
Approaches for modeling electron beam/
electromagnetic interaction and their
connection to distributed feedback lasers
and other devices

Kyle J. Bunch



Approaches for modeling electron beam/electromagnetic
interaction and their connection to distributed

feedback lasers and other devices

Kyle J. Bunch
Institute of Electrical and Electronic Engineers, Washington, DC 20036

kylebunch@outlook.com

Paper 13101CT received Sep. 24, 2013; revised manuscript received Oct. 7, 2013; accepted for
publication Oct. 10, 2013; published online Nov. 6, 2013.

Advances in computational power over the last few decades have dramatically opened up the
modeling capability of the typical researcher. Although laborious analysis and approximations of
physical systems were quite the norm some decades ago, today complex problems can be simu-
lated extensively before being built or committed to design. Today, the pursuit of computational
experimentation has displaced, to a large extent, either laboratory experimentation or extensive
theoretical analysis, especially in systems in which the governing equations are well developed.
Indeed, in the field of electromagnetics (EM), where only select canonical problems are ame-
nable to analytical solutions, computer simulations have allowed for great flexibility in searching
for new applications to Maxwell’s equations. In light of this flexibility, however, one should not
abandon completely either the approaches or models researchers have developed over the years.

Consider the large body of work pertaining to electron devices, especially that related to
traveling wave devices such as traveling wave tubes and backward wave oscillators
(BWOs). These devices attempt to generate or amplify propagating EM energy through coupled
interaction with a guided electron beam. The theory for these devices was developed without the
benefit of computer simulation, and much effort went into constructing models that could be
both (relatively) easily manipulated and understood in terms of traditional electrical engineering
concepts such as impedance, power, phase propagation constants, and so on. Pierce was a pri-
mary proponent of this approach, and his simplifying concepts are valid today, over a half cen-
tury later.1 The propagation of guided EM waves in this case is modeled through a simple
lumped-element analogue to a transmission line. These waves interact with the electron
beam as described from the Lorentz force equations. In order to handle the nonlinearity of
the Lorentz equations, the beam-wave interaction equations are linearized by expanding quan-
tities such as electron velocities and induced currents into a dc component with a small, per-
turbing ac component. All nonlinear components are discarded, and the resulting dc and ac parts
of the equations are separated and matched. The resulting sets of equations are analytically
tractable.

While this approach might seem somewhat arbitrary as all behavior that is difficult to solve
(all nonlinear time-dependent behavior) is simply discarded, the result has proven both intuitive
and useful. In some sense, it is like having a coarse terrain map of electron device behavior to
which a variety of EM structures can be coupled and their resulting systems predicted. Accuracy
is discarded in lieu of intuition. At the time, this approach was taken due to necessity; now,
however, it is possible to use such an approach followed by a full-system simulation.
Consider, for example, the conceptual models of the traveling-wave devices as shown in Fig. 1.

A focused electron beam is guided through the center of a wire helix, referred to as a slow-
wave circuit. An EM propagating wave travels in a helical path around the beam so that the
propagating electric fields of the guided wave are slowed to be almost in lock-step with that
of the electron beam. Continuous interaction between the propagating wave and the beam elec-
trons lead to a periodic bunching as shown. The electron beam speed is slightly larger than the
reduced propagation constant of the EM wave so that the circuit coupling results in a drag force
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on the beam to extract energy and slow the beam down. The Pierce model shown in Fig. 2(b)
captures this behavior by using lumped-element inductors and capacitors in a periodic array. This
circuit is identical to the model most of us are familiar with in an introduction to transmission line
theory. Coupling the transmission line to the electron beam results in a periodic injection of
current along the line, and this periodic coupling causes traveling-wave amplification or oscil-
lation, depending on the system. Conventional parameters that appear from the transmission-line
model are useful in this case as well: the impedance of the transmission line, the phase propa-
gation constant of a traveling wave, as well as the group speed defining the propagation of energy
along the line.

Consider that this approach provides a means to understand a wide range of traveling wave
devices as well as a way to decouple the slow-wave circuit design from the system design. The
slow-wave circuit is an electromagnetic guiding structure that is periodic in space, and decom-
posing the EM wave into a series of Fourier space harmonics allows us to construct a dispersion
diagram, Brillouin diagram, or omega-beta diagram as it is called in the electron tube industry.2

The Pierce model defines a way to judge the performance of a particular structure through an
interaction impedance that relates the axial electric field component of a harmonic at the electron
beam to the current induced by this harmonic. An omega-beta diagram for the helix is shown in
Fig. 1 illustrating the beam/harmonic interaction.

