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Abstract. Due to the rich information provided by the Mueller matrices
when the most general conical diffraction configuration is considered,
the Mueller matrix polarimetry has demonstrated a great potential in semi-
conductor manufacturing. As the configurations of the incidence and azi-
muthal angles have different influences on the measurement accuracy, it
is necessary to select an optimal one among the multitude of possible
options. We introduce the norm of a configuration error propagating matrix
to assess the measurement accuracy for different measurement configu-
rations. The optimal configuration for a Si grating sample was achieved
by minimizing the norm of the configuration error propagating matrix.
Experimental results show the agreement between the theoretically pre-
dicted optimal configuration and the experimental exhibited one obtained
by using a dual-rotating compensator Mueller matrix polarimeter and thus
demonstrated the validity of the proposed optimization method. © The
Authors. Published by SPIE under a Creative Commons Attribution 3.0 Unported License.
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1 Introduction
As a nonimaging optical measurement technique, the
Mueller matrix polarimetry (MMP) has been successfully
introduced for critical dimension and overlay metrology
recently.1–3 Due to the rich information provided by the
Mueller matrices when the grating lines are no longer
perpendicular to the incidence plane but are positioned at
different azimuthal angles, MMP has demonstrated a great
potential in semiconductor manufacturing. Theoretically,
we can obtain all the Mueller matrices by continuously vary-
ing the wavelength and the incidence and azimuthal angles to
achieve high measurement precision and accuracy. However,
in order to improve the efficiency of data acquisition and
analysis, it is the common practice to choose a subset of
the three measurement conditions from the available ranges.
The combination of the selected wavelengths and incidence
and azimuthal angles is defined as the measurement configu-
ration. For example, we can fix the incidence and azimuthal
angles in proper values while continuously varying the wave-
lengths in an available range. Similarly, we can also fix the
wavelength and azimuthal angles in proper values while
continuously varying the incidence angles in an available
range. In general, a multitude of possible measurement
configurations can be chosen by making different combi-
nations of the three measurement conditions. It is worth
while to point out that there are great discrepancies in
the final measurement precision and accuracy in different

configurations. Therefore, there is a need for MMP to choose
an optimal one from the multitude of possible measurement
configurations.

In the past decades, several approaches have been
proposed to optimize the measurement configuration for
conventional ellipsometric scatterometry. Logofatu pro-
posed a sensitivity analysis for fitting method by defining
the sensitivity as the estimated precision of the structural
parameters to optimize the measurement configuration
for angle-resolved rotating-analyzer and angle-resolved
phase-modulation scatterometers.4,5 Littau et al. investi-
gated several optimal diffraction signature scan path selec-
tion techniques to improve scatterometry precision.6 Gross
et al. proposed an algorithm to determine the optimal meas-
urement data set by minimizing the condition number of the
Jacobian matrix, whose elements are defined as the partial
derivatives of the diffraction signature with respect to the
structural parameters.7 Vagos et al. developed an uncer-
tainty and sensitivity analysis package that can be used
to guide the model and azimuthal angle optimization proc-
esses.8 A recent study on spectroscopic MMP reported
that the Mueller matrices obtained in some measurement
configurations may help decorrelate the fitting structural
parameters.9 They further proposed to choose the measure-
ment configuration with small parameter correlations and
small estimated precision of the structural parameters.10

It is also interesting to note from the previous works4,5,10
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that the accuracy of the extracted structural parameters
varies greatly in different measurement configurations.
Typical minimization of the parameter correlations and
estimated precision may achieve an optimal configuration
with a higher measurement precision, but cannot guarantee
the final measurement accuracy.

