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Abstract. Multispectral imaging can offer many benefits in cost, complexity, resolution, size,
weight, and power, relative to hyperspectral imaging. When designing a multispectral system,
spectral bandpasses can be selected using optimization algorithms configured to maximally
separate target detection scores between target and background regions. A hyperspectral image
(HSI) can serve as the source of data from which band groupings can be tested for optimality.
The output of an adaptive cosine estimator target detection algorithm is used in an objective
function. Three optimization algorithms are compared: particle swarm, dual annealing, and
differential evolution. A global optimum is also found using a brute force approach on the
Livermore Computing Syrah supercomputer. Three materials are investigated: calcite, gypsum,
and limestone. This is done for 3-, 4-, and 5-band systems. The data originate from a longwave
infrared HSI of a material display board. The optimization algorithms were run 30 times for
every scenario. Performance statistics (maximum, minimum, mean, standard deviation, and
median) based on the separation values are given. Additional characterization was performed
using receiver operator characteristic (ROC) curves and the area under the ROC curve. While
good performance was obtained for the three optimization algorithms, the dual annealing algo-
rithm produced the highest and most consistent detection separation scores on average. © The
Authors. Published by SPIE under a Creative Commons Attribution 4.0 International License. Distribution
or reproduction of this work in whole or in part requires full attribution of the original publication, includ-
ing its DOI. [DOI: 10.1117/1.JRS.16.026505]
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1 Introduction

Spectral imaging enables material classification based on spectral reflectance properties. Many
materials, natural or manmade, have unique spectral properties that act as a fingerprint providing
a link to the material’s atomic or morphological state. When designing an imaging system, a very
cost-effective way of introducing additional utility is to include a spectral imaging capability;
in many cases this can be done without changing the size of the primary optic—often a driver
of an image system’s size, weight, and cost. Hyperspectral imaging systems can be designed to
include several hundred contiguous spectral bands. However, acquiring this number of bands
usually requires sophisticated optical components that are relatively fragile, complicated, and
expensive. In addition, the optics might require additional cooling which increases the overall
size, weight, and power (SWAP). These systems are often built with a low F∕# to gather more
photons; however, this is done as a tradeoff resulting in reduced spatial resolution.1,2

Multispectral systems are often built with the intention of balancing system utility with con-
straints in SWAP. During the design process, decisions must be made about which spectral band-
passes to use. In the past, this was done by a subject matter expert, who used the known spectral
signatures of intended targets and backgrounds, while also considering the impact of spectral
atmospheric absorption and detector sensitivity.3

Over time, more sensors have been fielded, and researchers began using the newly acquired
data and new experimental results to dictate the selection of bands in the next generation of
designs. The advanced baseline imager aboard the GOES-R satellites has 16 bands that were
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derived from MODIS bands and other spaceborne systems.4 More recently, there has been an
effort to use hyperspectral images (HSI) as scene truth and select corresponding bands from the
image to simulate the performance of planned sensors.5 This idea was further advanced using an
optimization algorithm to automatically select bands from the HSI. This is done by establishing a
cost function around a given task, such as class separability,6 clustering,7 target detection and
compressive sensing error minimization,8 and classification.9 This technique is used both by
hyperspectral researchers to find out which bands carry high information content6,7 and by multi-
spectral sensor designers to determine which bandpasses should be included in the system.8,9 The
optimization algorithms previously employed for this task are: particle swarm optimization,6

dynamic programming,7 and differential evolution.8 Additional literature review is provided
in Refs. 7 and 8. Currently, there has not been an attempt to apply these techniques to the long-
wave infrared (LWIR); there has been no comparison between optimizing for a single material or
task versus multiple materials or tasks; there are no references showing comparisons between
different optimization algorithms; and there has been no work comparing the optimized results to
known global optimum.

