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Abstract

Background: As extreme ultraviolet lithography (EUV) lithography has progressed toward fea-
ture dimensions smaller than the wavelength, electromagnetic field (EMF) solvers have become
indispensable for EUV simulations. Although numerous approximations such as the Kirchhoff
method and compact mask models exist, computationally heavy EMF simulations have been
largely the sole viable method of accurately representing the process variations dictated by mask
topography effects in EUV lithography.

Aim: Accurately modeling EUV lithographic imaging using deep learning while taking into
account 3D mask effects and EUV process variations, to surpass the computational bottleneck
posed by EMF simulations.

Approach: Train an efficient generative network model on 2D and 3D model aerial images of a
variety of mask layouts in a manner that highlights the discrepancies and non-linearities caused
by the mask topography.

Results: The trained model is capable of predicting 3D mask model aerial images from a given
2D model aerial image for varied mask layout patterns. Moreover, the model accurately predicts
the EUV process variations as dictated by the mask topography effects.

Conclusions: The utilization of such deep learning frameworks to supplement or ultimately
substitute rigorous EMF simulations unlocks possibilities of more efficient process optimiza-
tions and advancements in EUV lithography.
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1 Introduction

Extreme ultraviolet lithography (EUV) has become responsible for the majority of the advances
in semiconductor technology toward the 10-nm technology node and beyond. Simulations play a
crucial role in the advancement of EUV lithography and they are often the most efficient means
of process development. However, accurate aerial image simulations of EUV lithography incur a
significant computational load, which is largely attributed to the requirement of a rigorous sol-
ution of the electromagnetic fields (EMFs) with a 3D representation of the thick EUV mask.1,2

The requirement of rigorous simulations poses a hindrance to optimizations and explorations of
the parameter space. A 2D representation of the mask can be utilized to drastically speed up the
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process while compromising accuracy using the so-called Kirchhoff approximation, which
assumes the thick mask to be infinitely thin. The infinitely thin mask model has been commonly
used to simulate lithographic aerial images. Nonetheless, such approximation overestimates the
amount of light reaching the wafer, and it fails to represent numerous effects attributed to the 3D
profile of the mask, often referred to as the mask topography effects. Furthermore, various com-
pact mask models have been developed to increase the computational efficiency while main-
taining sufficient accuracy in representing 3D mask effects, although the main assumptions
of such models are invalidated at more advanced technology nodes.3–5 Certain 3D mask effects
or mask topography effects, such as asymmetric process windows, occur in both deep UV
(DUV) and EUV lithography processes. Nonetheless, 3D mask effects manifest at a greater
degree as the wavelength becomes larger in comparison to the feature sizes, and smaller in com-
parison to the thickness of the mask’s absorber.6 The aggregation of the 3D mask effects in EUV
systems due to the smaller feature sizes makes them consume a greater part of the tolerable error
budget compared to the DUV 3D mask effects.

Increasing research efforts in recent years have been committed to utilizing machine learning
to efficiently perform a wide range of tasks in lithography. A diverse range of neural network
architectures has been employed to surpass the computational bottleneck of EUV aerial image
computation with rigorous mask models. Fully convolutional networks (FCNs) were used
to efficiently calculate the near field spectrum of 3D EUV masks,7 which is a highly time-
consuming step of aerial image computation. Artificial Neural Networks were implemented
to model the spectrum of the 3D mask, which is then used to compute the aerial image using
the Abbe method.8 Machine learning with non-parametric kernel regression has been utilized to
compute aerial images with the aid of training libraries of thick-mask diffraction near-fields9 and
data-fusion and image-synthesis from small patches.5 More recently, a convolutional neural net-
work (CNN) is implemented to reconstruct the amplitudes of the 3D mask diffraction spectrum,
which are then used to compute the aerial images.10 Many of these machine learning implemen-
tations require additional computational steps to obtain the aerial images. Additionally, due to
the data-intensive nature of such approaches, they often require copious amounts of training data
to be trained effectively. The data requisites of machine learning can largely impede the effi-
ciency when the training data involves rigorously simulated 3D mask model aerial images.
Lin et al.11 proposed an approach that tackles the data inefficiency by implementing active data
selection in combination with transfer learning, where data from a simpler technology node is
utilized to reduce the amount of training data the network required from the more advanced
technology node.

Conditional generative adversarial networks (cGANs) are an archetype of generative net-
works that have been utilized in recent years for efficient aerial image generation, in addition
to other lithographic image generation tasks such as generating optimized mask layouts in Gan-
OPC.12 The appeal of cGANs is their versatility in image-to-image translation problems as they
have demonstrated their superior efficacy for a wide range range of such tasks.13,14 LithoGAN
was developed for an end-to-end lithography framework, using the cGAN architecture for aerial
image generation.15 Although LithoGAN has demonstrated high accuracy and efficiency, it is
restricted to the 2D mask model for imaging, which is incapable of capturing the 3D mask effects
and is therefore mostly invalid for various mask layout settings with feature sizes close to the
wavelength. However, the incentive to include 3D mask effects with such efficient approaches
grows. TEMPO is a framework proposed to predict lithographic aerial images at different resist
heights with the mask topography taken into consideration.3 The approach in the TEMPO frame-
work involves appending an encoding vector that includes information of the target domain to
the bottleneck layer of the network. TEMPO has demonstrated its effectiveness and accuracy in
predicting the aerial images for different resist heights, however, the demonstrated accuracy of
the framework does not take into account predicting the EUV process variations with the mask
topography effects.

