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Abstract. Twin-to-twin transfusion syndrome is a condition in which identical twins share a certain pattern of
vascular connections in the placenta. This leads to an imbalance in the blood flow that, if not treated, may result
in a fatal outcome for both twins. To treat this condition, a surgeon explores the placenta with a fetoscope to find
and photocoagulate all intertwin vascular connections. However, the reduced field of view of the fetoscope com-
plicates their localization and general overview. A much more effective exploration could be achieved
with an online mosaic created at exploration time. Currently, accurate, globally consistent algorithms such as
bundle adjustment cannot be used due to their offline nature, while online algorithms lack sufficient accuracy.
We introduce two pruning strategies facilitating the use of bundle adjustment in a sequential fashion: (1) a tech-
nique that efficiently exploits the potential of using an electromagnetic tracking system to avoid unnecessary
matching attempts between spatially inconsistent image pairs, and (2) an aggregated representation of
images, which we refer to as superframes, that allows decreasing the computational complexity of a globally
consistent approach. Quantitative and qualitative results on synthetic and phantom-based datasets demonstrate
a better trade-off between efficiency and accuracy. © The Authors. Published by SPIE under a Creative Commons Attribution 4.0
Unported License. Distribution or reproduction of this work in whole or in part requires full attribution of the original publication, including its DOI. [DOI: 10
.1117/1.JMI.6.3.035001]
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1 Introduction
Twin-to-twin transfusion syndrome (TTTS) is a fetal condition
that affects monochronic diamniotic pregnancies in which the
presence of a certain pattern of intertwin vascular connections,
known as anastomoses, results in an imbalance of the blood flow
between twins. If this condition remains untreated, the outcome
is generally fatal for both twins.1 Minimally invasive surgery is
today the standard of care. The surgeon explores the placenta
using a fetoscope with a small field of view to find and photo-
coagulate all anastomoses. Despite the wide literature in endo-
scopic scenarios,2,3 the challenges found in fetoscopic imagery
complicate the application of available techniques. To illustrate
the complexity of the fetoscopic site, Fig. 1 shows three exam-
ples of TTTS procedure where the reduced field of view can be
observed. The surgeon must remember the explored areas to
navigate through the placental surface building a mental map of
the placenta. This is an extremely challenging task even for
the best-trained surgeons due to this limited field of view,
lack of texture, and turbidity, which hinders the visualization
and also precludes any assistance from others. As a solution,
mosaicking has been suggested to increase the field of view
by stitching the images together in a common space, forming
a map of the area.

The online creation of such map would allow for a more
effective exploration4,5 and localization of the anastomoses.
Online approaches for mosaicking6–8 usually rely on approxima-
tions that either summarize past information or do not make use

of all available information. In some applications, a simple
pairwise estimation,5,9 where subsequent images are registered,
can be appropriate for real-time operation. However, these
approaches accumulate drift.

To mitigate the drift, a globally consistent method might
be used. Bundle adjustment10 is considered to be the offline
reference method in globally consistent mosaicking due to
its accuracy, which comes from the effective use of all the avail-
able information in a probabilistic way. When the number of
frames increases, however, the limitations in computational
complexity become more evident, and online operation becomes
prohibitive.

In Ref. 6, the authors proposed to use an electromagnetic
tracker (EMT) to guide the estimation and mitigate the drift.
However, due to their computational complexity or suboptimal-
ity, the proposed strategies were not suitable to obtain accurate
online mosaics with clinically acceptable update times.

Some efforts have been made to reduce the computational
time of globally consistent approaches. For example, Schroeder
et al.11 proposed closed-form initial estimates to accelerate its
convergence. Steedly et al.12 used the concept of keyframes
in an offline setting to denote a set of the most important frames;
an all-to-all strategy analogous to bundle adjustment is used
with the keyframes whereas a pairwise web connects the rest of
frames enforcing only local consistency between them. This
permits to reach mosaics of the order of thousands of frames.
Despite the computational advantage of this approach, the
reduction in the number of connections between nonkeyframe
images leads to a decrease in robustness given that not all
the information available has been used. The use of the redun-
dancy provided by nonkeyframe images becomes essential
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when dealing with fetoscopic images due to their relatively poor
quality.

An alternative to Ref. 12 consists of matching exclusively
the images that are highly likely to share visual corresponding
points, avoiding incoherent attempts. A proposed technique
for overlap detection in monocular systems is to use a bag of
words13 (BoW), which creates a dictionary of visual words and
assigns a signature per image. This signature summarizes the
number of occurrences of the visual words in a histogram.
In the case that the scene is revisited, the signature of the current
image is very similar to the signature of the images initially
acquired. However, this strategy works in an offline fashion
while we aim for a sequential approach. This is the case for
the work of Garcia-Fidalgo et al.14 where an incremental
BoW approach is used. However, pose information provided
by an EMT system is much stronger than visual information
in the placenta given that some uniform textureless areas of the
placenta can lead to challenging scenarios. Therefore, we pro-
pose to use the EMT system to infer the topology of the cameras
imaging the scene.