The method employed in this paper makes use of an LWIR HSI of a material display board.
Groups of bands corresponding to multispectral bandpass filters are selected from the HSI
image. These band groupings are averaged to form the bands of a multispectral image that are
used with the adaptive cosine estimator (ACE) target detection algorithm.2 This process is
repeated, and performance is ranked against other multispectral band groupings synthesized
from the same HSI image. Performance is monitored by comparing the target detection scores
for pixels found over a target area to those over the background area, this what is referred to as
“separation score.” Band selection is done using three methods: (1) a brute force approach
exploring every band combination to find a global optimum set of bands, (2) a numerical opti-
mization approach, and (3) there is one example of a user-defined set of bandpasses in Sec. 5 that
is provided for demonstration purposes. The brute force approach is performed on LLNL’s Syrah
supercomputer. Three numerical optimization approaches are examined: integer particle swarm,
differential evolution, and dual annealing. An overview of this approach is provided in the flow-
chart shown in Fig. 1.

The materials of interest are calcite, alabaster, and travertine. The materials are optimized for
simultaneously, meaning that the separation score for the three materials is used in the cost func-
tion. The materials are also optimized for individually—each one is used alone in the cost
function.

Section 2 focuses on the data processing. It includes a description of the data, band averaging,
the normalization step used, the ACE algorithm, the separation score, and the parameterization
used for optimization. Section 3 describes the brute force processing used to obtain a global
optimum separation score. Section 4 describes the optimization algorithms. Section 5 provides

Fig. 1 Groups of bands are selected from an HSI and summed to form multispectral bands. The
multispectral bands are then normalized in a step that uses the pixel’s brightness temperature.
The normalized bands are then used with the ACE target detection algorithm. A target/background
separation score is used to capture the utility of the selected group of bands. There are two primary
options for band selection: the first is a brute force approach where every band combination is
tested; the second is a numerical optimization approach where the optimization algorithm selects
groups of bands with the objective of increasing the separation between target and background ACE
scores. The gray boxes indicate which arrays are passed on to subsequent steps. Note, “Multi. Rad.
Im.” stands for multispectral radiance image. And “Norm. Im.” stands for normalized image.
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a description of the results. Section 6 contains a conclusion. Section 7 is an Appendix providing
all the results for each of the optimization algorithms, materials, and band numbers.

The primary contributions of this paper are: (1) a demonstration of a multispectral band opti-
mization applied to an LWIR hyperspectral dataset. (2) A comparison between individual opti-
mization and combined optimization for calcite, gypsum, and limestone. (3) A comparison of
three integer optimization algorithms applied to multispectral band selection. (4) A comparison
of optimized bands to the global optimal solution for three- and four-band cases.

2 Hyperspectral Data Processing

2.1 Data

The baseline image is a 49-band LWIR hyperspectral radiance image spanning 7.93 to 12.56 μm
window. The material display board was imaged under a cold sky. The exact geometry of the
setup is not known; the board was angled at 45 deg relative to the surface normal. The viewing
geometry was slightly downward looking at an approximate 10-deg angle from a high rise build-
ing at an unknown distance. The sensor had a slight focusing issue during the data collection.
Readers can see a spectral radiance plot of calcite taken from this dataset in Fig. 2 along with a
three-channel image of the material display board.

The measured radiance is affected by the material spectral emissivity, bidirectional reflec-
tance distribution, geometry, and temperature. Atmospheric radiance and transmission also affect
the measured radiance; these factors are influenced by the atmospheric gas’ transmission, pres-
sure, number density, concentration, and temperature.

In this work, an assumption is made that all materials are diffuse reflectors. The Lambertian
(diffuse) LWIR radiance model2 is defined as

EQ-TARGET;temp:intralink-;e001;116;429L ¼ BðTÞετ þ ð1 − εÞLdτ þ Lu; (1)

where BðTÞ is a Planckian blackbody at temperature T, ε is the material emissivity, τ is the
atmospheric transmission, Ld is the incident radiance from the surrounding environment
(downwelling radiance), Lu is the self-emitted radiance between the target and the detector.
Each of these terms includes a wavelength dependence which has been omitted for simplicity.

