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Abstract

Significance: In spatial frequency domain imaging (SDFI), tissue is illuminated with sinusoidal
intensity patterns at different spatial frequencies. For low spatial frequencies, the reflectance is
diffuse and a model derived by Cuccia et al. (doi 10.1117/1.3088140) is commonly used to
extract optical properties. An improved model resulting in more accurate optical property extrac-
tion could lead to improved diagnostic algorithms.

Aim: To develop a model that improves optical property extraction for the diffuse reflectance in
SFDI compared to the model of Cuccia et al.

Approach: We derive two analytical models for the diffuse reflectance, starting from the theo-
retical radial reflectance RðρÞ for a pencil-beam illumination under the partial current boundary
condition (PCBC) and the extended boundary condition (EBC). We compare both models and
the model of Cuccia et al. to Monte Carlo simulations.

Results: The model based on the PCBC resulted in the lowest errors, improving median relative
errors compared to the model of Cuccia et al. by 45% for the reflectance, 10% for the reduced
scattering coefficient and 64% for the absorption coefficient.

Conclusions: For the diffuse reflectance in SFDI, the model based on the PCBC provides more
accurate results than the currently used model by Cuccia et al.
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1 Introduction

Spatial frequency domain imaging (SFDI, also known as modulated imaging or structured light
imaging) is a technique that facilitates wide-field imaging of tissue optical properties1,2 and has
gained considerable interest in recent years for a range of applications,3 such as tumor margin
assessment in breast cancer4 and assessment of diabetic feet.5 In SFDI, tissue is illuminated with
sinusoidal intensity patterns and the reflected intensity is captured by a camera. Scattering and
absorption of light by the tissue change the amplitude of the reflected intensity pattern (but not its
spatial frequency). The amplitude of the reflected intensity patterns, MAC, depends on the tissue
optical properties, the projected spatial frequency, and the properties of the optical system itself.
By measuring the reflectance at two or more spatial frequencies, the tissue optical properties can
be extracted from SFDI measurements. Compared to other wide-field optical techniques, such as
conventional multi- and hyperspectral imaging, SFDI has the advantage that it can be performed
using only a few wavelengths, improving acquisition time. Furthermore, by changing the pro-
jected spatial frequency, the interrogation depth of SFDI can be modified6 to match the clinical
application.
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To extract optical properties from SFDI measurements, the reflected intensity is first demodu-
lated. The amplitude modulation MAC for any tissue location x, and projected spatial frequency
fx can be expressed as

EQ-TARGET;temp:intralink-;e001;116;699MACðx; fxÞ ¼ I0ðx; fxÞ · MTFSYSðx; fxÞ · Rtissueðx; fx; μa; μs; pðθÞÞ; (1)

where I0 is the projected intensity pattern, MTFSYS is the modulation transfer function of the
system, and Rtissue is the reflectance from the tissue which also depends on the tissue optical
properties—the absorption coefficient μa, the scattering coefficient μs, and the phase function
pðθÞ. The phase function describes the probability of scattering at a certain angle θ with respect
to its previous direction. In general, two methods exist to demodulate the reflectance. For a
detailed description, we refer to.3 In the single-pixel demodulation method, three images are
acquired with the same projected spatial frequency, but phase-shifted 2π∕3. From these three
images, MAC is calculated through a simple analytical function. In the multipixel demodulation
method, a single image is acquired andMAC is calculated by taking a Fourier transform of a line
or the entire image.

To obtain Rtissue from MAC, the modulation transfer function of the optical system has to be
determined.MTFSYS is obtained through a calibration step where theMAC of a reference sample
is measured for which the optical expected reflectance Rref is known,

EQ-TARGET;temp:intralink-;e002;116;513MTFSYSðx; fxÞ ¼
MAC;ref

I0ðx; fxÞ · Rref

: (2)

To extract tissue optical properties from SFDI measurements of Rtissue, two main approaches
exist. The first approach is to use an analytical model based on physics that relates Rtissue to the
tissue optical properties.2,7 The second approach is to use Monte Carlo (MC) simulations to
relate Rtissue to tissue optical properties, either through a look-up-table approach or based on
machine learning.8–10 In this manuscript, we will focus on the first approach, an analytical model
based on physics.