The organization of this paper is as follows: In Sec. 2, we
review the background in mosaicking using the EMT system, to
further detail our methodological contributions. The presenta-
tion of our experimental suite is done in Sec. 3, demonstrating
a decrease in the computational complexity of bundle adjust-
ment while maintaining similar accuracy. Then, we comment
on the results in Sec. 4 and conclude the study in Sec. 5.

2 Methods
In this section, we present the preliminary background to then
detail our algorithms. We start by introducing the scenario and
stating the assumptions made to simplify the problem through-
out the paper.

• We consider a placenta to be a plane. In Ref. 15, the
authors demonstrated that this assumption greatly simpli-
fies the problem.

• We assume the placenta to be static.

• Despite the image is obtained using a fetoscope, we use
a pinhole camera model.13,15

• The EMT field is not perfect. Yet, we assume we are
working on the center of the field, and that therefore, that
the distortions due to inhomogeneities in the electromag-
netic field are neglibible.6

• We assume6 the each EMT measurement zk to be centered
on the true measurement xk, with a multivariate Gaussian
noise of covariance matrix ΣEMT.

We now introduce some concepts that are essential for the
rest of the paper: how the visual aligned is performed in a pair-
wise and globally consistent manner, the link between poses and
their imaged scenes over a planar surface, and how the EMT
system can be introduced into the mosaicking pipeline.

2.1 Background in Mosaicking

Given a sequence of K images I ¼ fIkgKk¼1, the goal of
mosaicking is to find a two-dimensional representation of the
scene or mosaic M∶ΩM → R3 (RGB) where ΩM ⊂ R2 is
denoted the mosaic space. Provided that the camera observes
a planar scene, a homography H exists between corresponding
points in two views p ¼ ½px py �T , p 0 ¼ ½p 0

x p 0
y �T , which lie

in their respective image spaces Ωp, Ωp 0 ⊂ R2. This homogra-
phy can be parametrized as a 3 × 3 matrix such that
EQ-TARGET;temp:intralink-;e001;326;433

p 0
x ¼

H1;1px;þH1;2py þH1;3

H3;1px;þH3;2py;þH3;3
;

p 0
y ¼

H2;1px þH2;2py þH2;3

H3;1px þH3;2py þH3;3
: (1)

Then, Eq. (1) can be written as p̃ 0 ∝ Hp̃ where H is defined
up to scale and the tilde indicates that the points are expressed in
homogeneous coordinates.16

If the same planar scene is observed from both views, a
homography H can be directly inferred from image matching
information.17 In this work, we use a landmark-based registra-
tion approach18–20 since these approaches usually allow for
sparse feature detection which can be faster than using the infor-
mation in the whole image.

Pairwise mosaicking (PM) relies on estimations of pairwise
homographiesHkþ1;k which project any point from the spaceΩk
of image Ik onto the space Ωkþ1 of image Ikþ1. Pairwise homog-
raphies are then used to compose homographies from a fixed
reference, which without loss of generality, can be placed on
the first frame as

EQ-TARGET;temp:intralink-;e002;326;194Hk ¼ Hk;1 ¼
Yk−1
j¼1

Hjþ1;j; (2)

where the product operator denotes the left matrix multiplica-
tion, corresponding to the composition of homographies, e.g.,
H3 ¼ H3;1 ¼ H3;2H2;1. Once the homographies relating every
frame to the reference are computed, every pixel in every image
is projected onto the mosaic space. To further clarify the nomen-
clature, we name absolute homographies Hk with a single sub-
index meaning that they project any point from the referenceΩM

Fig. 1 Three examples of images taken in clinical conditions from a TTTS surgery.
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to the image frame space Ωk, whereas pairwise homographies
Hkþ1;k are defined as mapping points from Ωk to Ωkþ1. When
performing PM, any residual error in the estimation of pairwise
homographies is accumulated through the chain in Eq. (2),
resulting in a wrong placement of the images in the mosaic that
degenerates in an uncontrolled way over time.

Globally consistent approaches such as bundle adjustment10

take into account the relationship between all pairs of images in
the sequence to create globally consistent mosaics.21 However,
they are generally not fast enough for online operation; the main
reasons are the acquisition of the correspondences between
all images and the run-time of the nonlinear optimization
procedure.

Let us define L as the set of all pairs of image indices in
which correspondences have been successfully acquired. We
aim to obtain a set of estimated homographies Ĥ1; : : : ; ĤK−1,
where the hat denotes that they are an estimate, that minimizes
the reprojection errors of the matching points in all images in the
sequence, namely:

EQ-TARGET;temp:intralink-;e003;63;541Ĥ1; : : : ; ĤK−1 ¼ arg min
H1;: : : ;HK−1

X
fl;mg∈L

XNl;m

i¼1

1

σ2v
kpil − fðHlH−1

m p̃imÞk22:

(3)

Nl;m is the number of matches found in the pair fl; mg, fð·Þ is
the conversion from homogeneous to Cartesian coordinates so
that p ¼ fðp̃Þ, and σ2v is the variance associated with the location
of a feature once propagated to the space of its matched pair.
This variance is associated with the fact that we model the error
between a fixed point in an image, and its corresponding pair
propagated from the other image as a Gaussian random variable.
Note that, since one frame is defined as the reference (here
chosen as the first frame, without loss of generality), we only
require to estimate K − 1 homographies, the remaining one
being set to identity.

