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Abstract. Hyperion images from Earth Observing-1 (EO-1) are being used in natural resources
assessment and management. The evaluation and verification of Hyperion images for the above
applications are validating the EO-1 mission. However, the presence of random and striping
noises in Hyperion images affect the accuracy of the results. Therefore, reduction of random
noise and stripes from Hyperion images becomes indispensable for the evaluation of the results
in natural resources assessment and in optimum use of the data. Thus, a collective approach for
correcting pixels with no-data values and removing random noise and stripes from Hyperion
radiance images is developed. In the developed method, first, no-data valued pixels are identified
and corrected using a local median filter. Minimum noise fraction transformation is then used to
reduce random noise from noise-dominated bands. Further, spatial statistical techniques are used
to reduce random noise from the rest of the bands. Finally, a local quadratic regression by a least
squares method is used to correct bad columns and global stripes, and a local-spatial-statistics-
based algorithm is used to detect and correct local stripes. The effectiveness and efficiency of
the algorithm is demonstrated by application to two Hyperion images: one from the Udaipur
area, western India, and another from the Luleå area, northern Sweden. The results show that
the algorithm reduces random and striping noise without introducing unwanted effects and alter-
ations in the original normal data values in the images. © The Authors. Published by SPIE under a
Creative Commons Attribution 4.0 Unported License. Distribution or reproduction of this work in whole or
in part requires full attribution of the original publication, including its DOI. [DOI: 10.1117/1.JRS.14
.016515]
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1 Introduction

Hyperion, a hyperspectral sensor, is on board the National Aeronautics and Space
Administration’s Earth Observing-1 (NASA-EO-1) satellite. Hyperion sensor data are the only
globally available spaceborne hyperspectral system, which provides hyperspectral Earth explo-
ration data for better-quality characterization of Earth’s surface, particularly for the determina-
tion of the composition of surface material for geological applications1 and natural resources
assessments and managements. The distributed Hyperion datasets are radiometrically corrected
and orthorectified as level 1A datasets. Level 1A (L1R) datasets are generated from level 0 data-
sets through the following preprocessing steps: echo correction, smear correction, background
removal, bad pixel repair, radiometric correction, and finally checking the image quality.2,3 The
above corrections, in principle, are expected to recover untrustworthy/noisy pixels, though even
a cursory visual inspection of a typical Hyperion L1R image shows this is not the case. Salt-and-
pepper/random noise and vertical stripes (spatially nonuniformity) appear in most of the bands in
Hyperion images with varying amounts. In particular, bands close to the water vapor, oxygen,
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and carbon dioxide absorption wavelengths are dominated by random noise as well as stripes.4,5

Accurate detection and correction of random noise and vertical stripes are essential, because
pixels could possibly exhibit spikes and spurious absorption features in spectra, which may
mislead spectral analyses for qualitative and quantitative interpretations.

2 Nature and Sources of Noise in Hyperspectral Images

Salt-and-pepper noise and striping are the most frequently encountered noises in Hyperion
images. Predominant sources of salt-and-pepper noise and vertical stripes in Hyperion images
are attributable to degradation and/or failure of detectors over time, malfunctioning of the
detector, separate detector’s inaccurate cocalibration on the focal plane array, and/or improper
calibration2,6,7 and fluctuation in illumination conditions and atmospheric perturbations such as
physical disturbances.2,8

2.1 Salt-and-Pepper Noise

Hyperion images are composed of many narrow adjoining bands. The narrowness of the bands
decreases the signal strength and increases noise components. These band-specific noisy pixels
due to random and band-correlated noise can cause negative or positive spikes in the spectra.
Random noise is manifested as a salt-and-pepper appearance characterized by randomly distrib-
uted abnormal bright or dark pixels. Dark pixels are the result of very low or nil sensor response,
whereas bright pixels have abnormally high sensor response.9 The salt-and-pepper type of
noise is mostly dominant in water absorption and nearby bands {e.g., Fig. 1(a) [band 121 (4),
band 224 (6)]}. Random noise reduction from Hyperion images is critical before destriping.

2.2 Vertical Stripes

Vertical stripes are attributed to columns that largely comprise abnormal dark pixels and/or bright
pixels. They appear with varying shades of gray as vertical stripes on hyperspectral (Hyperion)
images.

Four types of stripes are recognized with different compositions with digital numbers (DN) in
Hyperion images: (1) continuous with atypical values {e.g., Fig. 1(a) [band 201 (5)], Fig. 1(b)

Fig. 1 An example for demonstration of random noise and various types of vertical stripes occur-
ring in Hyperion images: (a) From the Udaipur scene and (b) from the Luleå scene.
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[band 117 (12), band 118 (13)]}; (2) continuous with constant values {Fig. 1(a) [band 8 (1),
band 121 (3)], Fig. 1(b) [band 8 (8), band 11 (10)]}; (3) intermittent with atypical values
{Fig. 1(a) [band 224 (7)], Fig. 1(b) [band 11 (11)]}, and (4) intermittent with lower values
{Fig. 1(a) [band 8 (2)], Fig. 1(b) [band 8 (9)]}. The first and third types of stripes can be easily
identified since they contain abnormal pixels by the extremity of their DN values. The second
type of stripes is also easily detected, because they appear across an entire column with abnormal
pixels. But the fourth type of stripe is more difficult to detect because they contain abnormal
pixels values very close to the normal pixels’ values. These appear in different lengths and are
not visually evident. These stripes can be confused with columns comprised of normal pixels and
real vertical ground features.2

