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Abstract. Blood flow-metabolism mismatch from dynamic positron emission tomography (PET) studies with
15O-labeled water (H2O) and 18F-labeled fluorodeoxyglucose (FDG) has been shown to be a promising diagnostic
for locally advanced breast cancer (LABCa) patients. The mismatch measurement involves kinetic analysis with
the arterial blood time course (AIF) as an input function. We evaluate the use of a statistical method for AIF extrac-
tion (SAIF) in these studies. Fifty three LABCa patients had dynamic PET studies with H2O and FDG. For each
PET study, two AIFswere recovered, an SAIF extraction and also amanual extraction based on a region of interest
placed over the left ventricle (LV-ROI). Blood flow-metabolism mismatch was obtained with each AIF, and kinetic
and prognostic reliability comparisons were made. Strong correlations were found between kinetic assessments
produced by both AIFs. SAIF AIFs retained the full prognostic value, for pathologic response and overall survival, of
LV-ROI AIFs. © The Authors. Published by SPIE under a Creative Commons Attribution 3.0 Unported License. Distribution or reproduction of this work
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1 Introduction
The role for positron emission tomography (PET) imaging in
oncology is expanding with a range of clinical protocols
under consideration for many specific cancers. Blood flow-
metabolism mismatch from dynamic PET studies, e.g., with
15O-labeled water (H2O) and 18F-labeled fluorodeoxyglucose
(FDG), has a history in the cardiac applications1 but has also
shown potential as a diagnostic biomarker for the management
of patients with locally advanced breast cancer (LABCa).2

Realization of this measurement involves kinetic analysis of
dynamically acquired H2O and FDG data with the time courses
of the PET tracers in arterial blood (AIF) as input functions.
While direct recovery of an AIF by catheterized arterial sam-
pling is a gold standard, it is not routinely feasible in most clini-
cal settings. As a result, image-based extraction of the AIF is
required. In breast cancer studies, the imaging field of view
encompasses the heart, so it is possible to recover an estimate
of the AIF by careful placement of a region of interest (ROI)
over an appropriate part of the left ventricle (LV). We refer
to this as the LV-ROI method. But extraction of the AIF signal
from ROIs drawn over the LV can be challenging and hard to
reproduce, even for a highly experienced analyst. The finite res-
olution of PETand the motion of the heart and lung during scan-
ning create spillover artifacts in time-course data derived from
LV regions. With FDG, late tracer uptake in myocardial tissue

surrounding the LV is an obvious source3 of spillover but there
may be others as well. For example, at earlier times, the spillover
from nonarterial blood pools in the right ventricle (RV) and the
lung can play a role. Simplified and reproducible determination of
the AIF from the image data would facilitate more widespread
consideration of blood flow-metabolism mismatch for clinical
management of LABCa. The present work is focused on that goal.

Two main approaches have been proposed as alternatives to
catheterized arterial sampling for determination of the AIF in
a dynamic PET study. The fully image-based approach focuses
on arterial signals associated with blood pools largely using
manually placed ROIs over corresponding blood pool structures
in the imaging field of view, with possible corrections to account
for the contaminating effects of spillover of tracer uptake into
these areas from surrounding tissue.4,5 The population-template
approach uses a standard reference or template AIF, typically
obtained by averaging a population of directly sampled histori-
cal AIFs. The population template is scaled to the study at hand
by a direct blood sample, or scaling is derived from an image
measurement for a blood pool in the field of view of the
scanner.6,7 Our group has developed a hybrid statistical AIF
extraction (SAIF) method that attempts to combine aspects of
the fully image-based and the population-template approaches.
SAIF makes use of a physiologically based pharamocological
model of tracer circulation within the body. It uses a Bayesian
formulation to take account of prior AIF information.8 The
method has the advantage of formulating the recovery of the
AIF in such a way that it is possible to make use of information*Address all correspondence to: Finbarr O’Sullivan, E-mail: f.osullivan@ucc.ie
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about the AIF from nonarterial as well as arterial sources. In
particular, for breast cancer studies, when the heart and lungs
are in the field of view, information from the lung, RV, and
more general venous blood signals can positively contribute
to the AIF estimation—as opposed to being regarded as unde-
sirable sources of contamination. The approach has shown
promise in the context of cerebral PET studies with H2O and
FDG8 where no suitably large blood pool structure is in the im-
aging field of view. This paper presents an assessment of SAIF
in the context of blood flow-metabolism mismatch evaluation
for LABCa studies, where classical image-based AIF recovery
from manually placed ROIs in the LV by a skilled operator
familiar with the anatomy can be technically challenging and
difficult to reproduce.