Two analytical models exist for SFDI, the model of Cuccia et al. for the diffuse regime2 and
the model of Kanick et al. for the subdiffuse regime.7 The model of Kanick et al. is a semi-
empirical model based on MC simulations and the model of Cuccia et al. was derived from
diffusion theory. Whether measurements are in the diffuse or subdiffuse regime depends on the
projected spatial frequency and tissue optical properties. In this manuscript, we will focus on
modeling the diffuse reflectance in SFDI. Diffusion theory is generally thought to be valid for
f ≪ μtr and μ 0

s ≫ μa (where μtr ¼ μa þ μ 0
s). Under the assumption of linearity of the medium

(i.e., the frequency and phase of the modulated incident light are maintained in the modulated
fluence rate in the tissue), Cuccia et al. obtained the following diffusion equation:2

EQ-TARGET;temp:intralink-;e003;116;288∇2
zφðzÞ − μ 02

effφðzÞ ¼ −3μtrSðzÞ; (3)

where φðzÞ is the fluence rate at depth z, μ 0
eff ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðμ2eff þ k2Þ

p
is the effective attenuation coef-

ficient that takes into account the influence of the projected spatial frequency f ¼ k
2π,

μeff ¼
ffiffiffiffiffiffiffiffiffiffiffi
μa∕D

p
, and D is the diffusion coefficient D ¼ 1∕ð3ðμ 0

s þ μaÞÞ, SðzÞ is a source term,
and μtr is the transport coefficient. The only difference with the diffusion equation for a uniform
plane illumination (k ¼ 0) is in the scalar parameter μ 0

eff. Therefore, any approach to obtain the
reflectance for a uniform plane illumination can be used for SFDI by replacing μeff with μ 0

eff . For
the diffuse reflectance for a uniform plane illumination, Cuccia et al. used the model of Svaasand
et al.11 for the diffuse reflectance for an infinitely wide illumination source and obtained the
following model:2

EQ-TARGET;temp:intralink-;e004;116;141RCucciaðkÞ ¼
3a 0

ð2Aμeff 0∕μtr þ 3Þðμeff 0∕μtr þ 1Þ ; (4)

where a 0 ¼ μ 0
s∕μtr is the reduced albedo and A ¼ ð1þ ReffÞ∕ð1 − ReffÞ describes the influence

of the refractive index mismatch between the sample and the surrounding medium. Please note
that a different expression for A was used by Cuccia et al. (ACuccia ¼ ½1 − Reff �∕½2ð1þ ReffÞ� and
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therefore Eq. (4) might seem different from their manuscript but the equation is only rewritten. In
this paper, we propose a new model for the diffuse reflectance in SFDI and show that it reduces
the median error in the estimated reflectance and extracted optical properties.

2 Modeling the Diffuse Reflectance in SFDI

As an alternative to directly solving the diffusion equation for a uniform plane illumination, a
tissue “impulse response” can be obtained by computing the reflectance as a function of radial
distance, RðρÞ, for illumination by an infinitely narrow pencil beam. The reflectance as a func-
tion of spatial frequency is then found by a 2D Fourier transform, which in the case of cylindrical
symmetry is the same as computing the zeroth order Hankel transform:

EQ-TARGET;temp:intralink-;e005;116;597RðkÞ ¼ 2π

Z
ρ · J0ðkρÞ · RðρÞdρ; (5)

where J0 is the zeroth order Bessel function of the first kind. This approach is often used to
translate MC simulations that generate RðρÞ to reflectance values RtissueðkÞ for SFDI for a range
of spatial frequencies.2,7 The same principle can equally well be applied to analytical solutions
of RðρÞ.