Bouali also classified noise and stripes present in remote sensing images. According to
Bouali,10 remotely sensed images contain two types of stripes. First is the periodic type stripe.
This type of stripe is generated by improper offset and relative gain radiometric calibration of
the individual detectors in the acquisition system {Fig. 1(a) [band 8 (2)], Fig. 1(b) [band 8 (9)]}.
The occurrence of periodic stripes may also be due to the fine variations in the slit width in the
detector’s optical system. An additional reason may be due to input and output transfer func-
tion’s deviations remaining constant with time with neighboring elements of the detector’s
matrix. Second is the random type stripe. This type of stripe is triggered by random fluctuations
and thermal effects in the sensor responses {Fig. 1(a) [band 8 (1), band 121 (3)], Fig. 1(b)
[band 8 (8), band 11 (10)]}. These types of interference produce noisy data in remote sensing
images and result in the presence of random noise and along the track dark stripes {Fig. 1(a)
[band 201 (5)]} and bright stripes {Fig. 1(b) [band 117 (12)]} with random segment lengths
[Figs. 1(a) and 1(b)]. Typical examples of random noise, abnormal columns, and vertical stripes
present in L1R Hyperion images can be seen in Fig. 1.

Images in Figs. 1(a) and 1(b) are presented as examples of various bands with different types
of random noise and stripes in Hyperion images from the Udaipur area, India, and the Luleå area,
Sweden, respectively. Two types of vertical stripes can be distinguished in the Hyperion images
of the study area after standard “Environment for Visualizing Images” (ENVI™) preprocessing
for removing abnormal pixels (−32; 767), random noise {Fig. 1(a) [band 121 (4), band 224 (6)]},
abnormal columns {Fig. 1(a) [band 201 (5)], Fig. 1(b) [band 117 (12), band 118 (13)]}, and
striping effect: global vertical stripes {Fig. 1(a) [band 8 (1), band 121(3)], Fig. 1(b) [band 8 (8),
band 11(10)]} and local vertical stripes {Fig. 1(a) [band 8 (2), band 224 (7)], Fig. 1(b)
[band 8 (9), band 11 (11)]}. Detection and reduction of the salt-and-pepper noise and correction
of vertical stripes are essential for further processing.

3 Previous Works on Noise Reduction and Correction from
Hyperspectral Images

A variety of algorithms has been proposed for the reduction of salt-and-pepper noise. The most
widely applied approaches include median filtering, morphological filtering, contra-harmonic
mean filtering, principal component analysis (PCA), minimum noise transformation (MNF)-
based method8,11 or interference and noise-adjusted PCA,12 spectral–spatial adaptive total
variation modeling,13 linear regression,14 rak-1 tensor decomposition,15 spectral–spatial kernel
regularization,16 and fast Fourier transformation (FFT), though FFT filtering assumes regular,
ideally periodic signals in spectral data. These spectral data typically show almost arbitrary
shapes, which are not very well handled by FFT. Therefore, this is not commonly applied to
hyperspectral remote sensing datasets.17 Spatial interpolation using mean and median ratio-
based approaches have been developed for automatic identification and correction of bad pixels
with nonuniform noise in spatially uniform hyperspectral, multispectral, and panchromatic
imagery.18,19 An adaptive filtering by generalizing rational Laplacian pyramid was developed to
reduce signal-independent noise from multiresolution images in order to increase the signal-to-
noise ratio (SNR).20 Further, an MNF transformation-based algorithm has been developed to
reduce signal-dependent noise from hyperspectral images using a parametric model to estimate
noise from image scenes.21
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There are several published algorithms for noise correction of vertical stripes (or destriping),
which can be grouped into three groups: (1) frequency domain-based algorithms, (2) linear
transformation-based algorithms, and (3) spatial domain-based algorithms. The recent studies
on destriping on remote sensing data are explained below.

In frequency-domain filtering, stripe-related frequencies are estimated from noisy images
using Fourier spectra and designing band-pass filters accordingly for denoising images.
However, segregation of stripe-related frequencies is generally difficult to achieve, and therefore,
signals with nonstripes-related features could be filtered out along with the stripes and thus could
result in the loss of useful information.22–24 Wavelet analysis is also employed. The scaling and
directional properties are used to detect stripe-related frequencies and thus used to remove stripes
from remote sensing images.22,25,26 Some commercially available tools use FFT for removing
vertical stripes (e.g., ERDAS Periodic Noise Removal or EPNR).13,24,27 Similarly, wavelet
Fourier adaptive filtering26,28 is also implemented in some commercial software to correct non-
periodic image stripes.

Linear transformation-based algorithms are either eigen-space-based or tensor-based.14

Eigen-space-based algorithms include principal component (PC) transformations, MNF trans-
formations,11,12 and tensor decompositions based on tensor analysis15 for noise reduction
algorithms.

In the spatial domain, four main approaches have been described in the literature for destrip-
ing from remote sensing images: (1) low-pass filtering, (2) dark-current (DC) bias correction,
(3) histogram matching, and (4) moment matching. The recent studies based on these approaches
are explained here.