In this work, we propose a framework for efficiently training a generative network to generate
aerial images that accurately represent the 3D mask model imaging, in addition to predicting the
non-linearities and asymmetries in the behavior of an EUV process through focus and pitch. The
framework is then capable of predicting the iso-dense bias, process window, best focus shift, and
position shift for a given pattern layout within a varied range of industrially relevant mask
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patterns. The framework entails providing the generative network with aerial images computed
using the 2D mask model as inputs and aerial images computed using the 3D mask model as
outputs. Additionally, we utilize the defocus from the projector as additional information for the
network in a similar manner to the implementation of the one-hot encoding vector in the TEMPO
framework.3 In summary, the main contributions of our proposed framework to recent and
similar efforts for 3D model aerial image generation are the following.

1. Framework to train cGANs to generate 3D mask model aerial images with high
accuracy in terms of local lithographic metrics such as critical dimensions (CDs) as well
as global imaging metrics such as the mean absolute error and the edge distance
error (EDE).

2. Ability to generalize and predict aerial images of mask patterns that were not included in
the training data.

3. Predictions of process variations of EUV images with 3D mask effects, such as best focus
shifts, asymmetric process windows, horizontal–vertical feature bias, isolated-dense
feature bias, in addition to focus-dependent feature position shifts and telecentricity.

4. A wide application range, given that a varied range of mask layout patterns such as
contact holes, lines and spaces, line ends, and other layouts can be implemented in this
framework.

5. Proposing means of increasing the effectiveness of cGANs for lithographic aerial image
generation tasks by adjusting the loss ratios, and proposing another generative architecture
that can outperform cGANs in such tasks.

In the following section, we present details of the physical phenomena associated with the 3D
mask effects and their significance, in addition to details associated with the implemented net-
work architectures. Section 3 details our proposed approach, specifics and important network
parameters, and the training strategies that have been employed. Section 4 presents our results
that are achieved by the network and compares them to simulated results using a rigorous EMF
solver, followed by our conclusions in Sec. 5.

2 Preliminaries

2.1 3D Mask Effects

A characteristic of masks in EUV lithography is their thickness relative to the projection wave-
length. EUV masks are composed of a mask absorber, which constitutes the mask’s features,
placed on top of a multi-layer mirror of 40 bi-layers. With the standard EUV wavelength being
13.5 nm, EUV mask absorbers have a thickness in the range of 60 nm, making them more than
four wavelengths thick. The material properties of the bi-layer and absorber, in addition to the
3D profile of the thick EUV mask ensue several aberration-like effects and deformations to
the wavefront and phase of the light as it interacts with the edges of the mask’s features.6

Additionally, the multitude of reflections of the diffracted light from the multilayer stack leads
to further deformations at the masks near field and consequently at the resulting image.6 The
reflective nature of EUVmasks necessitates an oblique incidence onto the mask, which causes an
asymmetry across certain aspects of EUV imaging. The mask absorber being larger than the
wavelength increases the severity of these effects. Another factor that aggregates the extent
of these effects is the advancement of the feature sizes toward sizes approaching the wavelength
or smaller than it. These effects are commonly referred to as the 3D mask effects, and they play
a fundamental role in understanding and predicting the often non-linear behavior of an EUV
lithography process.

One of the main 3D mask effects is an asymmetry in process windows. Process windows are
indications of the operable ranges of defocus and dose (or threshold) variation that yield changes
in the imaged feature sizes or CDs within a specified tolerance range. In other words, a process
window is an indication of the dose and defocus latitudes of a given lithographic process. A
symmetric process window for a given process means that shifts of the projector from the focal
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plane that are either toward the mask or away from the mask yield the same change in the printed
feature size. However, certain cases in both DUVand EUV lithography lead to asymmetric proc-
ess windows, namely cases with semi-dense or isolated features. The degree of the asymmetry of
a process window is dependant on the feature type and pitch. A primary consequence of the
process window asymmetry is a layout-dependent shift in the best focus position which yields
the image with the sharpest contrast. Orientation dependency is a 3D mask effect that is a result
of the oblique incidence on the EUVmask. EUV projection systems presently employ a chief ray
angle of incidence (CRA) of 6 deg. The CRA is defined in the yz-plane, whereas the mask
surface is the xy-plane. Consequently, features that are oriented perpendicular to the incidence
plane (horizontal lines) will experience different shadowing effects from features that are parallel
to the incidence plane (vertical lines). This results in a pronounced asymmetric shadowing that
occurs only with imaging horizontal features and not vertical ones.6,16

Non-telecentricity is a characteristic effect of EUV lithographic imaging that is attributed to
the thick masks and the oblique incidence. Non-telecentricity is a focus-dependent shift of the
feature position. The extent of the feature position variation through focus increases in magni-
tude as the angle of incidence (CRA) increases.6 This 3D mask effect is numerically described by
the gradient of the feature position versus focus curve at the best focus position.