Let X ¼ fxkgKk¼1 be the set of corresponding true camera
poses. In addition, let Z ¼ fzkgKk¼1 be the respective EMT mea-
surements of these poses, where we assume zk to be a noisy
instance of the true camera xk. We parametrize each camera pose
xk ¼ ½rk; tk�T as a rotation rk and translation tk. The vector zk is
parametrized in the same way. The three-parameter rotation
vector rk is extracted from the skew symmetric matrices
½rk�x ∈ soð3Þ, which can be converted into the rotation matrix
Rk ¼ expð½rk�xÞ ∈ SOð3Þ.22 SOð3Þ refers to the special
orthogonal group of matrices of dimension 3 × 3 with determi-
nant 1, and soð3Þ is its corresponding lie algebra. With
a rotation matrix Rk and a translation tk, we can compose the
rigid transformation Tk ∈ SEð3Þ, where SEð3Þ is the special
Euclidean group corresponding to rigid transformations in
three-dimensional space

EQ-TARGET;temp:intralink-;e004;63;187Tk ¼
�
Rk tk
0 1

�
: (4)

A set of camera poses (provided by the EMT system) on their
own do not give us enough information to create a mosaic.
To that end, a set of homographies is necessary, requiring also
the planar structure modeling the scene. We now detail how to
obtain a set of homographies from both poses and the surface
plane. Provided that only camera poses are measured, we need
to establish a link between these and imagery.

Let us consider a virtual camera with its virtual image plane
located in the origin of coordinates, which we use as a reference,
whose image plane space is ΩM. We can then link the spaces
of the images obtained by the cameras, and their respective
motions provided that the imaged plane is known. Since it is
so, there is a homography H defined that propagates any point
in the virtual image to any other image through the following
equation, that for convenience we define as gð·Þ

EQ-TARGET;temp:intralink-;e005;326;664H ¼ gðx; vÞ ¼ KðR − tvTÞK−1; (5)

where K is the intrinsic camera calibration matrix, and v corre-
sponds to the unit normal vector to the imaged surface n
observed from the origin of coordinates, divided by the distance
d between origin of coordinates and the plane

EQ-TARGET;temp:intralink-;e006;326;589v ¼ n
d
: (6)

We use this relation in order to relate the visual content in the
images with EMT readings of the camera poses. The complete
derivation of Eq. (5) can be found in Ref. 16.

In the following work, Ref. 6 introduced a probabilistic
graphical model that infers the set of poses X and planar struc-
ture v by solving the minimization problem

EQ-TARGET;temp:intralink-;e007;326;483ðX̂ ; v̂Þ ¼ arg min
ðX ;vÞ

ðCv þ CEMTÞ; (7)

where X̂ , v̂ are the set of estimated camera poses and plane,
respectively, the cost Cv represents the sum of all reprojection
errors between matching landmarks with pairs of indices
fl; mg ∈ L found between all images where the homographies
Hl,Hm are obtained using the three components; the two camera
poses xl, xm, and plane v as in Eq. (5). The EMT information is
incorporated in the second cost CEMT as

EQ-TARGET;temp:intralink-;e008;326;364Cv ¼
X

fl;mg∈L

XNl;m

i¼1

1

σ2v
kpil − fðHlH−1

m p̃ilÞk22; (8)

EQ-TARGET;temp:intralink-;e009;326;300CEMT ¼
XN
k¼1

ðzk − xkÞTΣ−1
EMTðzk − xkÞ: (9)

This prevents the poses to be estimated from drifting pro-
vided that the EMT measurements have a common reference,
which do not allow drift to separate the cameras from the
measured position. In other words, the solution obtained as a
result of Eq. (7) reflects a guided estimation of the parameters
using the EMT system.

2.2 Pruning Strategies for Sequential Bundle
Adjustment

In this section, we present our two pruning strategies: (i) the use
of the EMT system to identify and discard nonoverlapping
frames for which no matching should be attempted, and
(ii) the introduction of the concept of superframe; an extension
of a typical frame that allows for more efficient mosaicking
schemes. We present two pipelines that increasingly incorporate
the contributions mentioned above.
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2.2.1 Frame pruning using the EMT system

Given the small field of view in fetoscopy and the relatively
large area to explore, only a small subset of images shares visual
content. Global alignment schemes typically attempt to find cor-
respondences between each pair of images, although in many
cases such as ours, the majority of image pairs do not overlap
spatially and thus cannot be matched. A given image will typ-
ically only match to a small spatially adjacent subset. For this
reason, we propose to use the information of an EMT system to
find plausible image candidates, bypassing the computation of
unnecessary failed matching attempts and reducing, thereby the
computational complexity of bundle adjustment.