2 Review of the SAIF Extraction Technique

2.1 Model Representation of the AIF

A physiologically based pharmacokinetic Markov chain
model9,10 is used to describe tracer atom movement with the sys-
tematic circulation (see Fig. 1). There are eight different states,
each representing different parts of the body: (1) RV, (2) LV
(arterial blood), (3) lung vasculature, (4) lung extravascular
space, (5) body vasculature, (6) body extravascular space,
(7) loss blood, and (8) venous blood. The random movement
of a tracer atom between model states on each time step
(heart beat) is governed by a transition matrix. The Markov
chain transition matrix is
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Fig. 1 (a) Whole-body circulation model for tracer atom dynamics within the body. The model has eight
states detailed at the beginning of Sec. 2. States 1 to 6 are indicated with numbers in schematic, the other
two states are loss output (lower-left, state 7) and venous blood (blue, state 8). The parameters in the
model, θ in text, determine the various transition probabilities associated with the black arrows.
(b) Illustrative time-activity curve profiles for regions—associated states and numbers indicated—are
displayed for H2O (15O-labeled H2O) and FDG (18F-labeled FDG). The injection profile durations are
5 s (H2O) and 2 min (FDG). In the plots, the RV profile is normalized to have a maximum of unity
with other profiles scaled relative to it.
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where the rows and columns are ordered by states (1 to 8). Note
Pij, here, represents the probability that a tracer atom moves to
state i at the next time step, given that it is currently in state j.
The requirement that the transitions must be probabilities with a
unitary row sum imposes a number of constraints. A set of the
transformations is used in parameterization of the transition
matrix
EQ-TARGET;temp:intralink-;e002;63;675
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e
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e
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e
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e
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l
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It is also required that r ¼ rLv þ rBv and d ¼ 1 − rLe þ
1 − rBe − l be nonnegative. The input to the Markov model is
represented by the convolution of a specified injection profile
(typically a square wave of known duration) and a gamma den-
sity with shape and scale ðα; βÞ—the choice of the gamma den-
sity, here, is based on empirical performance. In addition, there
is a nonnegative scale (A) and a delay parameter (Δ) that adapts
to the timing of the injection relative to the measured PET data.
Using a combination of logarithmic and logistic transforms, the
model is parameterized by a vector θ ¼ ðθΔ; θA; θα; θβ; θc; θr;
θor; θd; θod; θe; θe 0 ; θsÞ. The elements of θ are mapped to the
unknowns according to

EQ-TARGET;temp:intralink-;sec2.1;63;413Δ ¼ θΔ; A ¼ eθA ; α ¼ eθα ; β ¼ eθβ ; pc ¼
eθc

1þ eθc

and, with

EQ-TARGET;temp:intralink-;sec2.1;63;366r ¼ eθr

1þ eθr
; or ¼ eθor ; d ¼ eθd

1þ eθd
; od ¼ eθod

e ¼ eθe ; e 0 ¼ eθe 0 ; os ¼ eθs ;

further transition matrix elements are given by
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where oL ¼ e e 0
1þe 0 and oB ¼ e 1

1þe 0. The net result of the above is
that with a specified value for the parameter vector θ and a given
injection profile, the time course for the amount of tracer in each
state, including the arterial blood time course or AIF, can be
evaluated.8