A bias in imaging for dense features versus more isolated features as a result of the discrep-
ancy in the number of contributing diffraction orders is a standard feature of projection lithog-
raphy. In other words, isolated and dense features of the same size are projected with varying
fidelities due to the diffraction limitation of the system. The iso-dense feature bias is one of the
optical proximity effects that can be, to a certain extent, remedied by OPC techniques. EUV
masks exacerbate the extent of the iso-dense feature bias. Furthermore, isolated EUV mask fea-
tures are more sensitive to focus variation, which in turn further exacerbates the iso-dense bias in
EUV lithography.

Accurate representations of the aforementioned 3D mask effects necessitate a rigorous
numerical solution of the EMFs as they reflect from the thick EUV mask. Although 2D rep-
resentations of masks have been widely used, at smaller technology nodes they become increas-
ingly inaccurate. Therefore, the formulation of a viable deep learning model to be utilized
for EUV systems requires the consideration of such 3D mask effects. Recent deep learning
approaches for EUV lithography have tackled specific 3D mask effects by involving additional
modeling or learning steps, such as in LithoGAN where an additional CNN was implemented to
predict the position shift of the feature that is predicted by a cGAN.15 In our approach, we aim to
encompass all the mentioned 3D effects in the training of an efficient generative network.

2.2 Generative Networks

2.2.1 Generative adversarial networks

GANs are neural network models that are capable of generating and predicting instances of data
as outputs that resemble those in the inputs of the network. The main characteristic of GAN
models is that they consist of two competing neural networks with different, yet interlaced
objectives. The two competing networks are a generator model and a discriminator model. The
generator model is the one responsible for generating the data, and in the regular GAN case, it
involves an unsupervised learning process. The discriminator model is tasked with classifying
the data and determining whether they are real data from the input domain, or if they are fake data
generated by the generator. These two models are trained alongside each other in an adversarially
balanced manner, where a loss increase for one model contributes as a loss reduction for the
other. The discriminator’s objective is to accurately identify “real” and generated or “fake”
data, while the generator’s objective is to generate data that are as close as possible to the “real
data” in the input domain, and to make the discriminator fail to differentiate the real and
generated data.17 The loss function of a general GAN model is defined in Eq. (1) as described
by Goodfellow et al.18

EQ-TARGET;temp:intralink-;e001;116;99LGANðG;DÞ ¼ Ex½logðDðxÞÞ� − Ez½logð1 −DðGðzÞÞÞ�; (1)
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where the generator (G) tries to minimize this loss while competing with the discriminator (D)
that tries to maximize it. The term DðxÞ is the discriminator’s estimate of the probability that a
data instance is real, x is the data from the real or input domain, GðzÞ is the generator’s output
when given noise (z), and DðGðzÞÞ is the discriminators estimate of the probability that a gen-
erated data instance is from the real. Ex and Ez are the expected value over all real data instances
and over the random inputs to the generator, respectively. The generator works to minimize the
overall loss through minimizing the term logð1 −DðGðzÞÞÞ.

2.2.2 Conditional generative adversarial networks

cGANs are ones where the generation is conditioned to a certain input structure, as opposed to
regular GANs where the generation is based primarily on random input vectors. The generators
of cGANs receive input data on which they perform a translation onto, with the aim of replicating
the translation from inputs to outputs of the training data. In our case, the input data is an aerial
image computed using the 2D mask model or thin-mask approximation, and the output is the
aerial image of the same mask computed using the waveguide method, which is representative of
typical simulation methods with a 3D mask description.1,2

cGANs provide a more effective general solution for image translation tasks (image-to-image
mapping) as demonstrated by the paper on Image-to-Image translation with conditional adver-
sarial networks.13 This improved performance could be attributed to the conditioning of the
output of the generator to the desired mapping provided in the input, which frames the problem
as a supervised training task

The loss function for cGANs is analogous with the one for regular GANs; however, the
definition of the inputs differs.

