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Abstract. Most medical image registration algorithms suffer from a directionality bias that has been shown to
largely impact subsequent analyses. Several approaches have been proposed in the literature to address this
bias in the context of nonlinear registration, but little work has been done for global registration. We propose a
symmetric approach based on a block-matching technique and least-trimmed square regression. The proposed
method is suitable for multimodal registration and is robust to outliers in the input images. The symmetric
framework is compared with the original asymmetric block-matching technique and is shown to outperform it
in terms of accuracy and robustness. The methodology presented in this article has been made available to
the community as part of the NiftyReg open-source package. © The Authors. Published by SPIE under a Creative
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1 Introduction
Medical image registration is core to many image analysis pipe-
lines. It consists of bringing two or more images into spatial
alignment, often mapping one image into the space of another.
However, recent studies have highlighted that this directionality
in the registration can create a bias in subsequent analyses.

Yushkevich et al.1 and Leung et al.2 highlighted the effect of
asymmetric processing when estimating the brain atrophy
occurring during a neurodegenerative process such as
Alzheimer’s disease. Thompson et al.3 pointed out that bias
in registration directionality has a large impact on the extraction
of imaging biomarkers derived from tensor-based morphometry.
Fox et al.4 enumerated several assessment methods, including
symmetry, against which new methodologies for atrophy esti-
mation should be tested.

Several approaches have been proposed to address this
issue in the context of nonlinear registration. Christensen and
Johnson5 jointly optimize forward and backward transforma-
tions while minimizing an inverse-consistency error criterion.
Tao et al.6 and Modat et al.7 used similar schemes using the
demons approach8 and a cubic b-spline parametrization,9

respectively. Vercauteren et al.10 took advantage of a nonsta-
tionary velocity field parametrization to concurrently optimize
forward and backward transformations through the exponentia-
tion of a velocity field and its negated version. Avants et al.11

presented a symmetric approach based on the optimization of
a nonstationary velocity field discretized into intermediate
space images.

Little work has, however, been proposed to remove direction-
ality bias in the case of global registration. Leung et al.2 pro-
posed to run several asymmetric registrations, for example

forward and backward in the case of pairwise registration,
and to combine the obtained transformations into a consensus
registration through averaging in the log-Euclidean space.
Reuter et al.12 developed a global registration technique based
on robust statistic optimization performed in a midpoint space.
This approach minimizes the residual differences between input
images while rejecting outliers. A linear intensity scaling is
used in order to increase the robustness of the algorithm and
deal with different ranges of intensity within the same modality
or pulse-sequence. This method has been altered by Wachinger
et al.13 to accomodate for multimodal images by using local
entropy.

In this paper, we propose a robust and symmetric registration
method that differs from Reuter et al. in two main aspects. First,
we used a block-matching approach14 to establish the spatial
correspondences, where the normalized cross correlation is
used as a measure of similarity. Due to the small dimension
of the blocks under consideration, the proposed approach is suit-
able for multimodal registration applications.15 The second main
difference is that joint forward and backward transformation
parameters are simultaneously calculated rather than using a
midpoint. This removes the need to discretize the transformed
input images into an average space, which can be problematic
when input images have different fields-of-view and resolution,
as often seen in registration of different modalities. In these sce-
narios, the user must make an algorithmic decision on how to
discretize the midspace, which can lead to a bias toward one of
the images. Assuming two images of different resolutions,
the user has to decide how to discretize the midspace. With the
proposed approach, the transformation is optimized within the
native spaces of the input images. Similarly to Reuter et al. and
Wachinger et al., the proposed approach is also robust to the
presence of outliers thanks to the use of a least-trimmed squared
(LTS) optimization.*Address all correspondence to: Marc Modat, E-mail: m.modat@ucl.ac.uk
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We evaluated the accuracy, precision, and robustness of
our symmetric block-matching–based approach using several
databases of synthetic magnetic resonance (MR) images, MR
longitudinal studies, multimodal studies of magnetic resonance
imaging (MRI), Positron emission tomography (PET), and com-
puterised tomography (CT) scans, and pairs of preoperative and
intraoperative MR.