2.2 Estimation Method

Based on the above, the estimation of the AIF is replaced by a
problem of estimating θ. Information from the available image

data as well as a-priori past experience with the tracer is both
used in a combined Bayesian-like estimation strategy. It is
important to appreciate that while the circulation model refer-
ences the whole body, the extraction procedure only requires
data from the field of view of the scan—not the whole body.
The imaging data are reduced by segmentation/clustering to
obtain a statistically representative collection of time courses.
The exact number of time courses is selected adaptively
based on the characteristics of the image data. Details of the
segmentation techniques are given in Refs. 11 and 12—a com-
bination of split-and-merge segmentation and k-means cluster-
ing is used. Note the present AIF extraction, including the
segmentation analysis, is applied separately to the H2O and
FDG studies. A combined approach could potentially enhance
the performance. Each of the segmentation-derived time
courses, denoted as zjðtÞ with j indicating the segment number
and t the time frame, is modeled as a positive linear combination
of the eight profiles generated by the PKPB model as well as a
cumulative AIF profile, i.e., a Patlak term, representing tissue
retention. For a given θ value, the model-derived prediction
of the segment time course is denoted as ẑjðtjθÞ. Note that
ẑjðtjθÞ is the prediction of zjðtÞ based on the best positive linear
combination of the θ-based PKPB model profiles. By fitting the
PKPB model to directly sample arterially time courses in his-
torical studies, i.e., prior experience, an a-priori characterization
of the population behavior of the parameter vector θ can be cre-
ated. Using p to signify population, we compute the population
mean (μp) and covariance matrix (Σp) of θ�. Here, θ� is defined
as the part of θwith scale (θA) and delay (θΔ) elements removed.
Our estimation of θ is based on an objective function that com-
bines the information from the imaging data at hand and the
historical experience relevant to the tracer. The optimal param-
eter choice, θ̂, is chosen to minimize the objective function
EQ-TARGET;temp:intralink-;e004;326;389

lλðθÞ ¼
XJ
j¼1

XT
t¼1

wjðtÞ½zjðtÞ − ẑjðtjθÞ�2

þ λðθ� − μpÞ 0Σ−1
p ðθ� − μpÞ: (4)

This can be viewed as a Bayesian technique.6 λ is a positive
scale factor, which is adjusted to ensure that the estimate
remains consistent with a-priori experience. Specifically, the
value of λ is adjusted to ensure that the Mahalanobis distance
of the nonscale and delay parts of the estimate (θ̂�) from the
a-priori mean (μp), i.e., ðθ̂� − μpÞ 0Σ−1

p ðθ̂� − μpÞ, does not
exceed the 90th percentile of corresponding distance values
observed in historical data. The weights [wjðtÞ] used reflect
the reliability of the PET data—this is based on the approximate
Poisson nature of the measurement.13 We also adjust the weight-
ing to place more emphasis on the early part of time course
(within the first 4 min for H2O and 15 min for FDG) where
vascular signals are more dominant. The entire approach is
implemented with substantial reliance on open-source software,
specifically AMIDE14 and R.15

2.3 Scaling

The above estimation process does not reliably identify the
absolute scale of the AIF. A separate process is used to
scale. Since arterial and venous blood profiles ultimately
equilibrate,8 it is possible to scale our AIF curve using either
arterial or venous sampled data. As long as the timing of
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these measurements is known relative to the injection time of the
tracer, there is no need to restrict to later sampling time points. In
particular, the sampling times do not have to be taken at a time
when the arterial and venous activities can be considered to have
equilibrated. This flexibility allows the blood sampling to occur
when the activity levels are high and the relative error in the
blood measurements is lower. In the context of blood flow-
metabolism mismatch studies, a scaling based on data recovered
from measurements made in LV-ROIs or possibly even the
descending aorta is certainly feasible, including at early- or
late-time points where spillover from adjacent structure does
not pose a challenge (early) or arterial–venous equilibrium min-
imizes the impact of spillover between arterial and venous struc-
tures. In the LABCa studies reported below, AIFs were scaled
using late-time blood time-course data recovered from the LV-
ROI, and this is to ensure better agreement with the LV-ROI-
extracted AIFs.