EQ-TARGET;temp:intralink-;e002;116;447LcGANðG;DÞ ¼ Ex½logðDðx; yÞÞ� − Ex;z½logð1 −Dðx; Gðx; zÞÞÞ�: (2)

While x is the input data, and y is the real translation of x, y is also part of the input data. The
objective function, which is shown in Eq. (4) below, is optimized using the same methodology
discussed in the previous section. Here Gðx; zÞ is the image generated by the generator given a
certain input image x, and a noise distribution z. The expression Dðx; yÞ denotes the discrim-
inator’s probability estimate that a data pair ðx; yÞ is a real mapping or translation, as in a pair that
is provided in the input data. The term Dðx; Gðx; zÞÞ refers to the probability estimated by the
discriminator that the data pair ðx; Gðx; zÞÞ is a fake translation. Recent approaches mixed the
GAN’s adversarial loss with a more traditional loss such as the L1 distance shown in Eq. (3), as
this is demonstrated to provide a reduced blur in the images.13 An L1 loss is a mean absolute
error and its inclusion incentivizes the generation of data that is closer to the target.

EQ-TARGET;temp:intralink-;e003;116;295LL1ðGÞ ¼ Ex;y;z½ky − Gðx; zÞk1�: (3)

This leads to the final objective in Eq. (4), considering that G is the model which needs to be
optimized to enable generating accurate image translations:13

EQ-TARGET;temp:intralink-;e004;116;238G ¼ arg min
G

max
D

LcGANðG;DÞ þ λLL1ðGÞ; (4)

where λ is a hyperparameter representing the weighing ratio of the L1 loss to the adversarial loss.
The first term in Eq. (4) is the adversarial loss, and it indicates the generator’s task of fooling the
discriminator and increasing its loss. Whereas the second term is the L1 loss, and it indicates the
generator’s task to provide generations that are as close as possible to the real or target
translations of the input data.13 In this work, we investigate the effect of the weight ratios of
the aforementioned two losses.
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3 Proposed Approach

3.1 Training Data

The mask layout patterns used in the training data are horizontal and vertical lines, contact
arrays, attacking, and butting line ends. Additionally, the pattern bar-in-U is utilized as a val-
idation pattern to verify the model’s ability to generalize. The implemented layouts are indus-
trially relevant ones specified by Synopsys Inc. The pattern layouts and the ranges of variations
in their geometries are shown in Fig. 1. The network’s training data consist of 2D model aerial
images provided as inputs, and rigorously computed 3D model aerial images provided as
outputs. The 3D model aerial images are obtained by a rigorous solution of the diffracted light
from the thick mask using the waveguide method, which solves the EMFs in the spatial fre-
quency domain.1 This method decomposes the thick mask into slices that are homogeneous
in the z-direction. Similar to the analysis of optical waveguides and optical fibers, the waveguide
method transfers Maxwell’s equations to the Helmholtz wave equation shown in Eq. (5).

EQ-TARGET;temp:intralink-;e005;116;393∇2 ~Aþ k̃20ϵ̃ ~A ¼ 0; (5)

where ~A is the vector field, k0 is the wave-number in vacuum and ϵ̃ is the complex permittivity.
The Helmholtz equation is then solved in the z-homogeneous slices. The solution is obtained by
performing Fourier series expansions on the fields. The Fourier series expansions yield a system
of linear equations that can be solved using the boundary conditions by connecting the com-
ponents of consecutive slices.1,2 The number of Fourier expansion terms is called the waveguide
order. For our training data, we implement the optimal number of waveguide orders based on the
pitch, as determined by Eq. (6).

EQ-TARGET;temp:intralink-;e006;116;275Waveguide orders ¼ p
2λ

: (6)

We perform the waveguide method’s simulations without the Hopkins approach. The
Hopkins approach is an approximation that is commonly utilized for image simulations, which
assumes that the diffraction orders from the mask at small angles of incidence relative to the
normal are equal to the diffraction orders obtained at the normal incidence. Accurate EUV sim-
ulations require a definition of the source without the Hopkins approximation, in which the mask
diffraction spectrum is computed from a number of representative source points. In our training
data, we use four non-Hopkins orders (1 per pole) referring to the representative source points.
The 2D model aerial images are obtained via the Kirchhoff approach, which is based on the
Kirchhoff diffraction and boundary condition. This approach ignores the 3D extent of the mask
in the z-direction and only considers the geometry of the mask’s features in the xy-plane. In other
words, the mask is assumed to be infinitely thin and is simply defined as a 2D array of binary
transmission values. The aerial image is then computed using a Fourier transformation of the
mask layout.

The optical settings for the training data of both the 2D model and 3D model are shown
in Table 1.