At a given time instant k, we have the current EMT measure-
ment zk and the previous estimation of the plane vk−1 by solving
the nonlinear optimization problem posed by Eq. (7). Therefore,
we can compute a noisy homography using Eq. (5) as

EQ-TARGET;temp:intralink-;e010;63;569HEMT
k ¼ gðzk; vk−1Þ: (10)

This estimation of the homography, even if not very accurate,
can be used to decide whether two images are likely to overlap,
thus allowing to filter out spatially unreasonable candidates.
To do so, once the homography is obtained, we project the
corners of the bounding box containing the circular fetoscopic
region of interest through HEMT

k onto the mosaic space as

EQ-TARGET;temp:intralink-;e011;63;471p̃ΩM
k;c ¼ HEMT

k p̃k;c; (11)

where the points p̃k;c and p̃ΩM
k;c represented in homogeneous

coordinates, are the original and propagated image corners to
the mosaic space ΩM , respectively, where c denotes the corner
index. Then, the overlap between the current and previous
frames can be easily and efficiently obtained. Kekec et al.8

showed how this problem can be seen as a simple convex poly-
gon intersection problem. The estimation of the overlap given
two convex polygons can be efficiently solved using the sepa-
rating axis theorem (SAT);8 a theorem from computer graphics
that states that if a straight line can be drawn between two
convex polygons, then the polygons do not overlap.

2.2.2 Pairwise compression

A practical problem in mosaicking12 algorithms is that hundreds
of correspondences are typically stored and used in the optimi-
zation procedure per image as can be seen in Eq. (9). Instead, we
parametrize the pairwise relation as five equivalent correspond-
ences in the following way: (i) after the pairwise homography
estimation using RANSAC simultaneously with the correspond-
ences acquisition,17 we take the bounding box that includes all
the interest points in the image. In particular we take the top-
centered, bottom-centered, left, and right point locations as well
as the center of the bounding box to account for the spread of
these points in the original image space. (ii) We propagate them
using the estimated homography that relates both images to
obtain the second set of points, which completes the collection
of correspondences. These correspondences will then be kept
for the optimization, reducing the run-time of the cost function
greatly.

The more correspondences we acquire, the more correspond-
ences must be taken into account in the cost function. This might
not be a problem at the beginning of the sequence, but as the
number of correspondences increases, the computational cost

increases as well, hindering online operation. We now introduce
an additional strategy that generalizes a regular frame in a more
efficient representation for mosaicking.

Figure 2(a) shows the proposed pipeline proposed in this sec-
tion while Fig. 2(b) shows the diagram of the pipeline proposed
in Sec. 2.2.3. In both pipelines, the pairwise compression men-
tioned in Sec. 2.2.2 is applied. Contributions to the mosaicking
pipeline are outlined with a blue border.

2.2.3 Superframe representation

The superframe representation is a generalization of a frame that
incorporates one or more frames. The main idea is to partition
the image set I ¼ fIkgKk¼1 into subsets of W images grouped
into N superframes with K ¼ NW. Since it is a generalization
of an image, the superframe can be incorporated into the
standard bundle adjustment pipeline reducing its computational
burden drastically. Let us formally define the concept of
superframe.

We define a superframe as a representation of a subset of W
frames I i ¼ fIkgk∈Ki

that encodes the most salient information
of the region observed by all images in the superframe which
are indexed by Ki ¼ fk ∈ ZjLFi − u ≤ k ≤ LFi þ ug. A lead
image ILFi

with index LFi ¼ ði − 1ÞW þ uþ 1 is defined as the
central image in the superframe of window of sizeW ¼ 2uþ 1,
u being an integer. If the lead image was taken in isolation,
then this would be equivalent to the concept of keyframes.12

In contrast, the superframe uses information of all the images
in the window.

Analogously to the standard pipeline, interest point locations
Pk and descriptors Dk are extracted for all frames within each
superframe. We propose to use the lead image space as a
common space where all interest points in the superframe lay,
defining the superframe as Si ¼ fPSi ;DSig. To propagate the
locations of interest points into this common space, we define
P̃k ∈ R3×Nk as a matrix containing all point locations in homo-
geneous coordinates, where Nk is the number of interest points
found in image k. If expressed this way, the points can be propa-
gated onto the lead image space as

EQ-TARGET;temp:intralink-;e012;326;326PSi ¼ ffðHLFi;kP̃kÞgk∈Ki
; (12)

while the descriptors are grouped as

EQ-TARGET;temp:intralink-;e013;326;281DSi ¼ fDkgk∈Ki
; (13)

where the homographyHLFi;k is the homography that relates the
frame k within the superframe with the lead frame LFi. This
homography is obtained by first running a local, small-scale vis-
ual bundle adjustment with all W images following the method-
ology described in Sec. 2.1. Within the superframe, the aligned
homographies are then considered fixed in the rest of the pipe-
line. Figure 3(a) depicts the process of the creation of a super-
frame, and Fig. 3(b) shows the differences in matching between
two images (top) and two superframes (bottom).

2.2.4 Superframe in the mosaicking pipeline

To integrate the superframe into the mosaicking pipeline, we
extend the probabilistic framework6 summarized in Sec. 2.1.
However, now superframes replace single frames. To highlight
why this is possible, let us describe the simple scenario where
two superframes are created. In that case, their descriptors can
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be matched directly since the input to the matching algorithm is
two sets of descriptors. From there, the matching process is
analogous to the one described in the PM in Sec. 2.1.
Figure 2(c) shows the diagram of the pipeline using the super-
frame, marking in blue the contributions in the pipeline.
In applying directly,6 only one EMT measurement is assumed
to be associated with each frame. Therefore, there would be

W − 1 EMT measurements unused per superframe. Instead, we
propose to modify the pipeline to include all EMT measure-
ments in the window W for better placement of the superframe
in the mosaic.