2 Method

2.1 Block Matching for Global Registration:
the Classical Approach

In the original block-matching method, the registration is per-
formed using a two-step approach. The first step is to establish
point correspondences between the current transformed floating
image and the reference image using the block-matching strat-
egy. This is done by dividing the reference and transformed
floating images into blocks of uniform size. Each block in
the reference image is compared with image blocks in the cor-
responding neighborhood of the transformed floating image.
The matching block is the one with the maximum normalized
cross correlation (NCC) with the reference block computed as:

NCC ¼ 1

N

X
~x∈br

½brð~xÞ − μbr �½bfð~xÞ − μbf �
σbr × σbf

;

where br and bf denote blocks in the reference and warped
floating image, respectively, μ and σ correspond to the mean
and standard deviation value within a block, andN is the number
of voxel in a block. The second step is to compute the transfor-
mation parameters from these point correspondences using a
LTS regression method, which ensures robust outlier rejection.
This optimization technique is also computationally efficient as
each LTS iteration has an analytical solution. These two steps
are iteratively performed, where the optimization starts with
a large block search neighborhood (corresponding to gross
displacements) and then moves toward a smaller search neigh-
borhood (corresponding to finer displacements) in a coarse to
fine strategy.

2.2 Directionality Bias in Image Registration

The classic block-matching image registration maps one image
into the space of another, producing a transformation TI→J that
maps image I to image J and enables image J to be warped into
the space of image I. If the two images were reversed so that J is
mapped to I, a new transformation TJ→I is produced. The direc-
tionality that is prevalent in many image registration algorithms
would result in TI→J ≠ T−1

J→I . If an algorithm is symmetric, then
these two transformations would be the inverse of each other,
and the registration result would not depend on the order of
images.

Figure 1 illustrates the impact of the directionality bias on a
subsequent analysis: the full brain atrophy estimation. In this
example, two T1-weighted MRIs from the same subject and
acquired with a 1-year interval are spatially normalized to a mid-
space based on an affine transformation. This step ensures that
no resampling bias affects the brain atrophy estimation. Three
registration approaches are used to estimate the affine paramet-
rization: (i) an asymmetric registration where the baseline scan
is considered as the reference and the follow-up scan as the
floating, Tasym;b→f , (ii) an asymmetric registration where the

follow-up scan is considered as the reference and the baseline
scan as the floating, Tasym;f→b, and (iii) a symmetric registration
scheme, Tsym. After the resampling of the input images to a mid-
space, they are corrected for differential bias fields and the
atrophy is estimated using the boundary shift integral method
as described by Leung et al.2 The obtained full brain volume
changes over one year are 14.49, 20.55, and 16.51 mm using
the forward, backward, and symmetric registration schemes,
respectively. It can be noted that using the asymmetric registra-
tion approaches, the obtained atrophy measurements are differ-
ent even though the composition of the obtained matrices for
this specific case is close to identity, hence close to being inverse
consistent

Tasym;b→f ∘ Tasym;f→b

¼

0
BB@

1.0004 0.0004 0.0006 0.0192

0.0004 0.9944 0.0011 −0.0516
0.0002 0.0016 0.9969 0.0437

0.0000 0.0000 0.0000 1.0000

1
CCA;

where ∘ denotes the composition operator.

2.3 Symmetric Extension to Block-Matching
Global Registration

Since the original block-matching-based registration introduces
a directionality, the results would yield transformations that are
not the inverse of each other when the order of images are
switched. The inverse consistent extension to the block-match-
ing algorithm ensures that the registration is symmetric and no
bias is coming from the registration direction.

