2; (7)

where GT and R are the ground truth and the reconstruction images with size of N × N,
respectively.

Peak signal-to-noise ratio (PSNR) is used to measure image distortion or noise level between
the ground truth and the reconstruction images and is defined as36

EQ-TARGET;temp:intralink-;e008;116;170PSNRðGT; RÞ ¼ 10 log10

�ðMaxðGTÞÞ2
MSEðGT; RÞ

�
; (8)

where Max(GT) is the maximum value of the ground truth.
Pearson correlation (PC) is used to measure the correlation between the ground truth and

reconstructed images and is defined as37

Table 1 Background optical properties of the phantom used to generate datasets.

Optical properties μax μam μsx μsm μaf

Unit (mm−1) 0.009 0.006 1.314 1.273 0.008

Fig. 2 Schematic of generating sinogram data.
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EQ-TARGET;temp:intralink-;e009;116;735PCðGT; RÞ ¼ covðGT; RÞ
σGTσR

; (9)

where σGT and σR are the standard deviations of ground truth and reconstructed images, respec-
tively and cov is the cross-covariance of ground truth or reconstructed images.

3 Experiments and Results

To demonstrate the performance of Swin-CNN, we compared it with the FBP and the
AUTOMAP algorithms.

3.1 Numerical Phantom Experiments

3.1.1 Single target experiment

Figure 3 shows the reconstructed results in the case of single target. Figure 3(a) shows the ground
truth with different radii and positions. Figures 3(b)–3(d) show the reconstructed images with the
FBP, AUTOMAP, and Swin-CNN algorithms, respectively. From Fig. 3, we can observe that the
FBP obtains the poorest reconstructed images with artifacts and blurred edges because only 18
projections were used. Compared with the FBP, AUTOMAP obtains better images, but there are
still distortions and boundary artifacts in the reconstructed images. In contrast, the Swin-CNN
algorithm obtains the best results with reduced artifacts and sharp edges.

Table 2 shows the quantitative results for the three algorithms. Compared with the FBP
method, PSNR and PC of the Swin-CNN are improved by >41.7% and 19.3%, respectively.
Also, the Swin-CNN yields more than 5.7% and 1.1% improvements compared with the
AUTOMAP method, respectively. Our results also demonstrate that the Swin-CNN obtains more
quantitative accuracy and MSE is reduced by more than 94.1% and 33.3% over the FBP and
AUTOMAP, respectively. Statistical results for 1000 samples are shown in Fig. 4. The results
again demonstrate that the Swin-CNN yields superior performance compared with the other
algorithms.

Fig. 3 Reconstructed images for different algorithms. (a) The ground truth images, (b)–(d) the
results reconstructed by FBP, AUTOMAP, and Swin-CNN, respectively. The radius of fluorescein
target from the top to bottom rows are 4, 6, and 8 mm, respectively.
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3.1.2 Resolution experiment

We further test the ability of Swin-CNN to differentiate two targets. The edge-to-edge distance
between two targets varied from 2 to 8 mm. The corresponding results are shown in Fig. 5. As
shown in Fig. 5, the blurred images are again obtained for the FBP algorithm, and it is difficult to
differentiate the targets when the edge-to-edge distance is 2 mm.

Compared with the FBP, the AUTOMAP algorithm obtains much clearer images, but there
are still artifacts and distortions around the targets. Figure 6 plots the profiles along the red dotted
line shown in Fig. 5. The results again reveal that the values of the reconstructed images by the
Swin-CNN are closer to their ground truth images. The quantitative comparisons for the three
methods are compiled in Table 3. The results further demonstrate that the Swin-CNN obtains the
best performance in terms of MSE, PSNR, and PC. For example, the PSNR is improved by more
than 51.5%, and 4.9% compared with the FBP and the AUTOMAP algorithms, respectively.

3.1.3 Robustness experiment

Furthermore, three targets with radii of 4, 6, and 8 mmwere placed as shown in Fig. 7. 18 angular
projections were measured with 10 deg intervals from 0 deg to 170 deg. Sinogram data was
obtained for each angle with 30 parallel sheet scans or 50 parallel sheet scans. Figures 7(a) and
7(b) show the reconstruction results with 30 and 50 parallel sheet scans, respectively, and the
quantitative results are compiled in Table 4. It can be observed that the performance of the three

Table 2 Quantitative comparisons for the three algorithms in Fig. 3.