In general, diffusion theory assumes infinite media. For semi-infinite media such as tissue,
the refractive index mismatch between the sample and the medium above it results in a signifi-
cant fraction of radiant energy being reflected back into the sample upon interaction with the
boundary. Analytical expressions for RðρÞ can be obtained by imposing appropriate boundary
conditions at the interface between the sample and the (non-scattering) medium above it.
Analytical expressions for RðρÞ in the diffuse regime are available for different (yet equivalent)
boundary conditions, i.e., the partial current boundary condition (PCBC) as proposed by Keijzer
et al.12 and the extended boundary condition (EBC) as proposed by Farrell et al.13 For the PCBC,
the irradiance at the boundary is set equal to the integral of the reflected radiance12 and for the
EBC, the fluence rate is set to zero at an extended boundary located at a distance zb outside the
sample. There is no theoretical reason to prefer the PCBC over the EBC, the difference merely
demonstrates a limitation of diffusion theory.14 The two boundary conditions result in the
following expressions for the reflectance:

EQ-TARGET;temp:intralink-;e006;116;349RPCBCðρ; z0Þ ¼
1

4π2AD

�
expð−μeff · r1Þ

r1
−
expð−μeff · r2Þ

r2

�
; (6)

and

EQ-TARGET;temp:intralink-;e007;116;293REBCðρ; z0Þ ¼
1

4π

�
z0

�
μeff þ

1

r1

�
·
e−μeff ·r1

r21
þ ðz0 þ 2zbÞ

�
μeff þ

1

r2

�
·
e−μeff ·r2

r22

�
; (7)

where μeff ¼
ffiffiffiffiffiffiffiffiffiffiffi
μa∕D

p
, r1 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z20 þ ρ2

p
, and r2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðz0 þ 2zbÞ2 þ ρ2

p
, zb ¼ 2AD. D is the dif-

fusion coefficient D ¼ 1∕ð3ðμ 0
s þ μaÞÞ. A describes the influence of the mismatch between the

refractive index of the sample, ni, and the surrounding medium, ne, which is equal to15,16

EQ-TARGET;temp:intralink-;e008;116;208A ¼ 1þ 3
R π

2

0 RFðcos θÞcos2 θ sin θdθ

1 − 2
R π

2

0 RFðcos θÞ cos θ sin θdθ
; (8)

where

EQ-TARGET;temp:intralink-;e009;116;146RF ¼
8<
:

1
2

�
ni cos θ−ne cos θr
ni cos θþne cos θr

�
2 þ 1

2

�
ne cos θ−ni cos θr
ne cos θþni cos θr

�
2

for 0 < θ < θc

1 for θ ≥ θc ¼ arcsin
�
ne
ni

� ; (9)

where θr is the angle of refraction.

Post, Faber, and van Leeuwen: Model for the diffuse reflectance in spatial frequency domain imaging

Journal of Biomedical Optics 046002-3 April 2023 • Vol. 28(4)



The reflectance as a function of radial distance is then found as RðρÞ ¼
∫ ∞
z0¼0Rðρ; z0ÞSðz0Þdz0, where S is the source term, for which we use a distributed source term

SðzÞ ¼ a 0μtr expð−μtrzÞ. To obtain our new models for the SFDI reflectance we integrate RðρÞ
for each boundary condition over the radial coordinate ρ from 0 to ∞ and we replace μeff
with μ 0

eff .
Performing the integrations for RPCBCðρ; z0Þ and REBCðρ; z0Þ over z0 and ρ we arrive at

EQ-TARGET;temp:intralink-;e010;116;660RPCBCðkÞ ¼
a 0

4A
3
μeff

0∕μtr

h
1 − exp

�
− 4A

3
μeff

0∕μtr
�i

1þ μeff
0∕μtr

; (10)

and

EQ-TARGET;temp:intralink-;e011;116;595REBCðkÞ ¼
a 0

2

�
1þ exp

�
−
4A
3
μeff

0∕μtr
��

1

½μeff 0∕μtr þ 1� : (11)