3 Experimental Evaluation

3.1 Clinical Study and Data

A dataset from a study of PET imaging in LABCa patients is
used. The study is fully described in a number of reports, see,
for example, Dunnwald et al.2 and Mankoff et al.16 Briefly, this
was an institutional review board-approved prospective study at
the University of Washington Medical Center. Patients with his-
tologically confirmed breast carcinoma and scheduled for neo-
adjuvant chemotherapy prior to surgical resection were eligible.
Selected patients were imaged at baseline before chemotherapy
and also at mid- and posttherapy. Patients underwent definitive
breast and axillary surgery posttherapy where any remaining
tumor was resected. Our analysis focuses on the baseline data
from the set of 53 patients. As previously reported, the patient
data include standard clinical diagnostics, including the number
of positive axillary nodes and the estrogen receptor (ER) and
progesterone receptor (PR) status.16 Outcome data for treatment
for each patient were recorded as the presence or absence of
residual tumor at posttherapy surgery [no pathologic complete
response (pCR) versus pCR], disease-free survival, and overall
survival (OS). Survival and disease progression were assessed16

from the time of diagnosis. The date of the last follow-up is
May 4, 2009, and patients who had not died or progressed at
that point were considered censored in the analysis.

3.2 PET Imaging and Data Processing

Details of PET radiotracer production and dynamic tumor im-
aging protocols are given in the earlier reports.2,16 For H2O, 725
to 1902 MBq of [15O]-labeled H2O in a 1- to 4-mL volume was
injected as a bolus; with FDG, 218 to 396 MBq of [18F]-labeled
FDG in 7- to 10-mL volume was injected over 2 min with
a constant infusion pump. The H2O and FDG imaging studies
were conducted in the same session on a 35-plane GE-Advance
scanner, starting with the H2O study. The axial extent of the
scanner field of view is roughly 20 cm. Dynamic H2O imaging
was carried out over 8.75 min according to the following acquis-
ition sequence (number of frames and their durations given):
1 (1 min) preinjection, 15 (2 s), 15 (5 s), 12 (10 s), 8 (15 s),
and 6 (20 s). The FDG injection and dynamic imaging followed
H2O. The FDG acquisitions were conducted over 61 min
according to the sequence: 1 (1 min) preinjection, 4 (20 s),
4 (40 s), 4 (1 min), 4 (3 min), and 8 (5 min). All data were

acquired in two-dimensional mode using a filtered-backprojec-
tion reconstruction algorithm. Circular ROIs of ∼1.5-cm diam-
eter were drawn over tumor and contra-lateral normal breast,
a similarly sized ROI was placed over a portion of the LV.
These ROIs provided tissue and blood time-course (LV-ROI)
data for analysis. The SAIF extraction method, reviewed above,
was applied to the data to produce a second AIF. AIFs were
scaled using late-time LV blood time-course data. A voxel-level
analysis of the dynamic data was also applied17 to obtain a
mapping of the local blood volume for H2O and FDG. Tissue
time-course data were analyzed using the standard 1- and 2-
compartmental models of Kety for H2O

18 and Huang–
Sokoloff for FDG.19 All numerical computations, including
segmentation, SAIF extraction, and compartmental model
fitting by nonlinear least squares were carried out using the
open-source R Statistical Computing Software.15 The AIFs
produced by the LV-ROI and SAIF were used as inputs for the
compartmental analysis of tissue time-course data. Estimates of
blood flow (KH , mL∕min∕g) and the tissue FDG-based glucose
metabolic rate (MRF

glc, mg∕min∕100 g of tissue) were then
constructed. In addition, the blood flow-metabolism mismatch

ratio
MRF

glc

KH , measuring the glucose utilization rate per unit blood
flow, was also created.

3.3 Statistical Analysis

Pair-wise plots and correlations between LV-ROI- and SAIF-
derived kinetic variables, including the blood flow-metabolism
mismatch, were evaluated. The impact of the alternative AIFs on
the prediction of patient outcomes, pathologic response, and OS
from Dunnwald et al.2 was also considered. For survival,
a multivariate Cox regression analysis, incorporating standard
clinical diagnostics and either LV-ROI- or SAIF-derived
blood flow-metabolism mismatch, were compared. Formal
comparisons were based on the performance of the prognostic
model, likelihood, and concordance values were considered.
The statistical Bootstrap methodology20 was used to evaluate
differences between model performance criteria, appropriately
adjusted for bias. Standard errors for differences between LV-
ROI and SAIF prognostic models are also reported. A similar
approach was used for pathologic response (CR). A multivariate
logistic regression incorporating standard clinical diagnostics
and either LV-ROI- or SAIF-derived blood flow-metabolism
mismatch was compared. The comparisons were based on the
likelihood performance (deviance) of the logistic model. All
analyses were conduced in the R statistical package.15