In this article, we propose a measurement configuration
optimization method for spectroscopic MMP to find an
optimal combination of the fixed incidence and azimuthal
angles, with which more accurate measurement can be
achieved. The proposed method is inspired by the theoretical
analysis of error propagation in grating reconstruction by
MMP. Error analysis for conventional ellipsometric scatter-
ometry has been studied in recent years. Al-Assaad et al.
investigated the propagation of different types of errors
from the scatterometric data to the extracted structural
parameters.11 Germer et al. developed a scatterometry sensi-
tivity analysis program, named OCDSense, to describe the
propagation of measurement noise and to estimate system-
atic effects in measurement.12,13 Motivated by these analyses,
we first derive a generalized first order error propagating for-
mula, which reveals the mechanism of error propagation
in grating reconstruction by MMP. Based on this formula,
a systematic error propagating formula is further derived,
which relates the systematic errors in the extracted structural
parameters with those error sources such as the configuration
error as well as the systematic error in the measured Mueller
matrices. Here, the configuration error is defined as the
biases in the incidence and azimuthal angles and is typically
induced by the mechanical positioning errors and the finite
numerical apertures of the focusing lens in the measurement
system.14 The configuration error will induce systematic
errors in the extracted structural parameters and thus degrade
the final measurement accuracy. We then introduce the norm
of the configuration error propagating matrix, which repre-
sents the maximum gain factor in the propagation of the con-
figuration error, to assess the influences of the configuration
error on the measurement accuracy for different measure-
ment configurations. We further optimize the measurement
configuration for MMP by minimizing the norm of the con-
figuration error propagating matrix.

The reminder of this article is organized as follows.
Section 2 first briefly introduces the inverse problem in
grating reconstruction by MMP and then presents the
error propagation in grating reconstruction by MMP and
the measurement configuration optimization method in
detail. Section 3 introduces the experimental setup, including
the setup of a dual-rotating compensator Mueller matrix
polarimeter as well as the geometric structure of the inves-
tigated Si grating sample. Section 4 provides the simulation
and experimental results to examine the validity of the pro-
posed optimization method. Finally, we draw some conclu-
sions in Sec. 5.

2 Methods

2.1 Inverse Problem in Grating Reconstruction by
MMP

Without loss of generality, we denote the structural param-
eters under measurement as an M-dimensional vector
x ¼ ½x1; x2; : : : ; xM�T, where the superscript “T” represents
the transpose. The vector a ¼ ½θ;φ�T that consists of the

incidence angle θ and azimuthal angle ϕ denotes the meas-
urement configuration. The χ2 function is usually applied to
estimate the fitting errors between the measured and calcu-
lated Mueller matrix elementsmmeas

ij;k andmcalc
ij;kðx; aÞ, which is

defined as

χ2 ¼
XNλ

k¼1

X
i;j

�
mmeas

ij;k −mcalc
ij;kðx; aÞ

σðmij;kÞ
�2
; (1)

where k denotes the spectral point from the total number Nλ,
and indices i and j show all the Mueller matrix elements
except m11. σðmij;kÞ is the standard deviation associated
with mij;k. For clarity, the measured Mueller matrix element
mmeas

ij;k in Eq. (1) is marked as yl with the three indices i, j, and
k lumped into a single index l. The calculated Mueller matrix
element mcalc

ij;kðx; aÞ is correspondingly marked as flðx; aÞ.
Thus, Eq. (1) can be simply rewritten as

χ2 ¼
XN
l¼1

wl½yl − flðx; aÞ�2 ¼ ½y − fðx; aÞ�TW½y − fðx; aÞ�;

(2)

where wl is the weighting factor and is given by
wl ¼ 1∕σ2ðylÞ and N ¼ 15Nλ. W is an N × N diagonal
matrix with diagonal elements wl. The inverse problem in
grating reconstruction is typically formulated as a least
square regression problem such that

x̂ ¼ arg min
x∈Ω

f½y − fðx; a�Þ�TW½y − fðx; a�Þ�g; (3)

where x̂ is the solution of the inverse problem that contains
the extracted structural parameters, and Ω is the associated
parameter domain. a� denotes the given value of vector a in
the parameter extraction.

2.2 Error Propagation in Grating Reconstruction by
MMP

We assume that the function fðx; aÞ is sufficiently smooth
and can be expanded in a Taylor series which, truncated
to the first order, leads to a linear model at ðx̂; a�Þ
fðx; aÞ ¼ fðx̂; a�Þ þ Jx · ðx − x̂Þ þ Ja · ða − a�Þ; (4)

where Jx and Ja are the N ×M and N × 2 Jacobian matrices
with respect to x and a, respectively, whose elements are
given by

½Jx�ij ¼
∂fiðx; aÞ

∂xj

����
x¼x̂;a¼a�

; (5a)

½Ja�ij ¼
∂fiðx; aÞ

∂aj

����
x¼x̂;a¼a�

: (5b)