The low-pass spatial filters are the simplest spatial domain-based algorithms for destriping
Hyperion data. In low-pass filtering, mean or median filter-based algorithms are mainly used
where the radiance values of abnormal pixels from stripes are substituted by the median or mean
radiance value from nonstripes adjacent neighboring normal pixels. However, there is a risk
that high-frequency useful information may be removed using low-pass filters. The available
“ENVI-SPEAR” and Flag Mask Correction available in the ENVI-plugin “Hyperion Tools” are
based on the low-pass filtering algorithm.3,6

Several factors may lead to vertical stripes in remote sensing images, including nonlinearities
and heating effects resulting from abnormal responses of a few detectors, and/or shift in the slit
with respect to the focal plane.29 Assuming the above factors for stripes in remote sensing
images, the DC bias-based correction algorithms have been developed. These algorithms assume
that in pushbroom scanner systems, all cross-track detectors have similar statistical responses
and cover similar materials along a flight line. Therefore, each detector has similar statistical
responses and thus similar radiometric responses. Hence, a simple DC bias of the detectors
across the direction of the detector array in pushbroom scanners may lead to striping in the
images. Based on the above concept, Kruse30 and Kruse et al.29 have demonstrated and applied
the techniques on airborne visible/infrared imaging spectrometer and Hyperion data, respec-
tively. They suggested that a simple compensation per-column DC offset is appropriate to correct
the striping effect. This technique provides destriped hyperspectral images, but the technique
alters all the image pixels’ values with respect to global band average and a column’s average,
regardless of whether pixels belong to stripes or nonstripes. ENVI’s “General Purpose Utilities-
Destripe” is based on the above algorithm. Originally, the tool was designed for destriping
horizontal images [e.g., Landsat Multispectral Scanner (MS)]. Hence, for destriping vertical
images such as Hyperion, prior to the destriping procedure, the data should be rotated by 90 deg.6

Other concepts of striping effects in remote sensing images are assumed to be time variant and
the linear detector’s response.31 Consequently, modifications and improper calibration in offsets
and gain values in one and/or more detectors result in striping in the images. Therefore, if the
responses of all the detectors are appropriately calibrated, then their statistical distribution, such
as means and variances, has similar responses and thus their statistical moments should match.
Hence, columns from the noisy detectors can be rectified by constraining the statistical moments
of columns to match the reference column’s statistical moments from a properly calibrated detec-
tor. This approach has been introduced and applied by Datt et al.8 and Li et al.5 using global as
well as local image average and variance as the reference moment for destriping Hyperion
images. Similar algorithms have also been described by Lu et al.,32 Xie et al.,33 Acito et al.,34
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and Sheng and Zhang9 to destripe Hyperion images. Further, a linear least squares regression and
global as well as local moment matching were used in the spectral domain by Adler-Golden
et al.4 for destriping Hyperion images. The basic assumption of moment matching-based method
for destriping is that the probability distributions of data at each column of the image should
equal or match the probability distributions of the reference. Consequently, this approach
assumes that parts of an image contain a complete statistical similarity to the whole image.
Horn and Woodham31 presented a moment matching-based algorithm to remove stripes from
Landsat MS images. This method is effective only in the case when the entire image scene is
covered with an analogous material composition. However, artifacts may be introduced in the
destriped images when using this method if the scene contains natural land use or land cover
variations over and across the area. Similar techniques have been used by Dykstra and Segal35 in
airborne imaging spectrometer data and Wegener36 on multisensor’s data to remove stripes.

In this paper, we have reviewed previous studies for random noise reduction and stripes
correction from remote sensing images. Previous literature as well as our experiment and exami-
nation show that there are no-data and invalid data pixels, random noise, and stripes present in
Hyperion images. From our experiment, we found that invalid data pixels and random noise
present in images should be removed or rectified before stripes correction from Hyperion images.
Without these corrections before destriping, artifacts are created in the destriped images. These
types of corrections have not been considered in previous studies. Therefore, we developed a better
sequential procedure to remove no-data and invalid data pixels correction, random noise correc-
tion, and finally band columns and global and local stripes correction from Hyperion images.

4 Study Area and Dataset

Two areas have been selected in this study. One study area is close to the city of Udaipur,
Rajasthan state in western India and another is close to the city of Luleå, Norrbotten
County, Sweden. The developed algorithm has been applied on the Hyperion datasets from both
study areas. The Udaipur scene was captured on 19 January 2004 and the location falls between
latitude 24° 6′ 56″ N to 24° 54′ 45″ N and longitude 73° 32′ 51″ E to 73° 48′ 38″ E. The geo-
graphical characteristics of the area are sparse vegetation covers and dry and semiarid conditions.
The area has significant bedrock exposures and a rugged terrain containing noticeable hills and
valleys. The study area contains more abundant minerals, including dolomite, rock phosphate,
calcite, talc (soapstone), and several ornamental stones. The Luleå scene was captured on
26 August 2013 and location falls between latitude 65° 08′ 44″ N to 65° 58′ 17″ N and longitude
22° 08′ 23″ E to 21° 59′ 13″ E. The geographical characteristics of the area include part
snow covers in winter and partial vegetation covers in summer with subarctic conditions with
short, mild to warm summers and long, cold, snowy winters. This area also has significant
bedrock exposure in summer with undulated topography. Geologically, the area comes under
Fennoscandian Shield with diverse lithology and contains a variety of minerals, including schorl,
quartz, bertrandite, sulfides, and potassium minerals.