Radius Method MSE PSNR (dB) PC

4 mm FBP 0.74 24.16 0.63

AUTOMAP 0.08 30.57 0.95

Swin-CNN 0.03 34.23 0.98

6 mm FBP 0.47 22.86 0.76

AUTOMAP 0.05 32.78 0.96

Swin-CNN 0.02 35.08 0.99

8 mm FBP 0.34 21.72 0.83

AUTOMAP 0.03 33.22 0.98

Swin-CNN 0.02 35.13 0.99

Fig. 4 Statistical results for 1000 samples. (a) MSE, (b) PSNR, and (c) PC.
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methods decreases with the decrease of scanning angles and sheet scans. The AUTOMAP algo-
rithm fails to recover the distribution of the three targets because of incomplete data. In contrast,
our results accurately recovers the distributions of the three targets. From Table 4, we can see that
more parallel sheet scans contain better image quality and quantitative accuracy. For the Swin-
CNN algorithm, the PSNR is improved from 16.28 dB (FBP) and 19.21 dB (AUTOMAP) to
25.37 dB when 30 scan beams were used.

3.2 Physical Phantom Experiments

To further evaluate the performance of Swin-CNN, physical phantom experiments were per-
formed. Figure 8 shows the system used for data acquisition. Thin sheets of 6 MV x-ray beams
were delivered from a clinical radiotherapy LINAC (Varian LINAC 2100CD, Varian Medical
Systems, Palo Alto, CA) with a dose rate of 600 MU/min. A cylindrical water tank with a diam-
eter of 100 mm and height of 80 mm was used as the imaging phantom. It was filled with 1%
Intralipid (diluted from 10% Intralipid, Sigma–Aldrich) mixed with 1% porcine blood (Lamphire
Inc., Pipersville, PA). The fluorescein target was a small plastic cylinder with an inner diameter
of 10 mm and height of 10 mm filled with 500 μM fluorescein and located 1 mm below the
liquid level in the cylinder tank. More details about the imaging system can be found in Ref. 6.

A total of 18 projections were obtained from 0 deg to 170 deg with angular steps of 10 deg,
and 50 parallel sheet scans were horizontally translated by MLC with each step of 2 mm for each
projection. For each scan, the spectrum of the whole optical signal of the imaging phantom could
be measured ranging from 400 to 850 nm by the spectrometer. The sinogram of a single wave-
length could be obtained through a linear spectral unmixing process.6,38 Figure 9(a) shows the
sinograms for wavelengths of 510 to 600 nm, and (b)–(d) that are the reconstructed images by the
FBP, AUTOMAP, and Swin-CNN, respectively. From Fig. 9(b), we can see that many artifacts

Fig. 5 Reconstructed images for different algorithms. (a) The ground truth images, (b)–(d) the
results reconstructed by FBP, AUTOMAP, and Swin-CNN, respectively. The edge-to-edge
distance of two targets from the top to bottom rows is 2, 4, 6, and 8 mm, respectively.
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Fig. 6 Profiles along the red dotted line in Fig. 5 with different edge-to-edge distances. (a) 2 mm,
(b) 4 mm, (c) 6 mm, and (d) 8 mm.

Table 3 Quantitative comparisons for all methods in Fig. 6.

Radius Method MSE PSNR (dB) PC

2 mm FBP 0.41 19.28 0.8

AUTOMAP 0.12 27.44 0.9

Swin-CNN 0.05 29.21 0.96

4 mm FBP 0.43 18.94 0.78

AUTOMAP 0.09 27.73 0.91

Swin-CNN 0.04 30.51 0.97

6 mm FBP 0.44 18.83 0.78

AUTOMAP 0.1 28.56 0.92

Swin-CNN 0.05 29.96 0.96

8 mm FBP 0.43 18.85 0.79

AUTOMAP 0.08 29.98 0.93

Swin-CNN 0.03 32.35 0.98
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Table 4 Quantitative comparisons for the three algorithms with 30 or 50 scan projections.

Number of scan beams Method MSE PSNR (dB) PC

30 FBP 0.68 16.28 0.66

AUTOMAP 0.28 19.21 0.83

Swin-CNN 0.21 25.37 0.87

50 FBP 0.41 18.45 0.79

AUTOMAP 0.27 20.15 0.84

Swin-CNN 0.11 29.07 0.94

Fig. 7 Reconstruction results with different numbers of parallel beams. (a) Ground truth image,
(b) and (c) 30 and 50 parallel beams for each angular, respectively.