Fig. 1 Mask pattern layouts utilized (top row) and samples thereof (middle row) and their ranges of
geometry variation (bottom row). All units are nm on mask scale.
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3.2 Network Architecture

Pix2Pix-cGAN is the variant of cGANs proposed by Isola et al.,13 which we implement to train a
model to translate lithographic aerial image data from the 2D model to the 3D model. We pro-
pose a strategy for training this network to predict the 3D mask effects, which involves formu-
lating sufficiently varied training data in a way that highlights the 3D mask effects, in addition to
concatenating the defocus information to the inputs at the network’s bottleneck layer, similar to
the concatenation of the one-hot encoding vector done in TEMPO.3 The generator and discrimi-
nator models for this cGAN architecture both involve enhancements over traditional cGAN gen-
erators and discriminators. Both the generator and discriminator employ modules of the form
convolution-batch normalization-rectified linear unit (ReLU). As the name indicates, these mod-
ules are composed of a convolutional layer, followed by a batch normalization layer, followed by
a ReLU activation function. This module formation has proven to be efficient for training deep
neural networks.19

The generator model of the Pix2Pix-cGAN is based on a series of downsampling or decoding
layers followed by an equal number of encoding or upsampling layers, where each encoding
layer is connected to the reciprocal decoding layer that has the same dimensions. This
encoder-decoder architecture with skip connections follows the structure of U-Nets.20 Those
skip connections serve the purpose of transferring low-level information that is shared between
the input and output images.13 Considering that for our application, the structures of the input
and output images are largely aligned, therefore, a significant amount of low-level information is
shared between mask patterns and aerial images.

The discriminator model consists of six down-sampling blocks involving convolutional
layers. The special consideration with this discriminator is the focus on local image patches.
This means this discriminator works to classify if each N × N patch in the image corresponds
to a real or fake mapping, and generating a decision probability thereof. This localized focus of
the discriminator serves to improve the learning of high-frequency features.13 The corresponding
patch size (N × N) is determined by number of convolutional layers in the discriminator and their
filter sizes, in addition to the size of the input images. In this implementation, the input to the
discriminator is a concatenation of two 512 × 512 images (2D and 3D model aerial image) and
the patch size is 70 × 70 pixels.

The filter sizes and layer sequence for both the generator and discriminator models are shown
in Figures 2 and 3, respectively. An encoder indicates a 2D-convolution layer followed
by a batch normalization layer followed by a leaky ReLU activation. A decoder indicates a
2D-deconvolution layer followed by a batch normalization layer followed by a concatenation
with the skip connection of the reciprocal encoder, followed by a ReLU activation. All convolu-
tional and deconvolutional layers have filter sizes of 4 × 4 and stride sizes of 2 × 2. The last
four decoders in the generator include an additional 50% dropout layer following the batch

Table 1 Optical settings employed in simulations for the generation
of training data.

Setting Value

Sampling ðx; yÞ 512 × 512 pixels

Image size ðx; yÞ 300 nm × 300 nm

Non-Hopkins orders ðx; yÞ 2,2

Absorber material Nickel

Absorber thickness 30 nm

Reduction ðx; yÞ 4×;4×

Illumination shape Quasar

Chief ray angle 6 deg
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normalization layers. The inclusion of the dropouts allows the generator model to achieve such
depth with minimized over-fitting. The activation function following the final layer is a sigmoid
for the discriminator and a tanh for the generator, as proposed by Isola et al.13

3.3 Cost Functions and Update Scheme

The loss of the cGAN described in Eq. (4) is addressed by updates of both the discriminator and
generator models. The discriminator’s updates are based only on the accuracy of its estimate of
whether the image translations are real or fake, and this is achieved using a binary cross-entropy
loss. The updates of the generator loss are based on minimizing an L1 loss, in addition to an
adversarial loss that aims to maximize the loss of the discriminator by minimizing its ability to
distinguish real or fake translations.17 The generator loss is defined as a weighted sum of the
adversarial loss and the L1 loss. This weighing is determined by the parameter λ in Eq. (4). A λ of
1/100 means a weighing of 100:1 in favor of the L1 loss to encourage image generations that are
closer to the target is recommended by the authors of the model.13 In the following section, we
discuss the impact of the λ on the accuracy of the generator models in predicting the 3D mask
effects. The metrics we use to evaluate the network’s training are the mean absolute error (MAE)
of the generated images, in addition to the errors of the CDs in comparison to those of the 3D
model images. Moreover, we further evaluate the model by assessing its predictions of 3D mask
model process metrics such as telecentricity, best focus shifts, and iso-dense bias.

Fig. 2 Generator architecture. An encoder indicates a 2D-convolution layer followed by a batch
normalization layer followed by a leaky ReLU activation. A decoder indicates a 2D-deconvolution
layer followed by a batch normalization layer. The number of filters for each encoder/decoder is
shown on the bottom of each block. The dimensions of the layers are shown on the bottom corner
of the blocks. Plotted using PlotNeuralNet framework.21

Fig. 3 Discriminator architecture. An encoder indicates a 2D-convolution layer followed by a batch
normalization layer followed by a leaky ReLU activation. The number of filters for the convolutional
layers for each encoder is shown on the bottom of each block. The dimensions of the layers are
shown on the bottom corner of the blocks. Plotted using PlotNeuralNet framework.21
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3.4 U-Net Model and Generator-to-Discriminator Weighing