Similar to the classical approach, the optimum transforma-
tion is estimated in an iterative fashion where the current esti-
mated transformation is updated at each iteration. Each iteration
follows a two-step scheme where the first step is to establish

Fig. 1 Two scans from the same subject acquired with a 1-year inter-
val are affinely registered using two asymmetric and a symmetric
approaches. Using the obtained transformations, they are spatially
normalized to midspaces before computing the full brain volume
changes using the boundary shift integral method.
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point correspondences between the two images. Using block
matching, two sets of correspondences are estimated: f~CI→Jg
mapping points from image I to image J and f~CJ→Ig to map
points from image J to image I. This two sets of correspond-
ences are assessed from blocks defined in image I and J,
respectively.

The second step is to update the transformation parameters
estimated through LTS regression. In the original block-match-
ing-based approach, the updated parameters are incremental and
composed with the current estimate of the transformation. For
example, if the current transformation at iteration t is Ft and an
update ft is computed, then the updated transformation would
be Ftþ1 ¼ ft ∘ Ft. If the same was applied to the inverse of
the transformation Bt ¼ F−1

t , and an incremental update bt
was obtained such that bt ¼ f−1t , then the properties of matrix
multiplication state that ðft ∘ FtÞ−1 ¼ F−1

t ∘ f−1t ¼ Bt ∘ bt. This
results in the incremental updates being premultiplied in one
direction but postmultiplied in the other direction. Since matrix
multiplication is not commutative, this approach would break
symmetry as the resulting transformations would depend on
how the images were ordered. To address this issue, the
block-matching correspondences for the symmetric approach
are always established using the original image positions at
every iteration. This is achieved by combining, at every itera-
tion, the obtained block-matching correspondences with the
previous estimate of the transformation. As a result no matrix
multiplication has to be performed since the update is integrated
into the LTS regression as:

Ftþ1 ¼ LTSð~CI→J ∘ FtÞ;
instead of the previous update approach:

Ftþ1 ¼ ft ∘ Ft; where ft ¼ LTSð~CI→JÞ.
To ensure inverse consistency between the transformation

parameters, the transformation matrices obtained through the
LTS fitting are averaged16 and updated as

TI→J←ExpmðfLogm½LTSðTI→J ∘ ~CI→JÞ�
þ Logm½LTSðTJ→I ∘ ~CJ→IÞ−1�g∕2Þ

TJ→I←ExpmðfLogm½LTSðTJ→I ∘ ~CJ→IÞ�
þ Logm½LTSðTI→J ∘ ~CI→JÞ−1�g∕2Þ;

where Expm and Logm are the exponential and logarithm
matrix operators, respectively.

Using such an approach, the result transformations, forward
and backward, are inverse consistent (TI→J ¼ T−1

J→I) and the
directionality of the registration does not affect the recovered
transformation parameters.

3 Validation
The proposed block-matching method has been implemented as
part of the NiftyReg open-source software.17 All registrations
were run using the same parameters to allow for a fair compari-
son of the results. NCC was used as a local measure of similarity
in the block-matching procedure. The block dimensions were
chosen to be 4 × 4 × 4 voxels. The blocks were sorted accord-
ing to decreasing intensity variance and the top 50% of the

blocks in the reference images were considered for the LTS opti-
misation step. During the LTS optimization, 50% of the blocks
with the largest-squared Euclidean residuals (according to the
current estimated transformation) were considered as outliers.
For the registrations, a multiscale pyramidal approach with three
resolution levels was used to avoid local minima and increase
the capture range. The registrations produced a full affine trans-
formation (12 degrees-of-freedom). For the retrospective image
registration evaluation (RIRE) database, 4 resolution levels and
a rigid transformation (6 degrees-of-freedom) were used.

3.1 Validation on Synthetic Data

In order to assess the capture range and robustness of the pro-
posed symmetric approach, two synthetic images18 were used:
a T1-weighted (T1w) and a T2-weighted (T2w) MRI. Both
images were simulated with 9% noise level and 20% intensity
nonuniformity. Orthogonal views of these images are shown in
Fig. 2. The images were a priori in alignment and known affine
transformations were applied to one image. Registrations were
then performed using the symmetric and the asymmetric
approaches in both forward and backward directions. The regis-
tration error was computed at the eight corners and the average
Euclidean distance between the ground truth and the recovered
positions for these corner points are reported.