These measurements can be used to obtain homographies
HEMT

k using Eq. (5) and the previously estimated vi−1 resulting
from Eq. (7). Figure 4 shows the nomenclature and indexing,

(a) (b)

Fig. 3 (a) Creation of a superframe. From top to bottom: W images are registered using bundle adjust-
ment10 and their interest points are propagated to the space of the lead frame i , forming a superframe.
(b) Matching of two frames (85 inliers) and two superframes (165 inliers).

(a)

(b)

(c)

Fig. 2 (a) Pipeline proposed in Sec. 2.2.1 using the EMT system to filter out incoherent matching
attempts. (b) Pipeline proposed in Sec. 2.2.3 using the superframe. In both pipelines, the pairwise com-
pression mentioned in Sec. 2.2.2 is applied. Contributions to the mosaicking pipeline are outlined with
a blue border.
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displaying each homography composed using the EMT system.
Using the EMT measurements and the fixed homographies
HLFi;k found in the initial bundle adjustment to build the super-
frame,, we can obtain measurements of the lead homography
HEMT;k

LFi
coming from each of the EMT measurements in a given

superframe as

EQ-TARGET;temp:intralink-;e014;63;352HEMT;k
LFi

¼ HLFi;kH
EMT
k k ∈ Ki: (14)

We consider these homographies as measurements of the true
homography that places the lead image into the mosaic space,
and formulate the problem as

EQ-TARGET;temp:intralink-;e015;63;288ðX̂ ; v̂Þ ¼ arg min
ðX ;vÞ

ðCEMT þ λCv þ λ 0CHÞ; (15)

where λ and λ 0 are weights. The two first costs are precisely
the costs defined before in Eqs. (9) and (8), and the proposed
additional term for the global alignment cost function CH is
defined as

EQ-TARGET;temp:intralink-;e016;63;204ϵkðc; iÞ ¼ fðHEMT;k−1
LFi p̃cÞ − f½gðxk; vi−1Þ−1p̃c�; (16)

EQ-TARGET;temp:intralink-;e017;63;162CH ¼ 1

NWQ

XN
i¼1

X
k∈Ki

XQ
c¼1

ϵTk ðc; iÞ
X−1
hVis

ϵkðc; iÞ; (17)

where pc represents Q control points. Specifically, we used the
four corners and the center point of an image as control points.
Setting

P
hVis is not trivial since it depends on the accuracy of

the EMT system and previous estimation of the normal vector.
Therefore, we use it conservatively setting a standard deviation
of 10 pixels.

Once all homographies from the mosaic space to the lead
frames of each superframe are obtained, one must place the
superframes into the mosaic space. To do that, each one of the
images within the superframe has to be placed in the mosaic
space. Therefore, we must obtain individual homographies
Hk for each frame in the sequence that relates it with the mosaic
space. One must note, however, that when running bundle
adjustment on the superframes, the reference is in the space
of the first lead frame, which corresponds to index LF1. For
simplicity, we denote the estimated homographies asHLFi

, skip-
ping the second subindex, which would be LF1. However, one
must keep in mind that they are actually from the first lead frame
LF1 to LFi as HLFi;LF1

. Therefore, to compose a mosaic in the
space of the first image, not the first superframe, one must use

EQ-TARGET;temp:intralink-;e018;326;268Hk ¼ Hk;LFi
HLFi;LF1

HLF1;1: (18)

Once the absolute set of homographies is obtained, one can
project the images onto the mosaic space to be blended.

2.2.5 Efficient implementation of the pipeline using
superframes

The main idea of the superframe is to summarize many frames
into a region by first performing a local bundle adjustment ofW
frames, each with a complexity of OðW2Þ. This entails all-to-all
matching of all images within the superframe. On the other side,
the complexity of a full bundle adjustment (FBA) is quadratic in
the number of frames OðK2Þ. By using superframes instead of
single frames, one allows reducing the number of effective
images used in a general bundle adjustment. This procedure now
takes into account KW superframes, so the total complexity is only
OðW2N þ K

W
2Þ where K ¼ NW. The first term accounts for the

Fig. 4 A superframe indexed by i is composed of a set of single frames indexed by k . Each homography
HEMT;k

LF i
is created from the EMT measurement zk and the previous plane estimation vi−1.
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small bundle adjustments of size W to build each superframe
and then the second term accounts for the complete bundle
adjustment of the superframe. For example, in a sequence of
K ¼ 100 frames, where the window W ¼ 5, we only have N ¼
20 superframes. Therefore, the construction of the superframes
would take ∼500τ þ 400τ 0 whereas a single FBA would take
10;000τ, where τ and τ 0 are timings related to interest point
detection and matching, which differ for single frame and super-
frame, depending on the number of framesW used to create each
superframe.