To identify optimum ratios of generator-to-discriminator loss weighing for lithographic aerial
image translations, we compare the performance of different Pix2Pix cGAN models that have
varying λ values. The λ value is the ratio of generator loss weight divided by the discriminator
loss weight, and this dictates the contribution of each of their losses to the overall loss of the
composite model. We benchmark the performance of the models based on the CD-fidelity of
contact holes for a test dataset of 500 pairs of 2D model and 3D model aerial images. Figure 4
shows the average relative CD errors of generated images for models with λ values of 100, 500,
1000, and infinity. A lambda value of infinity means that only the generator’s loss is taken into
account, which effectively turns the cGAN into a pure generator U-Net. Relative CD errors
indicate the deviation of the measured CD in the model predicted aerial image from the CD
of the simulated 3D mask model aerial image. We utilize the mean of relative CD errors for
predictions of a test dataset to represent the accuracy of a given model. Errors in Fig. 4 are
computed from predictions of a test dataset of 500 contact array layouts.

Figure 4 shows that increasing the ratio in favor of the generator provides favorable results for
this application range. Predictably, the pure generator U-Net provides a training runtime speedup
of more than 2× compared to the full cGAN with a discriminator. For a test dataset of 2800 2D
and 3D model image pairs, the U-Net generator trained for 50 epochs in under 50 min, while the
full cGAN trained for 50 epochs in over 110 min. The hardware and setup utilized for the train-
ing are discussed in Sec. 4.1. The rest of the applications and investigations in this work are
implemented using the pure generator U-Net architecture that is shown in Fig. 5.

Fig. 4 Effect of the generator-to-discriminator loss weighing ratios on the prediction accuracy of
the network. Training data are 3600 pairs of contact array 3D model and 2D model aerial images.
Contact array layout variation is shown in Fig. 1. The model architecture is shown in Figs. 2 and 3,
optical settings shown in Table 1.

Fig. 5 Input-output framework of the generator U-Net model implemented. The value of the defo-
cus position is adapted (expanded) to match the dimensions of the network’s bottleneck layer and
then concatenated to it. The decoding and encoding portions of the model are composed of seven
blocks with 2D convolutional layers and seven blocks with 2D deconvolutional layers, respectively.
Details of the generator’s layers are shown in Fig. 2.
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3.5 Training Strategy

The motivation for using the 2D model images as inputs instead of the mask layouts is their
computational efficiency and their high structural similarity to the 3D model aerial images,
which would allow for a higher prediction accuracy with minimal computational overhead. The
defocus of the images is concatenated as an additional input at the bottleneck layer of the gen-
erator or U-Net, considering that this defocus information cannot be accurately represented with
the input 2D images alone. The concept behind our training strategy is to incorporate sufficiently
varied imaging scenarios that highlight the different 3D mask effects in the training data. This
would allow the network to learn process variation trends from these scenarios which are rep-
resented in the output 3D model aerial images. This is achieved by including a variety of mask
pattern layouts that involve different feature orientations to highlight the horizontal-vertical fea-
ture bias, different pitches to highlight the isolated-dense feature bias, in addition to different
defocus ranges to learn the process variations and tendencies through focus. For each mask layout
pattern, we simulate 2D and 3D model images at varying defocus positions. The network then
trains on the 2Dmodel images at the input, the defocus offset value concatenated at the bottleneck
layer, and the 3D model images as the targets at the output layer of the generator.

To optimize the learning of the defocus-based effects, we first train the network on images
generated at five fixed defocus positions with a relatively large separation, namely −100, −50, 0,
þ50, and þ100 nm. Then we retrain this network on images that are generated at randomly
selected non-fixed defocus values within the same range of defocus offsets (−100 to þ100 nm).
This would allow the network to learn the more pronounced structural patterns and trends from the
large defocus steps in the first training iteration. The retraining serves as a fine-tuning stage to allow
the network to learn the less pronounced trends from the intermediate and smaller defocus steps.

4 Results

4.1 Training Details

The training runs and tests are performed on an Nvidia Tesla V100 GPU and an Intel Xeon Gold
6134 CPU. For the first training, the generator U-Net model is trained on a set of 7500 pairs of
aerial images obtained by the 2D model and the 3D model, generated at defocus positions of
−100, −50, 0, 50, and 100 nm. The model is then retrained on another set of 7500 aerial image
pairs generated at randomly selected defocus positions ranging from −100 to 100 nm for fine-
tuning. It is worth noting that relevant accuracy levels can be achieved with training data that are
less than half the amount of this dataset in cases where the range of data is less varied as shown in
Fig. 4. The optimizer utilized is of the type Adam, with a batch size of 4 and a step size of 1. A set
of an aerial image pair for each mask layout pattern is used as a test set to evaluate the perfor-
mance of the training. The MAE between the 3D model aerial images and the network-generated
images are utilized as the main metric to evaluate the training. Each training spans 200 epochs.
The generator model is then extracted at the epoch where it generates images with the lowest
MAE values. The optimum MAE point was reached in the first training at 124 epochs and in the
retraining at 180 epochs.