Fig. 2 (a) A calcite emissivity spectrum is plotted with data from a scene pixel (in radiance) that
contains calcite (see red box in Fig. (b)]. (b) An RGB image was created from three hyperspectral
bands to give the reader context of the material display board. The squares are blocks of various
materials. The warm and emissive materials show up as bright white squares; metallic materials
are reflecting cold sky and appear as black squares; and the bottom row shows several purple
squares, these materials have spectral features located over the three hyperspectral bands used
to make this image.
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The target spectra came from the Arizona State University Spectral Library and the Jet
Propulsion Lab EcoStress Spectral Library (the original measurement was made by USGS).
A plot of the target spectra is shown in Fig. 3:

• Calcite: CALCITE C1210

• Alabaster: GYPSUM S510

• Travertine: rock.sedimentary.limestone.solid.all.ro337.usgs.perknic.spectrum11

2.2 Band Selection and Multispectral Band Creation

Groups of contiguous bands are selected from the hyperspectral radiance cube. The groups are
selected such that the edge of the adjacent group does not overlap. Each group is then averaged
spectrally. The resulting set is intended to simulate data collected by a multispectral system.
Figure 4 provides an example of a four-band case.

It should be noted that detector noise characteristics for the multispectral system were not
simulated.

2.3 Data Normalization by Brightness Temperature

To use the multispectral data in a target detection algorithm, a normalization technique was used
as an initial processing step to help reduce variability caused by the material temperature. This is

Fig. 3 The target material spectra used in this study have a diverse set of spectral features of
varying widths and depths.

Fig. 4 The original dataset is a full hyperspectral cube, groups of contiguous bands are then
selected from this cube, and these groups are averaged to create the individual multispectral
bands. “Nx ” defines the number of HSI bands in the group.
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done by first computing the brightness temperature (Tmax [K]) of every multispectral pixel radi-
ance vector imðpÞ:

EQ-TARGET;temp:intralink-;e002;116;711TðpÞ ¼ hc
λk logðð2 hc2λ−5Þ∕ðimðpÞ � 1E4Þ þ 1Þ ; TðpÞmax ¼ maxðTðpÞÞ; (2)

where h ¼ 6.62606896e-34ðJ � sÞ, c ¼ 299; 792; 458 ðm∕sÞ, k ¼ 1.3806504e-23ðJ � K−1Þ, λ is
the wavelength band center in microns, and imðpÞ has units of microflicks [μW∕ðcm2 sr μmÞ].

The brightness temperature is then used to normalize the data by dividing each pixel by a
Planck curve defined by the brightness temperature:

EQ-TARGET;temp:intralink-;e003;116;616x ¼ imðpÞ
10−4 � ð2hc2λ−5Þ � ðehc∕λkTmax − 1Þ−1 : (3)

This approach works well for objects that are emitting more radiance than they are reflecting—as
a sidenote, proportionally larger amounts of reflected atmospheric water and ozone prevent the
selection of an accurate maximum brightness temperature. x will be used in the ACE target
detection step. The reader may notice that this equation bears some resemblance to the emissivity
equation.2

2.4 ACE

The ACE algorithm is a popular hyperspectral target detection algorithm.2,6,12 The algorithm uses
the scene data multivariate mean and covariance in a process referred to as whitening to suppress
the data’s direction of maximum variability. The ACE algorithm whitens and normalizes the
pixel vectors (x) and target vector(s) (t) and then computes cosine angle between the two.
The target spectra are defined in Sec. 2.1. ACE is defined as

EQ-TARGET;temp:intralink-;e004;116;412 ðx − x̂ÞTΣ−1ðt − x̂Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx − x̂ÞTΣ−1ðx − x̂Þ

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðt − x̂ÞTΣ−1ðt − x̂Þ

p

¼
�

Σ−1
2ðx − x̂Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðx − ˆxÞTΣ−1ðx − x̂Þ
p

�
T
�

Σ−1
2ðt − x̂Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðt − ˆxÞTΣ−1ðt − x̂Þ
p

�
; (4)

where x̂ is a spectral mean, Σ is the spectral covariance matrix, and T denotes a matrix transpose.
The authors refer to ACE score as the value computed by Eq. (4). This value is computed for
every pixel in the scene.

2.5 Separation Score

Ideally, the target detection algorithm will have a good rate of true positive detection and a low
rate of false positive detection. While it is not exactly analogous, if the algorithm is performing
well, the output scores over target areas will be higher than those over background areas. The
assumption used here is that a greater separation in ACE scores between target and background
will result in an improvement in detection performance (either a decrease in false positive rate or
an increase in true positive rate).