The number of interest points contained in a superframe
would be the sum of the number of interest points detected
in each image. AsW increases, this number can quickly become
too large and prohibitive for matching. To reduce the number of
interest points in the superframe drastically, we put two strate-
gies in place. First, we greedily select only interest points result-
ing in being inlier matches within every frame in the creation of
the superframe. Intuitively, interest points that have already been
matched should have a higher probability of being matched in
the superframe compared to other points that might not be as
well described. The second strategy is to keep a precomputed
a KD-tree,23 implementing an approximate nearest neighbors
strategy for efficient matching in the creation of the superframe.

In addition, the matching candidate selection strategy men-
tioned in Sec. 2.2.1 is adapted to be used with superframes
instead of single frames. To apply it, only the meaning of over-
lap for two superframes has to be redefined: two superframes
overlap if any of their single frames overlap. In this way, we
can incorporate the computational advantage of using super-
frames that leverage the EMT system to filter out spatially inco-
herent matching candidates.

3 Experiments
In this section, we present our experimental suite to demonstrate
the computational advantage of the proposed pruning strategies
compared against a baseline implementation of bundle adjust-
ment. We start by presenting the datasets, algorithms, metrics,
and implementation details.

3.1 Datasets

We generated two datasets formed by a set of images and EMT
data; synthetic (SYN, 273 frames, 373 × 378 px) and a phantom
based (PHB, 701 frames, 780 × 781 px) datasets. SYN is a
translation-based raster scan generated by simulating ground
truth camera motions, from which EMT measurements are gen-
erated by applying Gaussian noise,6 and for which the images
were extracted as projections of the scene observed by the cam-
eras. In that case, the scene consisted of a planar, high-resolution
digital image. PHB was recorded by imaging a printed image of
a placenta. The setup consisted of a camera head IMAGE1 H3-Z
SPIES mounted on a 3-mm straight scope 26007 AA 0° (Karl
Storz Endoskope, Tuttlingen, Germany), an EMT system NDI
Aurora with a planar field generator, and a Mini 6 DoF sensor.
A collection of homographies by semiautomated registration of
each fetoscopic image to the original image of the placenta,
where a landmark-based approach was used to align the images
after the initial manual alignment.

3.2 Algorithms

As a baseline, we compare our algorithms to both the estab-
lished FBA as well as the standard PM approach, which is very

fast but accumulates drift. We apply the matching compression
strategy presented in Sec. 2.2.2 as well as the use of the EMT
system to discard inconsistent matching attempts (SAT). Our
second contribution is the introduction of the superframe (SF)
and its incorporation to the mosaicking pipeline. By default,
we have chosen W ¼ 5. We explicitly name SFðWÞ to a run
where W corresponds to the size of the window used in the
superframe.

3.3 Metrics and Implementation Details

We compare the homography H and the ground truth homog-
raphy G by computing the mean residual error ϵk of a projected
grid of Ng points ρi from the image space to the mosaic space.
Then, the error ϵ between two mosaics is computed as the mean
of individual errors ϵk. This error is defined in the mosaic space,
which is the space in which the final composition is performed.
Note that we use ϵk with superindex k to refer to the residual
error between two sequential mosaics at each time instant
whereas ϵk with subindex k refers to the error of the alignment
of a single image k. To make this metric independent to the
choice of reference space, we compute the average of the errors
using all images as a reference, as in

EQ-TARGET;temp:intralink-;e019;326;502ϵk ¼
1

KNg

XK
j¼1

XNg

i¼1

kfðH−1
j;kρiÞ − fðG−1

j;kρiÞk2: (19)

In terms of feature-based method, we used SURF.20 The
matching was performed using fast approximate nearest
neighbors.23 The fetoscope was precalibrated using the Matlab
Camera Calibration Toolbox. We also precomputed and applied
the Hand-eye Calibration24 matrix from a sequence of images of
a checkerboard as well as synchronized sensor poses. The win-
dow size of the superframe was determined from the trade-off
analysis as W ¼ 5, which is presented later in Sec. 3.3. In addi-
tion, given that superframes contain many more correspond-
ences than actual frames, a kd-tree23 can be trained and stored
per superframe. Then, fast approximate nearest neighbor can
be used to accelerate the matching between superframes. The
experiments have been performed in an Ubuntu 16.04 with
Intel Core I7 at 2.5 GHz and 6 GB of memory.

Next, we evaluate sequential bundle adjustment and evidence
the decrease in computational time that the proposed strategies
provide.

3.4 Speedup: Correspondence Acquisition

In this section, we analyze the computational cost of a sequential
bundle adjustment in an online setting. More precisely, we focus
on correspondence acquisition.

In Fig. 5, we display the run-time of correspondences acquis-
ition in the three algorithms for both datasets. As expected, SAT
is faster than FBA in both cases, and SF shows the best in terms
of computational cost. In the case of the phantom-based dataset,
we can observe that SAT is not necessarily faster all the time.
This is due to the trajectory that the camera has followed in this
particular dataset. If the overlap between images is too large,
then the algorithm suggests all images as possible candidates.