The availability of globally high-resolution spaceborne hyperspectral data is very limited.
NASA’S Hyperion aboard on EO-1 satellite is the only source of globally available data with
a spectral range of 0.4 to 2.5 μm and bandwidth of 10 nm. The spatial resolution is 30 m from the
height of the satellite’s orbit of 705 km. The Hyperion scanner is a pushbroom instrument with
a 7.5-km swath width. The SNR is variable and ranges from 40 for short wave infrared (SWIR)
to 190 for visible and near-infrared (VNIR).29 The L1R product of Hyperion has 242 bands,
among them only 196 are calibrated (8 to 57 for the VNIR and 79 to 224 for the SWIR) and
the remaining 44 bands have poor signal due to their detectors’ low responsivity. There are only
196 unique channels due to an overlap between the VNIR and the SWIR focal planes. The data
details are given in Table 1.

5 Proposed Methodology

In the proposed algorithm, random noise and vertical stripes are removed separately in the
following steps. The flowchart of the proposed algorithm is shown in Fig. 2.
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Fig. 2 Flowchart of the proposed methodology.

Table 1 Study Area and Data Details.

Sensor type Hyperion

Altitude of the sensor 705 km

Swath width 7.5 km

Number of total spectral bands 242

Number of unique spectral bands and
their spectral range

220, 357 to 2576 nm

Number of calibrated bands (L1R) 196 (8 to 57 for VNIR and 79 to 224 for SWIR)

Size of pixel (spatial resolution) 30 m

Bandwidth (spectral resolution) 10 nm

SNR 190:40

Udaipur scene

Location of image 73° 32′ 51″ E to 73° 48′ 38″ E and
24° 6′ 56″ N to 24° 54′ 45″ N

Data acquisition date 19 January 2004

Luleå scene

Location of image 22° 08′ 23″ E to 21° 59′ 13″ E and
65° 08′ 44″ N to 65° 58′ 17″ N

Data acquisition date 26 August 2013
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5.1 Pixel Correction with Null Values

If the echo and smear correction process have not accounted for negative values, then small
negatives such as (−1) might be enlarged and documented as −32;768.2 Such negative values
in Hyperion data show that the pixels do not hold any effective and valid data. Therefore, first the
negative pixels’ values from the whole image are detected and their values are set to zero, then
the negative pixels’ values are replaced and corrected by a neighboring mean value from a (3 × 3)
median filter. The median filter with the smallest window size is used to preserve local character-
istics so that pixels with negative values can be replaced with the average of nearest neighboring
normal values and avoid oversmoothing and preserve pixels that contain actual zero values
(e.g., water bodies in SWIR).

5.2 Random/Salt-and-Pepper Noise Removal

Random/salt-and-pepper noise is removed with the following two steps:

5.2.1 MNF transformation

The objective of this step is to correct only the noise-dominated bands without altering the
coherent bands of a Hyperion image. This step is implemented as follows:

a. Identify and flag the noise-dominated bands nj from the Hyperion image I.
b. Carry out MNF transformation of I to derive the transformed image It.
c. Select the noise-dominated MNF components nt_i based on eigenvalues and perform inverse

MNF transformation of It after discarding nt_i to obtain filtered image If.
d. Examine the flagged noise-dominated bands nj in If. Some of the bands nj would become

coherent (cj) after step 5.2.1(c).
e. Iteratively implement steps 5.2.1(c) and 5.2.1(d) using lower and lower threshold eigenval-

ues for selecting noise-dominated MNF components until all original noise-dominated
bands become coherent.

f. Replace the original noise-dominated bands nj by the now coherent bands cj in the original
image I.

5.2.2 Abnormal brightness correction

The objective of this step is to identify, flag, and correct the pixels with abnormal brightness
values compared to the brightness level of a local neighborhood. It is implemented as follows:

a. Apply a 9 × 9moving window to the Hyperion image I obtained after step 5.2.1 to generate
three images: IMean, IStdDev, and IDiff . The image IMean is obtained by replacing the central
pixel value with the mean of the window. The image IStdDev is obtained by replacing the
central pixel value with the standard deviation (STD) of the pixel from the mean of the 9 × 9

window. The image IDiff is obtained by calculating the absolute difference between the
original image I and the image IMean. A 9 × 9window (270 × 270 m2) size is used because
it adequately represents the brightness of the local neighborhood of a pixel.

b. If the value of a pixel of IDiff is greater than or equal to three times the value of the image
IStdDev, then the pixel is flagged as a bad pixel and its value on the image I is replaced by its
corresponding value in the image IMean.

5.3 Destriping

Bad columns and vertical-stripes correction is implemented as follows.

5.3.1 Correction of bad columns and global vertical stripes

Bad columns and global vertical stripes are the stripes whose lengths run throughout the image
length.

Pal, Porwal, and Rasmussen: Noise reduction and destriping using local spatial statistics. . .