Fig. 8 Schematic of data acquisition for physical phantom experiments.
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exist in the reconstructed images by the FBP. In contrast, the AUTOMAP improves the recon-
struction images and has much less artifacts and better signal localization. Among the three
algorithms, Swin-CNN yields the best performances and obtains much clearer images.
Figure 10 further shows the results with two fluorescent targets. Again, our algorithm obtains
the better results. Note that the Swin-CNN was trained only with a single wavelength data, but it
can be successfully used for other wavelengths. The results reveal that the Swin-CNN has low
requirements on training data and good generalization properties.

3.3 In Vivo Experiments

To further demonstrate the performance of Swin-CNN, an in vivo mouse experiment was per-
formed. Experimental procedures involving live animals were carried out in accordance with the
protocols approved by Dartmouth Institutional Animal Care and Use Committee (Protocol
Numbers 00002173). The fluorescein was locally injected into the tumor on the flank of the
mouse as shown as Fig. 11. The data acquisition was the same with the physical phantom experi-
ment. Figure 12 shows the acquired sinogram data for five wavelengths and the corresponding
reconstruction results. Our results demonstrate that the FBP method can only locate the tumor for
the wavelength of 520 nm. In addition, there are significant artifacts in the background images.
The AUTOMAP also fails to reconstruct the distribution of the tumor for the wavelength of
580 or 600 nm. In contrast, the Swin-CNN again obtains better images with less artifacts.
The results also show that the Swin-CNN trained on simulation datasets can be directly extended
to in vivo data, which reveals its good generalization properties.

Fig. 9 Physical phantom results with single fluorescein target. (a) Sinograms for fluorescence
emission wavelength, (b)–(d) reconstructed images by FBP, AUTOMAP, and Swin-CNN,
respectively.

Fig. 10 Physical phantom results with two fluorescein targets. (a) Sinograms for fluorescence
emission wavelength, (b)–(d) reconstructed images by FBP, AUTOMAP, and Swin-CNN,
respectively.
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4 Discussions

This work proposed and tested a deep learning-based reconstruction algorithm for XCLT that
uses the unique approach to this problem of combining a Swin Transformer block and a CNN.
We demonstrated that the transformer-based method can extract strong features from raw sino-
gram data and utilize the CNN to recover the image from the high-level feature representation.
Meanwhile, the locality module was designed to learn the information of neighboring pixels in
sinogram patches for connecting the encoder and the decoder. Numerical simulation, physical
phantom, and in vivo experiments were used to test its performances.

The numerical experiments demonstrated that the Swin-CNN reconstruction significantly
improved the quality of reconstructed images compared with the FBP and AUTOMAP

Fig. 12 In vivo experimental results. (a) Sinograms for different fluorescence emission wave-
length, (b)–(d) reconstructed images by FBP, AUTOMAP, and Swin-CNN for different wave-
lengths, respectively.

Fig. 11 Fluorescent probe locally injected into the tumor (red box).
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approaches (Figs. 3 and 5). The FBP is preferred for its efficiency and fast calculation time;
however, it results in artifacts from low contrast recovery and blurring, especially when the mea-
sured sinogram is insufficient. The AUTOMAP method requires training data for a near-optimal
reconstruction mapping between the sinogram and the fluorescein images, which can reduce
artifacts and blur in reconstructed images. However, because the overfitting of the fully-
connected layers exists in AUTOMAP, the trained network based upon the training dataset with
only single or double inclusions could not handle the three-inclusion case (Fig. 7). The Swin-
CNN approach takes the sinogram reconstruction as a deep supervised learning task that uses the
Swin Transformer to extract the information from the sinogram domain and the CNN to recon-
struct the image through high-level feature representation.

The physical phantom experiments showed that the Swin-CNN reconstructs fluorescent tar-
gets at 510 to 600 nm wavelengths, which reveals nearly a full contrast recovery. Because the
measured sinogram intensity was pretty weak at 600 nm and the information provided by the
sinogram data was limited, the reconstructed image of Swin-CNN was poor compared with the
FBP and AUTOMAPmethods. For in vivo experiments, the proposed algorithm also shows good
reconstruction results. However, to date, we only acquired very limited physical phantom and
in vivo data; hence, we did not further test the performance of the Swin-CNN. Future work will
be needed to collect more experimental data to test its performance. The performance of the
Swin-CNN is affected by the inputted sinogram. It can be improved by increasing the parallel
sheet scan number and signal-to-noise ratio during sinogram acquisition.