4 Results

4.1 Illustrative AIF Reconstructions

Sample SAIF reconstructions for an H2O and FDG study are
shown in Fig. 2. Included in this are some of the image-derived
time courses produced by the automated data-segmentation pro-
cedure during the extraction process. The selected time courses
shown originate in regions where arterial (LV), prearterial (RV
and lung), and postarterial venous signals dominate. The ability
of the SAIF methodology to harvest information from these
diverse sources is a key feature of the approach. Comparisons
between the LV-ROI and SAIF are shown in Fig. 2. The recov-
ered venous time-course information, a by product of the SAIF
technique, is also shown. For H2O, the SAIF is not as peaked as
the LV-ROI data. This may be due to early spillover from the RV,
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which receives the initial bolus signal at the heart. With FDG,
the tracer injection was over a 2-min period. We expect less
impact from the RVon the LV data. The FDG SAIF has a higher
peak than the LV-ROI-based AIF. The SAIF is scaled by the tail
of the LV measurement. With FDG, a case could be made to
scale by the earlier LV data. Such an approach could bring
the SAIF into better alignment with the initial phase of the
LV-ROI AIF while also reducing its tail height.

4.2 Kinetic Analysis

Time-course data and corresponding kinetic model analysis
obtained using the LV-ROI and SAIF AIFs are shown in
Fig. 3. The data are from the same study as shown in Fig. 2.
In the case of FDG, the LV-ROI and SAIF AIFs deviate by
a maximum of 10%; with H2O, the maximum deviation is
25%. Figure 3 shows differences between the fits of kinetic
models based on the LV-ROI and SAIF inputs. This is most
apparent for the H2O data, perhaps to be expected given the
variability of the time-course data. Figure 3 also presents com-
parisons between the H2O-derived blood flow, the FDG-derived
glucose metabolic rate, and the blood flow-metabolism mis-
match. High correlations are observed for all three parameters.
Not surprisingly, the strongest relation (r ¼ 0.99) is found for
glucose metabolic rate. The greater divergence is observed for
the H2O-derived blood flow (r ¼ 0.92). Again, in light of
variation in the time-course data for H2O, the increased diver-
gence is not surprising. The observed correlation for the blood
flow-metabolism mismatch is the weakest (r ¼ 0.89), which is
still highly satisfactory. Further comparisons between kinetic

parameters, including computed blood and tissue volumes of
distributions, also show strong association between values pro-
duced using LV-ROI and SAIF as input functions.

4.3 Prognostic Comparisons

Table 1 reports results of multivariate Cox regression models for
OS using established clinical diagnostics and the PET-derived
blood flow-metabolism mismatch values produced using the
LV-ROI and SAIF AIFs. The established clinical variables
are the PR and ER receptor status (negativity) of the tumor
(PR and ER) and the number of nodes involved (Nodesþ).
The differences between the Cox model regression coefficients
obtained with the different AIFs are <20% of the associated esti-
mated standard errors—statistically insignificant. The overall fit
of the Cox model in terms of log-likelihood and concordance is
also shown in Table 1. The Bootstrap estimates the difference in
the Cox model fit are 0.15ð�1.90Þ and 0.007ð�0.025Þ for the
log-likelihood and concordance, respectively. These differences
are in the order of 1% and nonsignificant in formal statistical
terms—p-values are shown in the table. Corresponding results
for the analysis of pathologic response using the multivariate
logistic regression model are given in Table 2. Again, the
differences between the logistic regression model coefficients
obtained with the different AIFs are <40% of the associated esti-
mated standard errors—statistically insignificant. The difference
in the deviance (negative logarithm of likelihood) of the models
is −3.63ð�4.18Þ, showing 10% improvement with the SAIF
variable, but as with survival analysis, the difference in devian-
ces is statistically insignificant, p-value is 0.34.