Substitution of x ¼ x0 and a ¼ a0 into Eq. (4) gives

fðx0; a0Þ ¼ fðx̂; a�Þ þ JxΔxþ JaΔa; (6)

where x0 and a0 are the true values of x and a, respectively.
Δx and Δa represent the error propagated into x̂ and the
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configuration error in the parameter extraction, respectively,
and are given by Δx ¼ x0 − x̂ and Δa ¼ a0 − a�. The meas-
urement vector y will be the sum of the true signature
fðx0; a0Þ of the grating sample and a deterministic offset vec-
tor μΔy and a random noise vector εΔy, i.e.,

y ¼ fðx0; a0Þ þ μΔy þ εΔy: (7)

The vectors μΔy and εΔy represent the intrinsic systematic
and random errors in y induced by the measurement system.

Inserting Eqs. (6) and (7) into Eq. (2), we have

χ2min¼½y− fðx̂;a�Þ�TW½y− fðx̂;a�Þ�
¼ ½JxΔxþ JaΔaþμΔyþεΔy�TW½JxΔxþJaΔaþμΔyþεΔy�:

(8)

By taking the derivative of both sides of Eq. (8) with respect
to x, we derive that

J̃xΔxþ J̃aΔaþ μ̃Δy þ ε̃Δy ¼ 0; (9)

where J̃x ¼ W1∕2Jx, J̃a ¼ W1∕2Ja, μ̃Δy ¼ W1∕2μΔy, and
ε̃Δy ¼ W1∕2εΔy. We call Eq. (9) the generalized first-order
propagating formula, which relates the error Δx in x̂ with
the error sources such as the configuration error Δa as
well as the systematic and random errors μΔy and εΔy in
y. Assuming that the vector εΔy has a zero mean, we can
derive the following equation by taking the mean value of
both sides of Eq. (9) that

μΔx ¼ hΔxi ¼ J̃þx J̃aΔaþ J̃þx μ̃Δy; (10)

where J̃þx ¼ ðJ̃Tx J̃xÞ−1J̃Tx is the Moore-Penrose pseudo-
inverse of the matrix J̃x. Equation (10) is also called the sys-
tematic error propagating formula, which describes how the
configuration error Δa and the systematic error μΔy in y lead
to the systematic error μΔx in x̂. According to Eq. (10), we
further derive the following inequality that

kμΔxk ≤ kJ̃þx J̃ak · kΔak þ kJ̃þx k · kμ̃Δyk; (11)

where the notation k · k represents the lp (p ¼ 1, 2, ∞) vec-
tor norm and the lp matrix norm that is induced by the asso-
ciated vector norm.15 Equation (11) can be derived according
to the triangle inequality of the vector norm as well as the
compatibility of the vector norm and the induced matrix
norm. Equation (11) gives the upper limit of the systematic
errors propagated into x̂. kJ̃þx J̃ak and kJ̃þx k represent the
maximum gain factors in the propagation of Δa and μΔy,
respectively.

2.3 Measurement Configuration Optimization

According to Eq. (10), we can estimate the systematic error
μΔx in x̂ if the configuration errorΔa and the systematic error
μΔy in y are known. We can use the estimate of the systematic
error μΔx as a correction term to correct the solution x̂ and
obtain the corrected solution x̂0 ¼ x̂þ μΔx, which will be
much closer to the true value x0 and therefore improves
the accuracy of parameter estimation. However, the configu-
ration error Δa and the systematic error μΔy in y are usually
difficult to obtain in practice, which makes the above

correction unfeasible. As described in Eq. (10), the system-
atic error μΔx in x̂ will be mainly induced by the configura-
tion error Δa if we assume that the measurement system
is well calibrated and the systematic error μΔy in y is small.
The configuration error Δa, which typically arises from the
mechanical positioning errors and the finite numerical aper-
tures of the focusing lens in the measurement system,14 is
approximately unvaried with the measurement configura-
tions. However, the matrix kJ̃þx J̃ak, which is called the con-
figuration error propagating matrix, is a function of the
measurement configuration. Similarly, kJ̃þx J̃ak is also varied
with the measurement configurations. According to Eq. (11),
we know that the systematic error μΔx in x̂ will be small if we
choose the measurement configuration with small kJ̃þx J̃ak.
Therefore, we can optimize the measurement configuration
by