The known transformations were generated by applying rota-
tions from −45 to 45 at 15 increment steps, translations from
−45 to 45 voxels with a 15 voxels increment, scaling from
50% to 150% with a 10% increment, and finally shearing
from −0.2 to 0.2 with a 0.05 increment. This resulted in
4851 transformations (varying each of the 12 components inde-
pendently) and a total of 14,553 individual registrations (sym-
metric, asymmetric forward, and asymmetric backward). The
two input images were also registered using the FMRIB’s linear
image registration tool (FLIRT) algorithm,19 part of the FSL
software package.20 The normalized mutual information was
used as a similarity measure. Note that due to the high level
of noise and intensity nonuniformity, FLIRT lead to an error
of 1.30 and 1.16 voxels for the forward and backward
approaches, respectively, in the case where the input images
were already aligned. Based on these error values, any registra-
tions results with an average error larger than 2 voxels were clas-
sified as a failure.

Fig. 2 Simulated T1w and T2w MRI with 9% noise and 20% bias field
(BrainWeb).
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The success rates for the symmetric, forward, and backward
implementations were 91.12%, 78.96%, and 86.02%, res-
pectively. For 1742 transformations, the symmetric approach
successfully recovered the transformation when one asymmetric
scheme failed. In 410 cases, the symmetric recovered the
known transformation when both the forward and backward
scheme failed. For 19 occurrences, the symmetric approach
failed whereas the backward method successfully recovered
the transformation and, in one case, the symmetric registra-
tion failed while both asymmetric approaches recovered the
transformation.

3.2 Validation on the RIRE Database

The RIRE project, based on the Vanderbilt database,21 consists
of CT, PET, and MRI scans with an associated marker-based
gold standard transformation.22 We assessed the accuracy of
the proposed symmetric approach using this database and com-
pared its result with the asymmetric approach. For all registra-
tions, the CT and PET images were used as references and
the landmark errors were assessed in their space. The voxel
dimensions of the CT and PET images were 0.65 × 0.65 × 4.00
and 2.59 × 2.59 × 8.00 mm, respectively. The proton density,
T1w, and T2w MRI were used as floating images. Figure 3
shows coronal views of multiple modality scans from a subject.

Intrasubject registration was performed on 9 subjects and the
registration error, defined as the Euclidean distance in milli-
meters, between the ground truth and the recovered transformed
positions, was computed at 704 landmark positions. Table 1
shows, for all registration techniques, the mean and maximum

errors per modality and the overall error. Figure 4(a) shows the
cumulative registration error over 364 landmarks when the CT
images are used as reference, and Fig. 4(b) presents the same
result for 340 landmarks defined on the PET images.

3.3 Validation on the MIRIAD Database

We used the MIRIAD database,23,24 to assess the transitivity
properties of the symmetric and asymmetric approaches. The
MIRIAD database consist of brain MRI scans from 46 subjects
diagnosed with Alzheimer’s disease and 23 age-matched
healthy controls. For all subjects, we used a baseline, 6- and
12-months followup scans. The 6- and 12-months follow-up
scans were registered to their corresponding baseline (TBL−6
and TBL−12 respectively) and the 12-months scans were regis-
tered to the 6-months scans (T6−12). Transitivity error was
defined as the average Euclidean distance at the transformed
corners of the baseline image using the direct correspondences
(TBL−12) compared with the composed transformation
(T6−12 ∘ TBL−6). The mean transitivity error over the 69 subjects
was 0.54 (0.27) and 0.66 mm (0.34) for the symmetric and
asymmetric approaches. The symmetric approach leads to sig-
nificantly lower transitivity error than the asymmetric approach
(two-tailed, paired t-test, p < 0.005). The minimum and maxi-
mum average errors were [0.15, 1.35] and [0.20, 1.60] for the
symmetric block matching and the asymmetric block matching,
respectively. For comparison, using FLIRT with the default
parameters, we obtained a mean error of 1.00 mm (0.71) and
minimum and maximum average errors of [0.27, 4.74].