Fig. 2 Sample SAIF reconstructions for H2O and FDG studies in a breast cancer patient: (a) estimated
SAIF (red) and venous (blue) times-courses, sampled LV data (points); (b) local blood volume maps,
produced by residue analysis,17 are overlaid on the PET attenuation scan; and (c) segment time-course
data (points) with vascular (purple) and extravascular (maroon) components indicated.
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A direct comparison between the prognostic risk assessments
corresponding to the survival and response models in Tables 1
and 2 is presented in Fig. 4. There is strong correlation between
the risks evaluated using the LV-ROI and SAIF AIFs. As a fur-
ther confirmation of the prognostic equivalence of the two AIFs,
we compare Kaplan–Meier survival characteristics of patients
stratified into high- and low-risk groups according to whether
the model risk, calculated using coefficients in Table 1, is
above or below the median risk for the sample. Note this strati-
fication means that half the patients are designated as “high risk”
and remaining patients are “low risk.” Their stratification pro-
duced using the risk calculation based on either LV-ROI or
SAIF inputs are very similar (see Fig. 5). This is consistent
with the quantitative analysis of likelihood and concordance
reported in Table 1. A comparison between the risk distribu-
tions, calculated using coefficients in Table 2, among responders
and nonresponders is presented in Fig. 5. The LV-ROI- and

SAIF-based risks show similar separation between responders
and nonresponders. Again, this is consistent with the quantita-
tive analysis of model deviance reported in Table 2.

5 Discussion
This study is motivated by the increasing role of PET imaging in
the clinical management of many cancer patients groups.
Although most imaging with PET scanners is carried out in
static mode, the widespread availability of the scanning technol-
ogy now has opened up possibilities for more elaborate and
potentially informative uses of its dynamic scanning capabil-
ities. But there are a number of complexities associated with
dynamic PET studies. At a technical level, more complete inter-
pretation of the dynamic information requires a kinetic analysis
using an appropriate compartmental model and the time course
of activity in the arterial blood as an input function. In a clinical
environment, image-based extraction of the arterial input

Fig. 3 Comparison of LV-ROI and SAIF AIFs in terms of kinetics analysis for tissue data. Top two rows
show ROI data versus time (in minutes) for normal (middle) and tumor (right) regions in one patient. AIFs
and model fits of ROI data with LV-ROI (solid-red) and SAIF AIFs (dashed-blue) are shown. Kinetic
parameter comparisons for the glucose metabolic rate as determined by FDG, MR(FDG) in mg∕min
per 100 units, blood flow, flow (H2O) in mL∕min ∕g units, and the associated blood flow-metabolism
mismatch ratio in all 106 ROIs examined are shown in the bottom row (SAIF values on the x -axis)—
solid/open dots represent tumor/normal ROIs. Linear correlation coefficients are indicated in boxes.
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function (AIF), as opposed to direct measurement by arterial or
venous blood sampling, is usually a necessity. While several
methods have been proposed for this,4,6,7,21 in the context of
breast cancer studies, spillover from myocardial tissue uptake
and nonarterially driven blood signals arising from the RV
and the lungs complicate the extraction of the arterial time
course.

The work presented explores the use of a statistical AIF
extraction methodology based on a whole-body circulation
model. The innovative element is that this model accounts
for arterial, venous, and nonarterially driven signals—not just
the arterially driven signal alone. Since nonarterial signals are
particularly relevant in the context of breast cancer imaging,
where the heart is the dominant blood pool in the field of
view, it makes sense to evaluate the whole-body approach in
this setting. Our group’s previous work has reported satisfactory
performance for the extraction method in the context of cerebral
imaging studies with H2O and FDG.8

The methodology used for blood extraction with H2O and
FDG is calibrated using historical data from studies, in which
directly sampled arterially curves for FDG and H2O were avail-
able. It is noteworthy that the nature of this process permits the
combined use of data from studies with different injection pro-
tocols. For example, data from both 1- and 2-min infusions were
used in our historical FDG studies. The whole-body circulation
method allows these data to contribute to the overall statistical
understanding of FDG whole-body circulation model parame-
ters in past studies. In addition, if an infusion protocol was
changed or even manual injection used, the extraction method
would not need to be changed. This would not be the case if
AIF extraction was based on a fixed template associated with
a particular injection protocol.