ðθopt;φoptÞ ¼ arg min
θ∈Θ;φ∈Φ

½max
x∈Ω

ðkJ̃þx J̃akÞ�: (12)

Equation (12) needs some interpretations. Considering
the local properties of the matrices J̃x and J̃a as described
in Eq. (5) that is defined at ðx̂; a�Þ, we first scan the values
of kJ̃þx J̃ak in the given parameter domain Ω for the maxi-
mum. Then we scan all of the maximal values of kJ̃þx J̃ak
in the ranges of incidence and azimuthal angles (Θ and
Φ) for the minimum. The combination of incidence and azi-
muthal angles corresponding to this minimum will be the
final optimal measurement configuration. The former scan
ensures that the measurement configuration is stable for
the changes of structural parameters. The latter scan ensures
the optimization of the overall measurement accuracy.

3 Experimental Setup
The experimental setup used in this article is a dual-rotating
compensator Mueller matrix polarimeter (DRC-MMP)
(RC2®, J. A. Woollam Co., Lincoln, Nebraska) with
in-house forward modeling software based on rigorous
coupled-wave analysis (RCWA).16–18 As schematically shown
in Fig. 1, the system setting of the dual-rotating compensator
Mueller matrix polarimeter in order of light propagation
is PCr1SCr2A, where P and A stand for the fixed polarizer
and analyzer, Cr1 and Cr2 refer to the first and second fre-
quency-coupled rotating compensators, and S stands for
the sample. With the light source used in this polarimeter,
the wavelengths available are in the 193 and 1690 nm

Fig. 1 Scheme of the dual-rotating compensator Mueller matrix
polarimeter.
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range, covering the spectral range of 200 to 800 nm used in
this article. With this dual-rotating compensator setting, we
can obtain the full Mueller matrix elements of the sample
under measurement. See Refs. 19 and 20 for details on
the data reduction.

The investigated sample is a one-dimensional Si grating,
whose scanning electron microscope (SEM) cross-section
image is shown in Fig. 2. The etched Si grating is chosen
for this study due to its long-term dimensional stability,
higher refractive index contrast, and relevance to the semi-
conductor industry. Optical properties of Si are taken from
Ref. 21. As depicted in Fig. 2, a cross-section of the Si gra-
ting is characterized by a symmetrical trapezoidal model
with top critical dimension TCD, bottom critical dimension
BCD, grating height Hgt, and period pitch. Dimensions of
the structural parameters obtained from Fig. 2 are TCD ¼
350 nm, Hgt ¼ 472 nm, and BCD ¼ 383 nm. In the follow-
ing experiments, structural parameters of the Si grating that
need to be extracted include TCD, Hgt, and BCD, while
the grating period is fixed at its nominal dimension, i.e.,
pitch ¼ 800 nm.

4 Results and Discussion
The procedure of measurement configuration optimization is
time consuming, and it is a priority to reduce the search
domain to minimize the calculation time. Since a regular gra-
ting has rotation symmetry C2z,

22 its Mueller matrices remain
unchanged after 180 deg rotation in the azimuthal angle. In
addition, the grating also has reflection symmetry relative to
the plane that is perpendicular to the direction of grating
period. In other words, replacing φwith −φ changes nothing.
Therefore, we can restrict the range of azimuthal angles from
0 to 90 deg. In the experiments, the incident angle is varied
from 55 to 65 deg, and the spectral range is from 200 to
800 nm with an increment of 5 nm. When applying RCWA
to calculate the Mueller matrices, the number of retained
orders in the truncated Fourier series is 12, and the Si grating
as shown in Fig. 2 is sliced into 15 layers along the vertical
direction.