To further evidence where the computational savings have
happened spatially, we analyze the percentage of potential
image candidates that have been selected using an occupation
matrix. This matrix shows whether there has been a match from
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image i (corresponding to row i) to image j (corresponding
to column j). For a more informative representation, we have
color-coded the matrices. Out of all image matches that would
have been obtained using an FBA (white), only a portion of
them would be selected by SAT (green). Due to the use of sym-
metrical matching, we only display the upper right triangle in the
occupancy matrix. Figure 6 shows that, in the case of SYN (a),
100% of the proposed candidates are correct, and no matches
have been missed, saving a total of 54.2% matching attempts.
As mentioned before, the path followed by the camera in the
PHB [Fig. 6(b)] makes saving matching attempts more compli-
cated. 100% of the proposed candidates are correct; however,
there is only a total saving of 5.2% attempts, which happened
to be toward the end of the sequence.

We now study the run-time of the nonlinear optimization as
the second bottleneck for bundle adjustment to reach sequential
operation.

3.5 Speedup: Nonlinear Optimization

The computational cost of the nonlinear optimization is due to
the run-time of the cost functions in Eqs. (9) and (8) and the
number of iterations to convergence. In contrast to standard
bundle adjustment where we do not have any initial estimate
a priori, subsequent estimations can be used as an initial esti-
mate in a sequential version of bundle adjustment, providing a
speedup at each iteration due to the proximity to the minimum.
Although this is a desirable property, the question that might
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Fig. 6 Occupancy matrix. The pixel ði ; jÞ shows a color-coded outcome of the matching process.
Potential matching candidates are in white. Proposed candidates that have been matched are in green.
Black pixels reflect that no candidate was selected but there was no real match. Occupation matrices in
(a) the synthetic dataset (SYN) and (b) the phantom-based dataset (PHB).
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and PHB datasets.
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prevent desirable update rates is whether the number of itera-
tions to convergence grows with time.

In Fig. 7, we show the number of iterations to convergence in
both SYN and PHB datasets.

The fact that the approaches show a constant tendency over
time is crucial since it indicates that the number of iterations in
the nonlinear optimization does not seem to be a bottleneck
for offline operation. Given the textureless nature of fetoscopic
images, using only a subset of all frames is not a very robust
option. Instead, we would like to use the redundancy in the com-
plete video sequence. Figure 8 shows the optimization times for
FBA, SAT, and SF. It can be seen how if compression is used
(SAT), the slope decreases with the number of iterations. Now
that we have demonstrated the decrease in computational burden

in the proposed algorithms, we need to evaluate their accuracy
and show that despite the improvement in speed, there is no sig-
nificant loss in accuracy.

3.6 Efficiency

In this section, we analyze the performance of the proposed
algorithms for classical pipelines. In particular, we computed
the error in each sequential mosaic for NV and FBA as a base-
line, comparing it to SAT, and SF with different window sizes
W ¼ 1;3; 5;7; 9 in SYN and PHB datasets, respectively. Figure 9
shows the errors for each of the methods. The error in NV spikes
from the beginning. This is well known due that there is no
global correction and therefore, drift is accumulated. While
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SF results in the best performance regarding computational
advantage, the decrease in accuracy for all the window sizes
except W ¼ 1 for which the behavior should be very similar
to SAT. When the window increases, the accuracy of the SF
remains stable.

Since the data reflects this trade-off between computational
power and accuracy, we propose to analyze this trade-off with
the graph in Fig. 10. This graph shows the error in the y axis and
the time per iteration in the x axis. We have plotted each algo-
rithm in a different color. In here, temporal evolution is not
shown; however, one can observe the temporal trail by looking
at the lines connecting the dots, taking into account that first
iterations are the fastest. For an efficient algorithm, we would
like the error and computational time to be low. Therefore, we
identify the most efficient algorithm as the one whose results lie
in the bottom left corner. The same tendency can be seen for
both datasets; despite being efficient, the NV drifts in large mea-
sure, making the algorithm not worth pursuing. The FBA is not
a good option concerning the trade-off since the computational
time is too large, yet it does keep the accuracy very low. SAT
performs similarly, albeit much more efficiently than FBA. On
top of that, all versions of SF perform more efficiently than SAT.
In particular, we see that as we increase the window size, the
efficiency starts to be better until W ¼ 5. The selection of the
best algorithm is not trivial since W ¼ 3 shows a faster start yet
slower end than W ¼ 5 in both datasets due to the need for
matching more superframes. After this, efficiency starts to fall
systematically. We believe that the increase of computational
time that takes to perform the first bundle adjustment causes
this effect, growing with W. Since many of the operations in
the creation of the superframe could be performed in parallel,
we expect slightly better results for a parallelized version of the
approach.

In Figs. 11 and 12, we show mosaics for SYN and PHB data-
sets, respectively, for the NV, FBA, and SFW5. While the figure
shows some steps of the sequential estimation of the mosaic,
we encourage the reader to visualize the videos included in
the supplementary material for a more thorough visualization of
the results.

4 Discussion
Bundle adjustment is in general slow due to the mentioned rea-
sons. In this work, we propose the use of the EMT system to
identify potential matching candidates, avoiding unnecessary
matching attempts. However, the computational savings will
greatly depend on the motion of the camera. For example, if the
camera remains in the same position, then the EMT system will
determine that all the frames are candidates being equivalent to
an all-to-all matching scenario. On the contrary, if the camera
moves, the EMT system is able to identify a reduced set of
potential candidates. A simple solution to this problem could
be set up a preprocessing step of filtering out the frames that
overlap more than a certain area threshold.