Journal of Applied Remote Sensing 016515-7 Jan–Mar 2020 • Vol. 14(1)



The objective of this step is to identify and correct the brightness values of global vertical
stripes by forcing their average brightness values to conform to the average of the neighboring
columns. It is implemented as follows:

a. Calculate, for each band, the average brightness value of each column and draw a profile
(PCA) of the column averages across the band.

b. Estimate the maximum trough (or crest) width on PCA in terms of the number of
columns (nc).

c. A curve (PFIT) is fitted to the column average profile PCA using quadratic regression by a
least squares method in a local moving window of 10nc × 1 size and replacing the average
brightness value of the central column by the corresponding value obtained from quadratic
regression by the least squares method.

The model used for curve fitting in this step is as described below:

EQ-TARGET;temp:intralink-;e001;116;581Yi ¼ ax2i þ bxi þ cþ Ei; (1)

where a is the regression coefficient for the quadratic effect of x on Y, b is the regression
coefficient for the linear effect of x on Y, c is the Y intercept, and i is the random error in Y
for observation i.

d. Subtract PFIT from PCA to calculate, for each column, the difference between the observed
average brightness value and the expected brightness value based on the brightness values of
the neighboring pixels.

e. The difference is added to each pixel of the respective column to correct the bad columns
and global vertical stripes.

5.3.2 Local destriping

Local vertical stripes are the stripes whose lengths run randomly in a segment of the image
length. Finally, the local vertical stripes are corrected by forcing the brightness value of the pixels
to the same brightness level as that of the local neighborhood. The step is implemented through
the following procedures.

a. Apply a 3nc × 3nc [see step 5.3.1(b)] moving window to the corrected image ICorr obtained
after step 5.3.1 to generate three images: ICorr_Mean, ICorr_StdDev, and ICorr_Diff .

The image ICorr_Mean is obtained by replacing the central pixel value by the mean of
the window. The image ICorr_StdDev is obtained by replacing the central pixel value by
the STD of the pixel from the mean of the window. The image ICorr_Diff is obtained by
calculating the absolute difference between the original image I and the image ICorr_Mean.

b. If the value of a pixel of ICorr_Diff is greater than its corresponding value on the image
ICorr_StdDev, then the pixel is flagged as a bad pixel. If the number of bad pixels in a single
column within the moving window is greater than 90% of the total number of pixels in the
column, then the column is flagged as a local stripe and the values of the bad pixels are
replaced by their corresponding values on ICorr_Mean.

The above algorithm is applied in Hyperion data using the “Interactive Data Language”
(IDL) program to computerize the noise and stripes correction procedure.

6 Results and Discussion

The above algorithm has been implemented and processed Hyperion images of the study areas
using ENVI™ software and a programming language IDL provided by Exelis Visual
Information Solutions. The effectiveness of the proposed algorithm and results were compared
with the results obtained using some of the previous most widely used algorithms (low-pass
filtering,7 DC bias correction,8 global and local moment matching,33 and local moment matching
in spectral domain4) from Hyperion images from the study areas. To show the effectiveness and
efficiency of the algorithm, bands 8, 57, 121, 180, and 224 of the Udaipur and Luleå Hyperion
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images are selected to demonstrate the performance. Bands 8 and 57 fall within the VNIR region
and are relatively noise-free, while bands 121, 180, and 224 are from the water vapor absorption
range of the SWIR region and are extremely noisy (Figs. 3 and 4). The spectral profiles before
and after noise removal are shown in Fig. 5. The proposed algorithm and the previous algorithms
return similar results for the noise-free bands (e.g., bands 8 and 57 in Figs. 3 and 4). However, for
noise-dominated bands (e.g., bands 121, 180, and 224 in Figs. 3 and 4), the proposed method
returns significantly better results compared to the previous algorithms. These results show that it
is critical to remove random noise before attempting destriping. Figure 5 compares the spectral
radiance profiles from Hyperion images of the Udaipur area [pixel position (1555, 7)] and from
the Luleå area [pixel position (1555, 145)] after applying the proposed algorithm vis-à-vis
previous algorithms. The proposed algorithm generally preserves the original spectral features,
but at the same time corrects the false absorption features and spikes [Figs. 5(a), 5(b), 5(a’), and
5(b’)]. In Fig. 5(a’), band 178 ðx1; y1Þ, and the corresponding spectra in Fig. 5(a) ðx1; y1Þ,

Fig. 3 Hyperion data from (a) the Udaipur scene and (b) the Luleå scene: Column-average
profiles of bands 8, 121, and 224 before destriping (black) and after destriping using low-pass
filtering16 (blue), DC bias correction37 (magenta), global and local moment matching11 (golden
yellow), spectral local moment matching2 (deep sky blue), and local spatial statistics and local
quadratic regression by least squares method (this paper; red).
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the false absorption feature at 1931 nm, and Fig. 5(b’) band 97 ðx5; y5Þ, and the corresponding
spectra in Fig. 5(b) ðx5; y5Þ, the false absorption feature at 1124 nm, which are generated by a
local stripe, are corrected by the proposed algorithm much better compared to the previous algo-
rithms. Similarly, in Fig. 5(a’), band 219 ðx4; y4Þ and the corresponding spectra in Fig. 5(a)
ðx4; y4Þ, the false absorption feature at 2345 nm, and in Fig. 5(b’) band 122 ðx8; y8Þ and the
corresponding spectra in Fig. 5(b) ðx8; y8Þ, the false absorption feature at 1366 nm, which are
generated by salt-and-pepper noise, are corrected by the proposed algorithm, whereas the