3 Methods

Since the model of Cuccia et al. was based on the PCBC, we first compare RCucciaðkÞ and
RPCBCðkÞ to the Hankel Transform of RPCBCðρ; z0Þ. To calculate this Hankel Transform with
Matlab we first integrated RPCBCðρ; z0Þ over z0 from 0 to 100 mm and r from 0 to 500 mm
(increasing the integration limits did not change the results). Next, to compare the accuracy
of the three different models (RCucciaðkÞ, RPCBCðkÞ and REBCðkÞ) we performed MC simulations
to obtain the reflectance versus radial distance, RMCðρÞ. To calculate the reflectance measured by
SFDI, RMCðkÞ, we performed a Hankel Transform. For each model, we calculated the relative
error (RE) in the reflectance with respect to RMCðkÞ for all the simulations

EQ-TARGET;temp:intralink-;e012;116;410RE ¼ jRmodel − RMCj
RMC

: (12)

We also determined the relative errors in the values of μa and μs
0 that would be obtained for

each of the models if they would be used to fit measured reflectance values obtained with spatial
frequencies of 0 and 0.5 mm−1.

3.1 Monte Carlo simulations

We simulated a pencil beam illumination and collected photons versus radial distance from the
source with a 0.001-mm bin size and 4 · 105 bins (regardless of their angle upon detection)
and we performed a Hankel Transform to obtain the reflectance for a given spatial frequency.
We simulated tissues with all combinations of μa ¼ ½0.001; 0.005; 0.01; 0.05; 0.1� mm−1,
μ 0
s ¼ ½1; 5; 10; 20; 50� mm−1, and two different phase functions. One set of simulations was

done with a Henyey-Greenstein (HG) phase function with g1 ¼ 0.9, and a second set of sim-
ulations was done with a two-term HG (TTHG) phase function since the majority of published
phase function measurements are best described by a TTHG.17 We used a TTHG phase function-
with a scattering anisotropy g1 of ∼0.83, using the following parameters: pðθÞ ¼ 0.45 ·
PHGðgHG ¼ 0.95Þ þ 0.05 · pHGðgHG ¼ −0.2Þ, where pHG denotes a regular HG phase function.
For each set of optical properties, we used spatial frequencies such that μ 0

sf−1 ranged from 0.1 to
1000 with 20 equal steps on a log-scale for each value of μs 0. We simulated a refractive index of
the tissue of 1.33 and the medium above it of 1.00 (A ¼ 2.515). For diffusion theory to hold,
f ≪ μtr

0, so we excluded simulations where f > 1
5
· μtr 0. We performed each simulation three

times and ensured we launched enough photons so that the standard deviation over the mean
reflectance was <1%. To determine the accuracy of the models we compared these to the reflec-
tance values averaged over these three simulations.
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4 Results

We first compared RCucciaðkÞ [Eq. (4)] and RPCBCðkÞ [Eq. (10)] to the Hankel Transform [Eq. (5)]
of RPCBCðρ; z0Þ [Eq. (6)], since they are both based on the PCBC (Fig. 1). While the model
of Cuccia et al. is based on the PCBC, it does not overlap with the Hankel Transform of
RPCBCðρ; z0Þ. The derived model RPCBCðkÞ does overlap with the Hankel Transform of
RPCBCðρ; z0Þ.

An example of the reflectance versus μ 0
sf−1 for the different models and MC simulations is

shown in Fig. 2 for μa ¼ 0.01 mm−1 and μ 0
s ¼ 5 mm−1. For higher spatial frequencies, mea-

surements are in the subdiffuse regime, where the total reflectance should be equal to the sum
of the semiballistic and diffuse reflectance.18 Thus, for any value of μ 0

sf−1 the diffuse reflectance
should be equal to or smaller than the total reflectance. In Fig. 2, this is only true for RPCBC,
which indicates that both RCuccia and REBC overestimate the diffuse reflectance.

Figure 3 depicts the median and interquartile ranges of the relative error in the reflectance for
the three different models compared to all MC simulations. To better show the difference
between the results for RCuccia and RPCBC Fig. 3(b) shows a zoom-in view. Using RPCBCðkÞ
instead of RCucciaðkÞ reduces the median relative error by 45% from 0.011 to 0.006.
REBCðkÞ results in a larger median relative error of 0.018, and also a much larger range of errors
compared to the other two models.