4.1.1 Image predictions and image fidelities

The network is then capable of generating images that are demonstrably similar to the 3D model
simulated aerial images, with median MAE values consistently below 0.005. Using an Intel
Xeon CPU with 2 × 8 cores @3.20 GHz and an Nvidia Tesla V100 GPU with 32 GB of
VRAM, the average runtime for an aerial image prediction by the model is 0.017 s, compared
to the 3D model EMF simulations which can last from 9 s to more than 1 min, depending on the
mask layout. Therefore, the speedup achieved by the U-Net model ranges from 500× to more
than 3000× compared to the rigorous simulations. On the same hardware, the computation time
of the 2D model aerial images ranges from 0.15 to 0.65 s. Therefore, the total end-to-end
speedup achieved by the model is 100× on average, while it ranges from a minimum of
3× up to 400×. The accuracy of the network’s prediction of the 3D model is verifiable via the
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predicted CDs and the EDEs. The EDE is a metric originally proposed to guide mask synthesis in
inverse lithography applications.22 The similarity between the model-predicted images and the
target 3D model images is visualized via the aerial images contors in Fig. 6. Furthermore, the
model’s ability to generalize is demonstrated by its ability to predict images from a pattern that
was not included in the training, as shown in the rightmost contor plot in Fig. 6. The ability to
generalize indicates a minimal presence of overfitting and can be attributed to the utilization of
50% dropout layers in the last four decoders of the generator.

To extrapolate a more global representation of the image fidelity from the CDs, we define the
CD error as the average relative CD error of multiple features for each image. In contact arrays,
the error is an average of the x- and y-direction CD values of 5 features, the contact at the center,
top, bottom, left, and right. In the attacking and butting line end patterns, the error is defined as
the average of the CD error at the center gap, top, and bottom gaps. Considering that the bar-in-U
pattern is not associated with a particular CD of interest, we do not include it in the CD error
evaluations, rather in the global evaluations. Figure 7 demonstrates the mean values of relative
CD errors obtained by the model for a test dataset of 1200 image pairs in the case of training with
the proposed retraining framework.

The model’s prediction accuracy is also evaluated using the EDE as a fully global metric
based on the image contors, given the shortcomings of the CD when it comes to describing more
complex mask layouts. The EDE is computed as per Eq. (7) and is measured by units of distance.
While the EDE is not sufficient as a standalone metric since it may fail to represent feature shifts,
it provides valuable information on the reciprocity of the imaged feature sizes in a global manner.
Therefore, the EDE can be a viable metric to be used alongside others such as MSE, CD errors,
telecentricity errors, etc. Average EDE values for a test dataset of 600 images are shown in Fig. 8.

EQ-TARGET;temp:intralink-;e007;116;304EDE ¼ Generated area − Target area

Target perimeter
: (7)

Fig. 6 Comparison of the 3D and 2Dmodel and predicted aerial images using contors extracted at
the same intensity threshold. The filled gray line represents the 3D model image, the hollow gray
line represents the 2D model image and the hollow white line represents the predicted aerial
image. The rightmost contor plot is from the validation layout pattern bar-in-U, which was not
included in the model’s training data.

Fig. 7 Average CD errors for the models prediction of 3D model aerial images for different mask
pattern layouts using a test dataset of 1200 3D and 2D model aerial images of the patterns shown
in Fig. 1. Line ends include both attacking line ends and butting line ends.
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The generator U-Net is able to predict 3D model images accurately with relative CD errors
averaging consistently sub-1% across various mask layout patterns, in addition to EDE values
averaging below 0.4 nm for all the mask patterns that are implemented, including the pattern bar-
in-U, which was not included in the training data. The relative CD errors from Fig. 7 are shown
excluding two extreme outlier values from each selection, while the EDE values from Fig. 8
involve no outlier exclusion.

4.1.2 Prediction of 3D model process variations

The trained model is capable of accurately predicting the process variation tendencies as dictated
per the 3D mask model simulations with sufficient accuracy for a variety of mask layouts and
settings. As detailed in Sec. 2.1, EUV process windows of semi-dense and isolated features
involve a significant degree of asymmetry and shift of the best focus position. The 2D mask
model is incapable of capturing such asymmetric process windows. Figure 9 shows process
windows simulated with the 2D and 3D mask model in addition to the process windows from
the network’s predicted images. The process windows are computed by calculating the thresh-
old-to-size that provides a CD value on target,þ10% and −10% from the target CD for 31 aerial
images simulated with 2D and 3D model and predicted by the network for defocus values from
−150 to 150 nm.