The systematic error propagating formula as described in
Eq. (10) is the foundation for the proposed measurement
configuration optimization method. It is necessary to validate
this formula first before optimizing the configuration. To this

end, we first calculate the sample Mueller matrices for a
given group of structural parameters x and in a specific meas-
urement configuration a� þ Δa. An error simulator that takes
into account all the major error sources in the DRC-MMP
was developed to simulate errors intrinsically induced by
this polarimeter. The error sources in the DRC-MMP include
the random noise in the measured light fluxes and the bias
in a system-dependent vector b, of which the former and the
latter will induce random and systematic errors εΔy and μΔy
in the measured Mueller matrices, respectively. Without
regard to the imperfection of the components in this polar-
imeter, the variables in vector b will be mainly the transmis-
sion axis angles of the polarizer and analyzer P and A, fast
axis angles CS1 and CS2, and phase retardances δ1 and δ2 of
the two compensators, i.e., b ¼ ½P;A; CS1; CS2; δ1; δ2�T,
which are typically determined through a calibration proc-
ess.23 We then generate the “measured” Mueller matrices
by adding the above calculated sample Mueller matrices
with the simulated errors and use them to imitate the actually
measured sample Mueller matrices in the procedure of
parameter extraction. The Levenberg–Marquardt (LM) algo-
rithm24 is then applied to extract the structural parameters
from the measured Mueller matrices with the measurement
configuration fixed at a�. The LM algorithm typically con-
verges rapidly to the global minimum if suitable initial values
are provided. It is certain that there will exist errors Δx
(including random and systematic errors) in the extracted
structural parameters x̂, i.e., Δx ¼ x̂ − x. If we repeat the
above procedure n times, we will obtain n groups of
extracted structural parameters. The mean value of the errors
Δx in the n groups of extracted structural parameters ðΔxÞ
will be the statistically calculated systematic error in x̂,
which is induced by both the configuration error Δa and
the systematic error μΔy in the measured Mueller matrices
(induced by the bias Δb in vector b). The above statistically
calculated systematic error is then compared with those theo-
retically estimated by Eq. (10) to examine its validity and to
identify which error sources will contribute most in limiting
the accuracy of the grating reconstruction.

Figure 3 depicts the comparison between the statistically
calculated systematic errors in the extracted structural param-
eters TCD, Hgt, and BCD and those theoretically estimated
by Eq. (10). The structural parameters corresponding to
Fig. 3 are TCD ¼ 350 nm, Hgt ¼ 472 nm, and BCD ¼
383 nm, which are the results measured by SEM. The inci-
dence angle θ is fixed at 60 deg, and the azimuthal angles ϕ
are varied from 0 to 90 deg with an increment of 5 deg.
In Fig. 3, the configuration error is Δa ¼ ½Δθ;Δφ�T ¼
½0.5 ; 1.0 �T deg, and the bias in vector b is Δb ¼
½ΔP;ΔA;ΔCS1;ΔCS2;Δδ1;Δδ2�T ¼ ½0.5; 0.5; 0.5; 0.5; 1.0;
1.0 �T deg. The biases in the incidence angle θ and vector b
were roughly estimated from measurements acquired for air
as well as a SiO2 film with known thickness on a Si substrate.
The bias in the azimuthal angle φ was roughly estimated
according to the symmetry in the measured Mueller matrices
of the investigated Si grating sample. These values represent
a high level of biases in measurements, probably exceeding
most instrumental situations, and are used here to examine
the validity of Eq. (10) and to investigate the influences of
different error sources on the final extracted structural param-
eters. As observed from Fig. 3, the theoretically estimated
systematic errors show a good agreement with those

Fig. 2 Scanning electron microscope (SEM) cross-section image of
the investigated Si grating.
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statistically calculated ones, which therefore demonstrates
the validity of the derived systematic error propagating for-
mula given by Eq. (10). We also observe from Fig. 3 that the
configuration error Δa has a greater influence on the system-
atic error μΔx in x̂ than the systematic error μΔy in the mea-
sured Mueller matrix elements does. Thus, we can focus on
the configuration error Δa in the following experiments and
use the norm of the configuration error propagating matrix
kJ̃þx J̃ak as the cost function to further optimize the measure-
ment configuration for MMP.