While Fig. 3 compares the relative errors in the expected reflectance, we also determined the
relative errors for each model in extracted values of μa and μs

0 from reflectance values obtained
from MC simulations for spatial frequencies of 0 and of 0.5 mm−1 (Fig. 4). Using RPCBCðkÞ
instead of RCucciaðkÞ reduces the median relative error in the extracted value of μa by 64% from
0.022 to 0.008 and the median relative error in the extracted value of μ 0

s by 10% from 0.029 to
0.026. The highest median relative errors were obtained with REBCðkÞ: 0.048 for μa and 0.085 for
μs

0. Also, the distribution of errors is the largest for RECBðkÞ.

Fig. 1 (a) and (c) Reflectance versus μ 0
sf −1 calculated with the Hankel transform of Eq. (6) for the

RPCBCðρ; z0Þ (red lines) compared to RCuccia [Eq. (4), blue lines] and (b) and (d) the model for
RPCBCðkÞ [Eq. (10), black lines] for two sets of optical properties as indicated in each subfigure.
RCuccia does not match the Hankel transform of Eq. (6) for the RPCBCðρ; z0Þ, while RPCBCðkÞ does
match.
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Fig. 3 (a) The median and interquartile ranges of the relative error in RCucciaðkÞ [Eq. (4)], RPCBCðkÞ
[Eq. (10)] and REBCðkÞ [Eq. (11)] versus the simulated reflectance. (b) Zoom-in view of Fig. 3(a).
UsingRPCBCðkÞ instead ofRCucciaðkÞ reduces the median relative error in the expected reflectance
by 45% from 0.011 to 0.006.

Fig. 4 Median and interquartile ranges of the relative error in the extracted values for μa and μ 0
s

with RCucciaðkÞ [Eq. (4)], RPCBCðkÞ [Eq. (10)], and REBCðkÞ [Eq. (11)]. Using RPCBCðkÞ instead of
RCucciaðkÞ reduces the median relative error in the extracted value of μa by 64% from 0.022 to
0.008 and the median relative error in the extracted value of μ 0

s by 10% from 0.029 to 0.026.

Fig. 2 (a) Models for the diffuse reflectance compared to the total simulated reflectance for
μa ¼ 0.01 mm−1 and μ 0

s ¼ 1 mm−1 for the HG phase function with g1 ¼ 0.9 and (b) the two-term
HG phase function with g1 ¼ 0.83. In both, the diffuse (higher values of μ 0

sf −1) and the subdiffuse
regime (lower values of μ 0

sf −1) the diffuse reflectance should be equal to or lower than the total
reflectance. This is only true for RPCBC in this figure. Thus, RCuccia and REBC overestimate the
diffuse reflectance.
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5 Discussion

We developed a new model for the diffuse reflectance in SFDI that reduces the error in the
estimated reflectance and the extracted optical properties compared to the currently used model
of Cuccia et al.2 Our model was derived by integrating the response function for a pencil illu-
mination RðρÞ over ρ from 0 to∞ under the PCBC for an extended source (yielding the response

for a spatially unmodulated source) and replacing μeff by μ 0
eff ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μ2eff þ k2

p
to take the influence

of spatially modulated illumination into account. In other words, we hypothesized and demon-
strated the equivalence between (a) computing the Hankel transform of a pencil beam response
RðρÞ as in Eq. (5) to (b) direct integration of RðρÞ over ρ from 0 to∞ followed by the substitution
of μeff by μ 0

eff.
We compared the resulting equations for two models for RðρÞ based on two different boun-

dary conditions, the PCBC and the EBC. We found that the errors in the predicted reflectance, as
well as in extracted optical properties were much lower for the PCBC than the EBC. More impor-
tantly, for high spatial frequencies measurements are in the subdiffuse regime, where the total
reflectance is the sum of a diffuse and a semiballistic component. Thus, for high spatial frequen-
cies, the diffuse reflectance should always be lower than the total reflectance. For the EBC and
the model of Cuccia et al., this was not the case. There is no theoretical reason to prefer our
approach (starting from a pencil beam illumination) to the approach of Cuccia et al. (starting
from a plane wave illumination), or to prefer the PCBC over the EBC as all are based on sound
physical principles.12 The differences in the reflectance values obtained with the different
approaches demonstrate the limitations in modeling diffuse light transport in general. Solving
this apparent ambiguity is beyond the scope of this manuscript.