Fig. 4 Hyperion images before and after correction by various algorithms from (a) the Udaipur
scene and (b) the Luleå scene: bands 8, 57, 121, 180, and 224 of the Hyperion images of the
study areas, (1) before destriping and after destriping using (2) low-pass filtering,16 (3) DC bias
correction,37 (4) global and local moment matching,11 (5) spectral local moment matching,2 and
(6) local spatial statistics and local quadratic regression by least squares method (this paper).
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previous algorithms fail to correct it. False absorption features due to global vertical stripes and
bad columns are corrected equally effectively by all algorithms [e.g., false absorption features at
2153 and 2163 nm in Fig. 5(a), ðx2; y2Þ and ðx3; y3Þ and the corresponding band image in
Figs. 5(a’) band 200 ðx2; y2Þ and band 201 ðx3; y3Þ, and false absorption features at 1316 and
1326 nm in Fig. 5(b) ðx6; y6Þ and ðx7; y7Þ and the corresponding band image in Figs. 5(b’) band
117 ðx6; y6Þ & band 118 ðx7; y7Þ]. However, compared to the previous algorithms, the proposed
algorithm preserves true absorption features much more effectively [e.g., Fig. 5(a), absorption
features at 2012 and 2345 nm; Fig. 5(b), absorption features at 1215 and 1316 nm].

The false absorption feature at 2153 to 2163 nm in Fig. 5(a) ðx2; y2Þ and ðx3; y3Þ and the
corresponding images Figs. 5(a’) band 200 ðx2; y2Þ and band 201 ðx3; y3Þ is from a striped region
[pixel position (1555, 7)], while the true absorption feature on radiance spectra at 2153 to

Fig. 4 (Continued )
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Fig. 5 Spectral profile of Hyperion radiance data—original spectrum before destriping (black)
and corrected spectrum after destriping using low-pass filtering16 (blue), DC bias correction37

(magenta), global and local moment matching11 (golden yellow), spectral local moment matching2

(deep sky blue), and local spatial statistics and local quadratic regression by least squares method
(this paper; red). (a) Spectral profile of Hyperion data from the Udaipur scene in spectral range of
1900 to 2395 nm from pixel position (1555, 7) and (b) spectral profile of Hyperion data from the
Luleå scene in spectral range of 1115 to 1425 nm from pixel position (1555, 145). (a’) Pixel location
in various bands of Hyperion image from Udaipur scene corresponding to the spectra (a) and (b’)
pixel location in various bands of Hyperion image from Luleå scene corresponding to spectra (b).
Please note that ðx; yÞ shows the corresponding spectral position between spectral profiles (a, b)
and bands in images (a’, b’).
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2163 nm in a nonstriped region [position (1555, 10)] close to a vertical stripe shows similar
absorption feature as the corrected spectra by the proposed method. The proposed method pre-
serves the true absorption feature, while the previous algorithms may mar the true absorption
feature of the spectra.

In the above results, the effectiveness of the proposed algorithm is shown and compared with
the most widely used techniques for random noise reduction and destriping from hyperspectral
images. The above approaches are applied on two Hyperion images from different geographical
locations [(a) Udaipur, India (subtropical and semi-arid) and (b) Luleå, Sweden (temperate and
cold)] to demonstrate the generalized application of the proposed method to hyperspectral
images (Hyperion) from any location on the globe. In Fig. 3, column average profile before
and after destriping from three bands (bands 8, 121, and 224) of Hyperion images from
Udaipur (a) and Luleå (b) are shown to explain the disparity of the proposed and other algorithms
with respect to the original data column average profile while noise reduction is due to destrip-
ing. The column average profiles from all bands [band 8 (initial), band 121 (middle), and band
224 (last)] show that the proposed algorithm mimics and smooths the original column average
profiles, whereas other algorithms deviate. The columns’ average profiles shown in Figs. 3(a)
and 3(b) show that the original geospatial data of the images are preserved by the proposed
method, while other algorithms significantly alter the original data. In Fig. 4, two images
[Udaipur (a) and Luleå (b)], five bands (bands 8, 57, 121, 180, and 224), two bands from
VNIR and three bands from SWIR, among them two bands from the near water absorption
region, have been chosen to represent the complete band scenario of the Hyperion images.
Figure 4 represents bands 8 and 57 from the VNIR region of Hyperion images from both the
Udaipur scene and the Luleå scene indicating that all algorithms produce stripes-free bands,
whereas stripes in random noise-dominated bands [e.g., Figs. 4(a) and 4(b) bands 121, 180,
and 224] the proposed algorithm produces improved results whereas other algorithms create
artifacts in the image while destriping. Figures 5(a’) and 5(b’) original bands from Udaipur
(a’) and Luleå (b’) Hyperion images and corresponding spectra from the original images and
after destriping, shown in Figs. 5(a) and 5(b), reveal that the proposed algorithm produces
improved spectra while preserving the original spectral information compared to other tech-
niques. Based on the above results from Figs. 3–5, it is clear that the proposed algorithms rectify
the Hyperion images from random noise and striping effects more robustly compared to other
algorithms while preserving the original data information.