The omega-beta diagram shows two components of the space harmonic, periodic in 2π, and
the resulting dispersion of the helix in each region. At any point in the dispersion curve, the phase
and group speeds can be calculated from ω∕β (phase speed) and from dω∕dβ (group speed). The
interaction of the space harmonic with the electron beam is seen by plotting the electron speed as
a constant slope depending on its value (called beam voltage). Changing the slope of the beam
line produces different interaction locations with the space harmonic and different device oper-
ation. When the beam line lies along the flat part of the helix dispersion, both the phase speed
(interaction) and group speed (power flow) are positive in slope. The beam and space harmonic
flow in the same direction to produce a growing traveling wave. The region as shown creates a
traveling-wave amplifier. When the beam line crosses the downward sloping space harmonic, the
phase speed of the harmonic is positive, while the group speed is negative. This crossing point
produces an oscillation in which the space harmonic phase matches the positive beam speed, but
the actual power flow is in the negative direction. This device, called a BWO, extracts energy at
the start of the helix. The output frequency (ω) is tunable by changing the beam voltage.

Fig. 1 The omega-beta (dispersion) diagram of the helix slow-wave structure along with the beam
interaction points. The diagram repeats in 2π as the guided fields were expanded in a Fourier
series over the period of the helix (the pitch P).

Fig. 2 A helical traveling wave tube (a) and the Pierce transmission line model (b).
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Two examples of structures and interactions analogous to that of the helix structure above are
shown in Fig. 3.

The two devices operate through the interaction of a periodic structure coupled to an active
medium. The coupled cavity is the simplest to correlate to a lumped-element model circuit that
describes the EM wave’s propagation and coupling behavior over one period (P). The resulting
omega-beta diagram shows the expected behavior, and its solution can be analytically deter-
mined by circuit analysis to reasonably correlate to actual cavity structures.4 Only a single period
is needed since the periodicity of the cavities allows one to use Floquet’s theorem in which the
EM fields (and circuit equivalents) differ in one period by a complex propagation constant
½expð�jβÞ�, assuming lossless transmission. Note that the omega-beta diagram provides
much of the expected behavior of the device. Amplification in the coupled cavity is over a narrow
band where the electron beam line and the forward-propagating wave interact; backward-wave
oscillation is possible as well over a tunable frequency range. Also notice that the behavior
resembles a parabolic waveguide dispersion [dotted line in Fig. 3(b)] that is periodic in 2π
with interaction or bending of the waveguide modes where their dispersion curves cross.
Such behavior is typical of periodic structures wherever coupling can occur among propagating
waves, and it is simple to approximate based on the symmetry, periodicity, and expected cou-
pling of the structure. Also notice in the dispersion curves that regions can exist where values of
frequency (ω) do not have propagating solutions. These regions are called stop bands, and they
correspond to reflections from the periodic cavities that result in a standing EM wave with no net
power flow. Such regions, shown at βP ¼ π in Fig. 3(b), are analogous to Bragg reflections
perpendicular to a grating.

Figure 3(c) shows a tilted grating distributed feedback laser (DFB) that uses such a periodi-
cally doped substrate tilted to the side walls. The grating is analogous to a flattened helix struc-
ture in which the spiraling field is no longer able to complete the spiral. Indeed, similar structures
such as interdigital lines, combs, slot, and rings have been extensively explored for electron
device interaction.5 Mostly, the tradeoff in structure in these devices is between broadband oper-
ation (as in the complete helix) and power handling capabilities (as in the coupled-cavity). For
the DFB device, narrow-band filtering is needed to suppress unwanted lasing modes, and thus
gratings are used at selected resonant-like conditions. Considering Fig. 3(c), the similarities
between the helix and the tilted grating are evident. Wave propagation along the grating channels
interact with the optical gain region. Propagation across the grating couples the channels and
distribute the growing optical wave across the gain stripe. This coupling is similar to that of the
helix and coupled cavity, and similar circuit models can be constructed using a distributed model
coupled with a Floquet analysis.

The analogies and approaches presented are not new or unknown in the literature. However,
periodic advances in materials, fabrication capabilities, and the rapid miniaturization of struc-
tures should cause us to reconsider the existing body of literature. In particular,

1. Simplification approaches to complex interacting structures may still provide insight into
the physics of current devices as well as a means to explore and extrapolate to devices not
yet discovered.

Fig. 3 Active devices and their interaction structures. The coupled cavity traveling wave tube (a),
its corresponding omega-beta diagram and interaction points (b), and a top view of the tilted Bragg
grating distributed feedback laser (c).3
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2. The use of simplified models, such as the circuit models explained above, can provide a
means to very rapidly explore a host of different periodic structures and their expected
behaviors using conventional analysis or rapid circuit simulation tools.

3. A broad range of periodic systems have been explored in the literature already. Many
structures were physically unrealizable in their time but are feasible to construct today;
others may have utility in domains other than electron devices. A range of new devices
may become possible once one realizes that the slow-wave structures devised to control
EM behavior are simply the precursors to the broader field of what has become known as
metamaterials.

4. Given the general approach of controlling EM behavior through periodic systems, we
should look for novel interaction within a range of physical domains; better control of
EM feedback in DFB lasers or coupling within surface plasmonic structures are two of
the many possible examples.

It is hoped that such approaches can lead to not only better performing devices based on
current technologies, but also a range of new devices based on the application of well-explored,
but rapidly disappearing technologies.
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