3.4 Intraoperative Images

A dataset comprising 15 pairs of pre and intraoperative T1-
weighted MR images was used to assess the robustness of
the proposed algorithm to missing tissues. The preoperative
MRI were acquired on a 3T GE Signa Excite HD (General
Electric, Waukesha, Milwaukee, Wisconsin) with a spatial reso-
lution of 0.9 × 0.9 × 1.1 mm. The intraoperative scans, acquired
on a 1.5T Siemens Espree (Erlangen, Germany), have a spatial
resolution of 1.1 × 1.1 × 1.3 mm3 and were all acquired after
some tissue resection was performed. Note that the intraopera-
tive acquisitions do not have the brain center in the field-of-
view. Figure 5 shows the pre and intraoperative scans from
one subject.

We performed the 15 intrasubject registrations using the
proposed symmetric block-matching approach and twice with
the asymmetric block-matching approach (one where the

Fig. 3 Corresponding coronal slices of the same subject in the multi-
ple modalities available as part of the retrospective image registration
evaluation database.

Table 1 Registration errors from multimodal intrasubject registrations using the RIRE database. Sym. BM: symmetric block-matching registration,
Asym. BM: original, asymmetric block matching.The columns show the mean and maximum errors of the various multimodal combinations regis-
tered, with the overall error in the last column.

Reference image CT CT CT PET PET PET ALL

Floating image Proton density (PD) T1w T2w PD T1w T2w

Sym. BM (mean error) 1.71 1.60 1.64 3.11 3.54 2.49 2.33

Sym. BM (max error) 3.07 3.62 3.33 9.28 9.12 7.55 9.28

Asym. BM (mean error) 2.13 1.95 3.39 4.39 9.94 2.68 3.94

Asym. BM (max error) 12.45 4.85 25.24 21.48 68.98 7.38 68.98
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preoperative image served as reference and one where the inrao-
perative was the reference). It is difficult to localize anatomical
landmarks in the intraoperative MRI images due to severe non-
linear geometric distortions and degraded image quality, hence
we only performed a qualitative analysis of the registration
results. Two reviewers were asked to qualify the registration
results as successful, acceptable or failure based on visual
assessment while being blinded to the registration scheme.

The results are reported in Table 2. The symmetric was able
to successfully register all 15 datasets, while multiple cases
using the asymmetric registrations were classified as failures.

4 Discussion
We presented a symmetric extension of the block-matching
algorithm for global registration. To the best of our knowledge,
the proposed scheme is one of the two available implementa-
tions for robust multimodal symmetric registration, the other
being the implementation of the work by Wachinger et al.13

The algorithm has been compared with the original asymmetric
framework in both mono and multimodal registration. Using
simulated transformations, we found that the symmetric formu-
lation led to an increase in capture range. This method also yield
a lower transitivity error over multiple time-points and multiple
subjects, a small but acknowledged source of bias in subsequent
analyses. Using the RIRE database for evaluation of intermodal-
ity registration, we found that the symmetric approach outper-
formed its asymmetric counterpart both in terms of accuracy and
in term of robustness as shown by the lower cumulative errors

(a) (b)

Fig. 4 Error in millimeters over multiple landmarks using the symmetric and asymmetric block-matching
approaches. (a) and (b) The errors assessed when the images used as reference are CT and the PET,
respectively.

Fig. 5 Pre- and intraoperative example images.

Table 2 Qualitative evaluation of pre and intraoperative registration
performance.

Successful Acceptable Failure

Symmetric 15 0 0

Forward 12 1 2

Backward 5 3 7
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over multiple landmarks. Finally, using pre and intraoperative
MRI data, the proposed algorithm was shown to be robust to
missing tissue. Note that all validations were performed without
using any masking or initial alignment of the brain center of
mass, as the overall aim was to compare several methods in
the same context. As a result, we do not claim that the proposed
implementation is suitable for all applications and outperforms
all other implementations. Our aim was to highlight the advan-
tages of using a symmetric registration approach as opposed to
an asymmetric approach.
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