There has been a debate in literature on whether or not the absorption coefficient should be
incorporated in the diffusion coefficient for the analytic solutions to the PCBC and EBC.19–24

In this paper, we used D ¼ 1∕ð3ðμs 0 þ μaÞÞ to ensure a fair comparison to the model of
Cuccia et al., which used absorption in the diffusion coefficient. In the diffuse regime, the
reduced scattering coefficient is much larger than the absorption coefficient and the reflectance
values obtained with each model would, thus, barely be different regardless of whether or not the
absorption coefficient was included in the diffusion coefficient. Therefore, for the purpose of this
paper, we could not determine which definition of the diffusion coefficient is more appropriate
for SFDI. Even so, the definition of the diffusion coefficient does become important for the
development of a subdiffuse model for SFDI. If the subdiffuse reflectance would be modeled
as the sum of a diffuse and a semiballistic term,18 the accuracy of the diffuse term for high values
of μa is important. Currently, a model does exist for subdiffuse SFDI,7 but it is only valid for one
type of tissue phase function and does not include absorption. Therefore, the currently available
subdiffuse model cannot be used to interrogate tissue, since there will always be absorbers
present and the tissue phase function is generally not known.

Apart from analytical models, approaches exist to extract optical properties from SFDI
measurements based on MC simulations—either employing look-up-tables or machine-learning
algorithms. MC simulations can include the details of the optical setup that is used (such as angle
of incidence and detector numerical aperture) and look-up-tables and machine-learning algo-
rithms can improve the speed of optical property determination. For medical applications where
speed is essential, such as endoscopy,25 fast algorithms or look-up-tables to extract optical prop-
erties are favorable. However, when speed is less important, analytical models provide a few
benefits. First, while machine-learning algorithms could overfit the problem and might not pro-
vide accurate answers for optical properties that were not simulated, this is much less likely for
analytical models. Second, while anybody can use an analytical model since it is a formula that is
written out, machine-learning algorithms are often not freely available and can only be repro-
duced by redoing the MC simulations and retraining the algorithm. Regardless, analytical mod-
els are valuable for our fundamental understanding of light transport in general and for SFDI
specifically. For example, previously we developed an analytical model for another subdiffuse
spectroscopy technique that uses fiber-optic probes: single fiber reflectance (SFR) spectroscopy.
We modeled the subdiffuse reflectance as the sum of a diffuse and a semi-ballistic component
and identified the new parameter psb to incorporate the influence of the phase function on the
semi-ballistic component.26 Without the analytical model that we developed for the diffuse

Post, Faber, and van Leeuwen: Model for the diffuse reflectance in spatial frequency domain imaging

Journal of Biomedical Optics 046002-7 April 2023 • Vol. 28(4)



reflectance in SFR spectroscopy.27 we would not have been able to identify the parameter psb.
More importantly, now that we determined that the subdiffuse reflectance in SFR spectroscopy
depends on μ 0

s, μa, and psb, it is possible to properly perform MC simulations to create look-up-
tables or machine-learning algorithms for SFR spectroscopy by including simulations with
a range of μ 0

s, μa and psb values.
In conclusion, we investigated the diffuse reflectance in SFDI by comparing the currently

used model of Cuccia et al. to two new models based on integrating the theoretical response
function RðρÞ under the EBC and PCBC for a pencil beam illumination over ρ from 0 to ∞
and replacing μeff by μeff

0. The model based on the PCBC provides the best results, and reduces
the median relative error by 10% for the extracted μ 0

s, 64% for μa and 45% for the reflectance.
Errors in the expected reflectance can further influence the accuracy of extracted optical proper-
ties, since SFDI measurements involve a calibration procedure with a phantom with known
optical properties for which the expected reflectance is used to calibrate the setup.
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