In order to optimize the measurement configuration for
MMP, the l2 norm of the configuration error propagating
matrix kJ̃þx J̃ak was calculated in a parameter domain with
TCD varied from 345 to 355 nm, Hgt from 465 to
475 nm, and BCD from 378 to 388 nm. In the optimization
procedure, the incidence and azimuthal angles were varied
from 55 to 65 deg and from 0 to 90 deg, respectively,
both with an increment of 5 deg. In the given parameter
domain, the maximal norms kJ̃þx J̃ak calculated in different
measurement configurations are presented in Fig. 4.
According to Eq. (12), we know that the minimum of all
the maximal norms kJ̃þx J̃ak corresponds to the final optimal
measurement configuration. As observed from Fig. 4, the
norm of the configuration error propagating matrix kJ̃þx J̃ak
calculated when the incidence angle θ ¼ 55 deg and azimu-
thal angle φ ¼ 20 deg is smaller than those calculated in
other configurations. It is therefore expected that the struc-
tural parameters extracted in θ ¼ 55 deg and φ ¼ 20 deg
will have smaller systematic errors and will be more accurate
than other measurement configurations.

In order to examine the above prediction of the optimal
measurement configuration, the Si grating sample as shown
in Fig. 2 was measured by the RC2® polarimeter in the inci-
dence and azimuthal angles varied from 55 to 65 deg and
from 0 to 90 deg, respectively, both with an increment of
5 deg. The systematic errors in the structural parameters
are defined as the differences between the structural param-
eters of the Si grating sample extracted by the LM algorithm
and the results measured by SEM. The l2 norm of the sys-
tematic errors kμΔxk in the extracted structural parameters

was then calculated for each measurement configuration
and shown in Fig. 5. An examination of Fig. 5 shows that
the variation of the norms of the systematic errors kμΔxk
is not in rigorous agreement with that of the norms of the
configuration error propagating matrix kJ̃þx J̃ak as depicted
in Fig. 4. It may be because the relation given by
Eq. (11) is not a rigorous equality but an inequality.
However, we do have a qualitative agreement. For example,
the greater the incidence and azimuthal angles are, the
greater the norms of the configuration error propagating
matrix kJ̃þx J̃ak are, and then the greater the norms of the
systematic errors kμΔxk are. Importantly, the optimal
measurement configuration shown in Fig. 5, whose
corresponding norm of the systematic error kμΔxk achieves
the minimum value, is in accordance with the theoretical pre-
diction given in Fig. 4. Figure 6 illustrates the fitting result of
the calculated and the polarimeter measured Mueller matri-
ces in the optimal measurement configuration θ ¼ 55 deg
and φ ¼ 20 deg. The extracted structural parameters with
95% confidence level are TCD ¼ 348.58� 0.024 nm,
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Hgt¼ 472.91�0.017 nm, and BCD¼ 389.16�0.026 nm.
Here, the 95% confidence level uncertainties appended to
the extracted parameter values are estimated by propagating
the random uncertainties in the grating reconstruction pro-
cedure. The estimate of the standard deviations of the mea-
sured Mueller matrix elements is provided by the
CompleteEASE™ software supplied with the RC2® instru-
ment. As observed from Fig. 6, the Mueller matrices of the Si
grating sample calculated in the optimal measurement con-
figuration show a good agreement with the measured
Mueller matrices. Consequently, we can conclude that the
norm of the configuration error propagating matrix
kJ̃þx J̃ak can be applied as an objective function to optimize
the measurement configuration for MMP to achieve more
accurate measurement.

5 Conclusions
In this article, the measurement configuration optimization
for spectroscopic MMP was investigated to find an optimal
combination of the incidence and azimuthal angles, with
which more accurate measurement can be achieved. We
derived a systematic error propagating formula which relates
the systematic errors in the extracted structural parameters
with the error sources such as the configuration error and
the intrinsic systematic error in the measured Mueller matri-
ces. Simulations performed on a Si grating sample have dem-
onstrated the validity of this formula and also revealed that
the configuration error has a greater influence on the system-
atic errors in the extracted structural parameters than the
intrinsic systematic error in the measured Mueller matrices
does. We then adopted the norm of the configuration error
propagating matrix to assess the influence of the configura-
tion error on the measurement accuracy for different configu-
rations. The optimal configuration with the incidence angle
θ ¼ 55 deg and azimuthal angle φ ¼ 20 deg was achieved
for the investigated Si grating sample by minimizing the
norm of the configuration error propagating matrix.
Experiments performed with a dual-rotating compensator
Mueller matrix polarimeter show the agreement between
the theoretically predicted optimal configuration and the
experimentally exhibited one. It is also worthwhile to point
out that the optimal configuration is sample dependent, but
the proposed method is general and may be extended to other
scatterometric techniques.
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