The absolute scaling of the AIF is not resolved by the meth-
odology. Importantly, however, the technique enables the AIF
scaling to be achieved using either arterial or venous blood
information. This flexibility is an advantage in settings where
the complexities of direct arterial sampling would make venous
measurement more appealing. In this work, a direct late-time
LV-ROI value is used for scaling. No adjustment for myocardial
spillover was used,3,5 such adjustment could improve the

Table 2 Multivariate logistic regression analysis of response. Based on
53 subjects, 11 had pathologic responses to chemotherapy. Regression
model: logðRisk of deathÞ ¼ PRþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Nodesþ

p
þ ERþMismatch.

Factor

LV-ROI SAIF

Coef SE p-value Coef SE p-value

PR −2.12 1.46 0.09 −2.82 1.79 0.11

Nodesþ 0.18 0.33 0.59 0.24 0.34 0.48

ER −0.35 1.40 0.80 −0.15 1.61 0.92

Mismatch 0.098 0.041 0.02 0.102 0.044 0.02

Model fit LV-ROI SAIF Difference* SE* p-value*

Deviance 39.49 34.75 −3.64 4.17 0.38

*Values based on Bootstrap resampling.20

Table 1 Multivariate Cox regression analysis of time to death. Based
on 53 subjects, 10 of whom were reported dead at the last follow-up.
Regression model: logðRisk of deathÞ ¼ PRþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Nodesþ

p
þ ERþ

Mismatch.

Factor

LV-ROI SAIF

Coef SE p-value Coef SE p-value

PR 2.43 1.26 0.09 2.26 1.27 0.08

Nodesþ 0.86 0.27 0.001 0.91 0.28 0.001

ER −1.14 1.17 0.33 −1.07 1.16 0.35

Mismatch 0.44 0.17 0.01 0.37 0.17 0.03

Model fits LV-ROI SAIF Difference* SE* p-value*

Likelihood 16.55 16.05 0.145 1.90 0.469

Concordance 0.769 0.776 0.007 0.025 0.388

*Values based on Bootstrap resampling.20

Fig. 4 Prognostic comparison. Model-defined risk computed from coefficients in Tables 1 (left) and
Table 2 (right) resulting from LV-ROI and SAIF (automatic image extraction) generated blood flow-
metabolism mismatch values. Correlation coefficients among risk values are shown in boxes.
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absolute quantitation accuracy. Whether this would impact the
prognostic value of the derived blood flow-metabolism mis-
match variable would need to be checked. Further studies
involving direct (venous) blood sampling could shed light on
the benefits of absolute quantitation.

Our results demonstrate that the extraction method satisfac-
torily recovers detailed kinetics and the blood flow-metabolism
mismatch information from PET studies with H2O and FDG in
breast cancer. This assessment is based on the prognostic utility
of the derived blood flow-metabolism mismatch measure for
early prediction of chemotherapy response and survival.
There is no indication that the use of the automatic SAIF extrac-
tion method degrades the prognostic value of the studies. The
ease of use of the SAIF extraction method and its reproducibility
are its benefits. The current practice for our breast cancer blood
flow-metabolism mismatch studies is based on a time course
extracted from a carefully drawn ROI over a slowly moving
part of the LV. This is often a technically challenging and
time-consuming step. A reduced reliance on such expertise
allows broader use of the blood flow-metabolism mismatch
technique. This could also facilitate consideration of a multi-
centered imaging trial of the use of blood flow-metabolism
mismatch studies in breast cancer patients.

6 Conclusion
SAIF is a reliable and reproducible AIF extraction method for
diagnostic assessment of blood flow-metabolism mismatch from
dynamic H2O and FDG PET studies in LABCa patients and can
provide a helpful and robust tool for analysis of dynamic PET
images studies where blood pool structures are included in the
dynamic imaging field of view.
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