Further, statistical evaluation by using series of image quality indices have been applied on
the Hyperion dataset to evaluate the performance of the proposed algorithm vis-à-vis some
recently published algorithms. The image quality indices include mean,38,39 STD,38,39 mean
relative deviation (MRD),9 distortion of edge radiance (DER),38,39 distortion of gain adjustment
(DGA),38,39 noise reduction ratio (NRR),9,38–41 improvement factor (IF) of radiometric
quality,39,42 Shannon entropy (SNEP),38,39 and SNR,37,38,39,43 (Table 2). The objective of these
analyses is to select the best statistical-based method for destriping Hyperion data.

Mean reflects the general radiation level of the image and STD reflects the general variability
radiation across the image.38,39 The change of mean and STD after destriping indirectly reflects
the degree of preservation of the original image information,39 in which the less the change,
the better the destriping effect.39 The change of the image mean is minimum for the proposed
algorithm. The change in the image STD is similar for all algorithms.

MRD is used to evaluate the effectiveness of an algorithm in retaining the original informa-
tion content of the image. It is calculated as

EQ-TARGET;temp:intralink-;e002;116;184MRD ¼ 1

MN

XMN

i¼1

jbzi − gij
gi

× 100%; (2)

where gi is the pixel value of the original image, bzi is the pixel value of the destriped image, and
MN is the total number of pixels. MRD represents and characterizes the distortion of the original
image caused by the adopted destriping method.9 Lower values of MRD indicate less distortion
of the original image.9 The MRD value for the proposed algorithm is smaller than all previous
algorithms, except the global and local moment matching.8
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Table 2 Image Quality Indices of Hyperion Images.

Method

Statistical test

Mean STD MRD (%) DER DGA NRR IF SNEP SNR

A. Summary of average image quality indices from all bands

Hyperion image from Udaipur

Original data 8.0732 11.191 — 87.286 6.204 — — 3.076 10.501

Destriped image obtained using

Low-pass filtering7 8.1422 5.799 0.706 3.201 6.052 1.093 −0.003 2.917 14.812

DC bias correction8 8.1422 5.256 1.689 3.199 3.537 1.110 −5.212 3.079 14.93

Global and local moment matching33 8.1432 5.257 1.583 3.199 4.303 0.999 −4.343 2.812 14.927

Local moment matching4 8.0732 11.180 5.408 87.286 1.131 0.923 0.741 3.116 14.613

Proposed method 8.0733 5.169 1.678 2.677 0.667 1.127 0.731 3.183 16.036

Hyperion image from Luleå

Original data 6.2939 11.166 — 71.336 10.495 — — 3.469 13.558

Destriped image obtained using

Low-pass filtering7 6.2940 11.160 0.5436 71.341 10.386 0.999 −0.007 3.385 13.678

DC bias correction8 6.2936 10.688 1.7564 71.336 8.812 0.357 −2.027 3.722 13.694

Global and local moment matching33 6.2937 6.047 1.6065 5.184 15.998 0.863 6.218 3.658 13.966

Local moment matching4 6.2938 11.166 3.5353 71.336 10.489 1.001 −2.754 3.722 13.566

Proposed method 6.2982 6.813 1.485 5.121 10.071 1.175 6.342 3.754 14.154

B. Summary of average image quality indices from water absorption bands (bands 120 to 132 and 165 to 182)

Hyperion image from Udaipur

Original data 1.0486 5.688 — 16.022 0.065 — — 3.075 1.420

Destriped image obtained using

Low-pass filtering7 1.0316 0.679 8.982 0.067 0.059 1.001 3.386 2.254 1.855

DC bias correction8 0.8316 0.626 8.972 0.257 2.370 0.611 3.422 3.120 1.901

Global and local moment matching33 0.8416 0.706 9.851 0.068 1.310 0.603 3.324 2.490 1.910

Local moment matching4 0.8356 5.669 10.910 15.988 0.047 1.001 3.738 3.163 1.349

Proposed method 1.1723 1.217 2.345 0.007 0.001 1.563 24.968 3.512 3.119

Hyperion image from Luleå

Original data 0.510 7.043 — 24.795 0.026 — — 3.268 1.339

Destriped image obtained using

Low-pass filtering7 0.511 7.051 0.455 24.799 0.022 0.999 −0.002 3.024 1.711

DC bias correction8 0.504 7.042 3.545 14.796 7.596 0.310 −2.086 3.683 1.521

Global and local moment matching33 0.643 0.424 2.906 0.072 0.032 0.783 58.387 3.557 2.672

Local moment matching4 0.509 7.043 4.010 24.796 0.016 1.001 −2.205 3.683 1.374

Proposed method 0.612 1.349 0.710 0.054 0.005 1.119 61.271 3.773 3.757

Note: The results of the proposedmethod are highlighted in bold. STD, standard deviation; MRD, mean relative
deviation; DGA, distortion of gain adjustment; DER, distortion of edge radiance; SNEP, Shannon entropy;
IF, Improvement Factor; SNR, signal-to-noise ratio; NRR, noise reduction ratio.
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DER is the variance of the mean value vector in the row direction of the image and reflects
the degree of irregularity of radiation in the scan-line direction.38 As compared to the previous
algorithms, the proposed algorithm produces minimum DER.