The accuracy of the EMT is limited. Discarding nonmatching
candidates is a process that can be made more loose or aggres-
sive by just increasing or decreasing the size of the images when
determining overlapping frames. This will depend on the accu-
racy of the EMT when projected to the image space, i.e., the
noise on the EMT system, but also the camera parameters, and
the placement of the planar object. In our datasets, results seem
to suggest that taking the image size is enough to discard inco-
herent matching candidates.

However, the estimation of the overlap is dependent on
having a reliable normal estimation. When the camera has not
observed enough scene, the estimation of the normal vector is
less accurate due to the lack of depth perception in a small base-
line. When more parts of the scene are observed, the normal
vector converges, and only a few constant number of iterations
are necessary for convergence in subsequent iterations. In fact,
the results suggest that only a constant number of iterations
are enough for the nonlinear optimization to converge. This
is a significant result that reveals that the number of steps to
convergence is not a problem for achieving clinically feasible
update rates. The obvious exception to this point is if there are
outliers in an image. If so, then the cost function does not reflect
the problem to solve and as a consequence, the number of iter-
ations to converge grows, not reaching the desired minimum.
Therefore, it is essential to obtain an outlier-free set of
correspondences.
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Fig. 9 Error in NV, FBA, SAT, and SF with a window size of 1, 3, 5, 7, and 9 for SYN and PHB.
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The creation of a superframe requires a first bundle adjust-
ment. This process, even if it takes some time, is compensated
by the fact that the general bundle adjustment takes only K

W
frames into account. The efficiency gain is expected, whenever,
the number of superframes N is less than the number of frames
K. However, errors in the local bundle adjustment impact in the
second, global, bundle adjustment since it is only optimizing for
the lead frame in the superframe. If there is an error, one of the
homographies of the superframe, then the interest points will be
erroneously placed within the space of the lead frame in the
superframe. Then, a geometrical validation such as RANSAC

could filter them out for being geometrically inconsistent with
a homographic model. This results in a trade-off between the
accuracy and the window size W. A second trade-off is that
concerning the window size concerning efficiency. When the
first bundle adjustment is large, then the number of efficient
superframes to optimize in the global bundle adjustment is
smaller and vice-versa. However, the larger is the superframe,
the more rigid the system is, and this makes it more prone to
alignment errors. Also, as the window size is larger, the distance
between lead frames also increases and matching becomes more
complicated.
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Fig. 11 Sequential screenshots of the mosaic using (a) NV, (b) FBA, and (c) SFW5 in the SYN dataset
(Video 1, MP4, 1426 KB [URL: https://doi.org/10.1117/1.JMI.6.3.035001.1; Video 2, MP4, 8195 KB [URL:
https://doi.org/10.1117/1.JMI.6.3.035001.2; Video 3, MP4, 2447 KB [URL: https://doi.org/10.1117/
1.JMI.6.3.035001.3).

Fig. 12 Sequential screenshots of the mosaic using (a) NV, (b) FBA, and (c) SFW5 in the PHB dataset
(Video 4, MP4, 2844 KB [URL: https://doi.org/10.1117/1.JMI.6.3.035001.4; Video 5, MP4, 3443 KB [URL:
https://doi.org/10.1117/1.JMI.6.3.035001.5; Video 6, MP4, 811 KB [URL: https://doi.org/10.1117/
1.JMI.6.3.035001.6).
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In the described case where a fixed window is used, the opti-
malW will greatly depend on the motion on the camera making
the choice of the value not trivial. We have chosenW ¼ 5 as the
best trade-off between accuracy and computational cost in the
evaluation. An interesting fact is that the accuracy of the mosaic
does not seem to decrease much between different instances of
superframes even though its computational time does.

We propose a system in which single frames are not shared
by the superframes, i.e., each frame index is only in one super-
frame. However, an interesting research line could be to inspect
the impact of incorporating each index in more than one super-
frame. This implies that the number of frames in the nonlinear
optimization procedure grows, trading an increase in the run-
time of the algorithm for more robustness.

5 Conclusions
In this work, we propose two different pruning strategies
allowing the sequential application of bundle adjustment for
mosaicking. To make this possible, we tackle the computational
bottlenecks of bundle adjustment using two different pruning
strategies. First, we use the EMT system to discard a high
percentage of spatially inconsistent matching attempts. Second,
we introduce the concept of superframe and introduce it into
the mosaicking pipeline. This concept is a generalization of
an image, which can be used to reduce the computational com-
plexity drastically in both the correspondence acquisition and
optimization phases. We show a large decrease in computational
complexity with respect to a standard bundle adjustment, on
both synthetic and phantom-based datasets. This makes possible
the use of a sequential bundle adjustment, which achieves a bet-
ter compromise between efficiency and accuracy than standard
approaches. The results of this work open new avenues to online
operation, leading the state of the art in online mosaicking one
step closer to clinical translation.
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