As shown in Fig. 9, the network’s ability to more accurately predict the 3D mask model
process windows is highlighted in the cases of isolated features. With a simple re-scaling, the
2D model may appear to accurately represent the 3D model process window for certain feature
pitches. However, upon further investigation, the shapes of the 2D model process windows shift
further away from those of the 3D model at larger pitches. The noisy behavior of the predicted
curves is attributed to the fact that the curves are formulated from network predictions of numer-
ous images across a defocus range, while the 3D model curves are smooth because they are
formulated from images following the physical model. Although a complete match between
the physical and predictive models across a range of focus variations is practically impossible,
the network approaches the physical models’ curves with a certain level of noise. However, the
noise in the curves corresponds to relative errors fall within the achievable error ranges of the
network shown in Fig. 7. Moreover, the noisy curves can be efficiently smoothed using a spline
or curve-fitting functionality in practical scenarios.

The optical proximity effect (OPE) curves refer to the variations of the printed feature size
across different pitches. While the 2D mask model is capable of representing some trends of the
optical proximity effects, the OPE curves differ significantly between the 2D and 3D mask mod-
els. Our investigations of the predicted aerial images across a range of pitches have shown that
the model is capable of representing the OPE curves of the 3D mask model with demonstrable
accuracy, as shown in Fig. 10. Additionally, the network-predicted OPE curves capture the dis-
crepancy between the behavior of the horizontal and vertical features as described by the 3D

Fig. 8 Average EDE values for the models prediction of 3D model aerial images for different mask
pattern layouts using a test dataset of 600 3D and 2Dmodel aerial images of the patterns shown in
Fig. 1. Line ends include both attacking line ends and butting line ends.
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Fig. 10. Model-predicted OPE curves compared to 3D and 2D model process windows for lines
and spaces and contact array masks. The top row shows OPE curves of (a) 32-nm horizontal lines
and (b) 32-nm vertical lines. The bottom rows show the OPE curves for 32 × 32 nm2 contact arrays
in (c) y -direction and (d) x -direction. Optical settings are shown in Table 1. Legend is in the
top-left plot. 2D model process windows are rescaled with factors from 55% to 70%, to take into
account the reflectivity losses of the 3D model.

Fig. 9 Model-predicted process windows compared to 3D and 2D model process windows for
horizontal lines and spaces patterns (top row) and contact array patterns in the y -direction (bottom
row). The feature sizes are 32 nm for lines and 32 × 32 nm2 for contacts. The left column shows
process windows for dense feature settings (pitch = 50 nm), and the right column shows process
windows for isolated features (lines pitch = 110 nm, contacts pitch = 150 nm). Other optical set-
tings are shown in Table 1. Legend is in the bottom right plot. 2D model process windows are
rescaled with factors from 55% to 70%, to take into account the transmission losses from the
3D mask.
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model’s curves. On the other hand, OPE curves of the horizontal and vertical features as per the
2D model are identical. It can also be observed from the bottom row of Fig. 10 that the model
may exhibit better accuracy predicting an orientation for certain mask patterns better than others.
For example, CDs of vertical lines are predicted with smaller errors compared to vertical CDs of
contact arrays. This prediction discrepancy is likely a result of the unequal representation of the
different patterns in the dataset, as the layouts in the dataset were distributed in a random manner.
The oscillatory behavior in the curves can be attributed to the sub-optimal sampling of the illu-
mination source.

Telecentricity, or focus-dependent position shifts, is another mask topography effect that the
2D mask model fails to represent. The U-Net generator predicts the position shifts through focus
accurately for mask layouts that involve a significant degree of telecentricity such as horizontal
lines. Figure 11 shows that the network’s predictions of the position shifts are more accurate for
the more isolated case, in which the telecentricity error is larger in magnitude. Although the
position shifts are predicted slightly less accurately in the dense case, the trend through focus
is adequately captured and the relative error of the position shift remains within the previously
demonstrated range of relative CD errors of ∼1%.

5 Conclusions

In this work, we proposed an approach that efficiently trains a generative network to generate
accurate aerial images that take into account the thick EUV mask and its topography effects. We
also compared the performance of cGANs of varying weight loss ratios to pure U-Net generators
and observed that the cGAN’s discriminator might be detrimental to the network’s aerial image
prediction ability. Our approach involves training a U-Net generator model on varied mask lay-
outs that highlight the 3D mask effects. We train the network on 2D mask model images as inputs
and 3D mask model images as outputs, in addition to the defocus information appended at the
bottleneck of the U-Net. The network is then capable of predicting 3D mask model aerial images
with demonstrable accuracy, not only in terms of MAE or CD errors but also in terms of
contour-based global metrics such as the EDE. More importantly, the network’s predictions
accurately demonstrate the tendencies of the 3D mask model’s process variations in terms
of focus, pitch, dose, and position. Such accurate aerial image predictions using an efficient
generative model present an ability to substitute rigorous field simulations. This would allow
for a substantial speed-up of optimizations and process characterizations, considering that the
model’s predictions in addition to the input (2D model image) generation can be performed up to
400× faster than rigorous EMF simulations.
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Fig. 11 Feature position behavior through focus using the 3D mask model and the network’s pre-
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shown in Table 1. Legend is on the right. 2D model curves are not demonstrated, as they are
constant.
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