DGA is the variance of the mean value vector in the column direction and is a measure of
the degree of irregularity of radiation in the direction of the flight.38 The lower the DGA values,
the less the distortion.38 The DGAvalue after destriping is minimum for the proposed algorithm.

NRR is achieved by an algorithm. It is estimated through the averaged power spectrum down
the columns of an image, PiðDÞ (where D is the distance from the origin in Fourier space).
The noise components of the spectrum, Ni, are defined as9,40

EQ-TARGET;temp:intralink-;e003;116;628Ni ¼
X
BWn

PiðDÞ; (3)

where BWn is the noisy region of the image spectrum. The NRR for a destriped image Nk is
defined as9,40

EQ-TARGET;temp:intralink-;e004;116;560NRR ¼ NO

Nk
; (4)

where subscriptNO is the original image. Ideally, destriping would lead to increased noise reduc-
tion and hence high NRR.39,41 The proposed algorithm returns the highest NRR, thus indicating
the maximum reduction of noise.

IF has been used to measure the improvement in radiometric quality of an image after
applying destriping algorithms.39,42 IF is calculated and evaluated as

EQ-TARGET;temp:intralink-;e005;116;457dRðjÞ ¼ MIRðjÞ −MIðjÞ; (5)

EQ-TARGET;temp:intralink-;e006;116;414dEðjÞ ¼ MIEðjÞ −MIðjÞ; (6)

where j is the line number; MIRðjÞ is the cross-track profile mean radiance of the raw image;
MIEðjÞ is the cross-track profile mean radiance of the destriped image; and MIðjÞ is the mean
radiance of the image obtained by low-pass filtering from cross-track profile.

Then, IF39,42 is defined as

EQ-TARGET;temp:intralink-;e007;116;356IF ¼ 10 log10

�P
j d

2
RðjÞP

j d
2
EðÞ

�
: (7)

High IF values indicate substantial improvement in the radiometric quality of the image.39,42

Again, the IF is second highest for the proposed algorithm after the local moment matching
algorithm.4

SNEP is one way to represent information entropy, which measures the richness of the infor-
mation quantity in an image.38,39 It is calculated using the following equation:38,39,44

EQ-TARGET;temp:intralink-;e008;116;247H ¼ −
XM
i¼1

Pi log Pi: (8)

In the above equation, i and Pi denote the image’s gray value and the probability of gray value I,
respectively. Enhancement of SNEP values indicates preservation and improvement of the infor-
mation content of an image.38,39,44 Again, the SNEP value for the proposed algorithm is higher as
compared to the previous algorithms.

SNR is defined as the ratio of maximum signal strength to the background noise present in
an image.37,43

A local variance method is used to estimate SNR using the following formula:

EQ-TARGET;temp:intralink-;e009;116;113SNR ¼ 20 log10 ×
�

MeanH
RSMerror

�
; (9)
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whereMeanH and RSMerror are the average signal value and square root of the mean of variance,
respectively, of a completely homogenous portion of the image.

High SNR indicates less distortion and enhanced signal information. Table 2 shows that
the destriped image obtained by applying the proposed algorithm has the highest SNR.

The above statistical parameters are separately calculated from all the bands [Table 2(A)] and
water absorption bands [Table 2(B)] from the Udaipur scene and the Luleå scene and are shown
in Table 2. All the statistical tests from all bands reveal that the proposed algorithm reflects
an improved image quality compared to other algorithms. Further, image quality indices show
that the water absorption bands improved significantly by the proposed method compared to
other algorithms.

The ultimate goal of this work is to develop a method to effectively reduce random and
pattern noise or spatial nonuniformity in Hyperion images while considering the least or no
alteration of the normal data values in the corrected image with respect to the original image.
It is evident from Figs. 3–5 and Table 2 that the proposed method corrects random noise, bad
columns, and stripes effectively and produces noise-free and information-rich Hyperion images.

7 Summary and Conclusions

Random noise, bad columns, and striping in Hyperion images produce false spectral absorption
features that mislead the results in natural resources assessments. Therefore, noise reduction and
destriping from Hyperion images are essential before evaluations of natural resources assess-
ments from the same. Therefore, we propose a method to reduce random noise and remove bad
columns and vertical stripes from Hyperion images based on local spatial statistics and local
quadratic regression by least squares method. The proposed algorithm is applied in four steps.
First, no-data pixels are corrected. Then MNF transformation is used to spatially decorrelate and
segregate noise from random noise-dominated bands. Further, random noise from all the bands
using local spatial statistical techniques are identified and corrected. Subsequently, local quad-
ratic regression by a least squares method-based technique is used to detect and correct global
vertical stripes. Finally, local brightness levels normalization from nearest neighbors using local
spatial statistics are used to detect and correct local vertical stripes. The proposed method has
been tested on two Hyperion images from Udaipur, western India, and Luleå, northern Sweden.
The results and outcomes show that the proposed method efficiently removes noise, primarily
from the bands inside or close to the water vapor absorption region, which are very useful and
predominantly significant for geological applications.
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