For the ablation studies of the locality module, we analyzed this within the Swin-CNN. We
only used concatenating connections without the locality module as the variant of Swin-CNN
(Swin-without-locality). The reconstruction performance of Swin-CNN was also investigated
when the two CNN layers of the locality module were replaced by concatenation operations
(Swin-without-CNN). Figure 13 shows the results with three targets, and quantitative compar-
isons were reported in Table 5. The Swin-CNN achieves the best PC and the highest PSNR,
which demonstrates the effectiveness of this module approach. Table 6 further shows that the
Swin-CNN greatly reduced the training parameters compared with the AUTOMAP. The input of
AUTOMAP contained fully connected layers, which makes the AUTOMAP scale linearly with
the input size. However, the computing complexity (FLOPs) of the Swin-CNN is higher than the
AUTOMAP, showing that the global self-attention of the image requires a lot of computation.
Figure 14 illustrates the training and validation losses versus the number of epochs for the

Fig. 13 Reconstruction results for the variant of the proposed Swin-CNN. (a)–(c) The results when
three fluorescent targets were placed at different positions.
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Swin-CNN. As can be seen, the validation loss curves closely follow corresponding training loss
curves, showing the generalization ability of the Swin-CNN.

There have been many iterative reconstruction algorithms for optical tomography. For exam-
ple, Cai et al.39 developed a non-negative iterative convex refinement approach for Cerenkov
luminescence tomography (CLT). However, these iterative algorithms have to use the diffusion
equation to model light propagation. After solving the diffusion equation with finite-element
method, an optimization algorithm is essential for minimizing the difference between the calcu-
lated and measured surface optical fluxes. Therefore, iterative approaches are complex in terms
of computations. Hence, we did not compare iterative reconstruction algorithms.

Recently, there has been increasing interest in optical reconstruction based on multilayer fully
connected neural network (MFCNN).40 We extended the MFCNN to XCLT and tested its per-
formance with the single and multiple targets used in Figs. 3, 5, and 7. Its network architecture is

Table 5 Ablation studies of the locality module on Swin-CNN.

Method MSE PSNR (dB) PC

Swin-without-locality 0.38 ± 0.03 17.07 ± 0.26 0.79 ± 0.02

Swin-without-CNN 0.09 ± 0.01 23.05 ± 0.5 0.92 ± 0.01

Swin-CNN 0.04 ± 0.01 26.7 ± 0.8 0.97 ± 0.01

Table 6 Number of training parameters and floating points of operations
(flops) for the deep learning method.

Method # Parameter FLOPs

AUTOMAP 805.44 M 2.54 G

Swin-CNN 46.24 M 3.59 G

Fig. 14 Performance plot of training and validation dataset for the Swin-CNN. Insets show a
zoom-in on the marked blue region. Black and red lines represent the loss of the training and
validation datasets, respectively.
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similar to the architecture used by Zhang et al.,40 as shown in Fig. 15(a). More details about the
MFCNN can be found in Ref. 40. Its input was the raw sinogram image, and the output was
the reconstructed XCLT image. The corresponding results are shown in Figs. 15(b)–15(d).
Compared with Figs. 3, 5, and 7, we can see that there are significant artifacts in reconstructed
images by the MFCNN, whereas the Swin-CNN obtains clean images. Also, the MFCNN fails to
reconstruct the target with a small size. Our algorithm produces significantly better results over
the MFCNN. The reason is that the Swin-CNN can extract more global and local features from
sinograms. We also observed that the number of neurons in hidden layers should not be changed
once the MFCNN is trained well. Therefore, when imaging an object that is different from one
used for training, the generalization performance of the MFCNN is limited.

5 Conclusion

Here, we proposed a deep learning algorithm with three distinct components as a reconstruction
algorithm for CELST. This included a (1) transformer to encode information, (2) a CNN to
reconstruct the images, and (3) a locality module to link the encoder to the decoder. A major
success was that, even though the network was trained with numerical phantoms datasets, the
trained network was able to directly reconstruct images from physical phantom data and in vivo
mouse data. The proposed Swin-CNN inherited the merits of both a Swin transformer for feature
extraction and a CNN for image reconstruction. Moreover, the locality module introduced into
the encoder and decoder was able to learn features between adjacent pixels on the sinogram
image data. Future work will include incorporating real data into the network training to improve
the performance and further refine its performance in more complex tissue samples.

Fig. 15 Results with the multilayer fully connected neural network (MFCNN). (a) The architecture
of MFCNN, and (b)–(d) the reconstructed images with different numbers of targets. The red circles
represent the real positions of targets.
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