As mentioned in Sec. 1.1, the sensor experienced a spatial focusing issue which resulted in
some pixels being mixed with both target and background. In this work, the number of on-target
pixels was much less than the number of background pixels. Figure 5(a) shows a detection plane
for the calcite target. Plotting a histogram of the ACE scores for on-target and background
regions, we see these two groups overlap where the pixels are mixed with either target or back-
ground [see Fig. 5(b)].

There is a relatively small number of target pixels and many of the ACE scores in the target-
region are statistical outliers. For this reason, a median is used to characterize the target-region
ACE scores. The background region, which contains a much greater number of pixels, was char-
acterized by taking a mean value for this region. Capturing the amount of separability between
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the target and background is done by differencing the median of the target area ACE scores and
the mean of the background ACE scores:

EQ-TARGET;temp:intralink-;e005;116;449Score ¼ medianðACEtargetÞ −meanðACEbackgroundÞ: (5)

2.6 Parameterization

Parameterizing this problem is done by defining the lower and upper bounds of each multispec-
tral bandpass. An illustration of this is provided for the four-band case in Fig. 6. The multispec-
tral system’s bandpasses can be defined by a vector Z ¼ ðz1; z2; : : : ; zNÞ, which is a vector of
hyperspectral band indices. N.B. the N defined here is 2× the number of multispectral bands.

There are three constraints that are used to define this problem.Constraint 1: Vector Z ∈ Zþ,
that is, it is an integer vector since it contains hyperspectral band indices. Constraint 2: Vector
Zn ∈ ½1; 49�, the HSI used here has 49 bands and therefore the band indices (n) must be between
1 and 49. Constraint 3: z1 < z2; z2 ≤ z3; : : : zN−1 < zN , the multispectral bandpasses must have
a width of at least one band and they are allowed to be contiguous. Parameterizing Eq. (5), we
can define the separation Score for a given scenario, Z, as:

Fig. 6 An illustration of the four-band case. The blue rectangles represent the bandpass filters.
The bandpass filters are constrained to have some width, potentially contiguous but not overlap.

Fig. 5 (a) Observe the ACE detection plane for the calcite target. The high detection values (bright
yellow square) span the target region. The blue/green region is entirely background. (b) The histo-
gram of ACE scores for the target area and background area shows perfect separation between
the pure target and background areas. Pixels that are mixed with target and background overlap
either class. The y -axis uses a log scale to account for the significant imbalance between the pixel
counts of the two classes.
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EQ-TARGET;temp:intralink-;e006;116;735ScoreðZÞ ¼ medianðACEtargetðZÞÞ −meanðACEbackgroundðZÞÞ: (6)

Equation (6) applies directly to the single material case. When there is more than one material,
the median of the target ACE scores and the mean of the background ACE scores is computed for
each material. Then, the mean is taken for the targets and backgrounds, this value is then differ-
enced. For a scenario with M materials:

EQ-TARGET;temp:intralink-;e007;116;665ScoreðZÞ ¼
XM
m

ðmedianðACEtarget;mðZÞÞÞ∕M −
XM
m

ðmeanðACEbackground;mðZÞÞÞ∕M: (7)

3 Brute Force Data Processing

The number of multispectral configurations for the three-, four-, and five-band cases is given as
three-band 1.8 × 107, four-band 7.5 × 108, and five-band 1.9 × 1010. Computing a brute force
solution beyond four bands is not currently possible in a reasonable amount of time using the
resources at LLNL. Computing all configurations for the four-band case took ∼1 week using 128
nodes on LLNL’s Syrah supercomputer.13 The Syrah computer has Intel Xeon E5 processors
with 16 cores. Python and Dask were used to run the jobs and log results; 16 jobs were run
on each node, with a total of 2048 jobs running simultaneously.

4 Numerical Optimization Algorithms

Three integer programming options are available to guide the selection of optimal band con-
figuration—integer particle swarm optimization, dual annealing, and differential evolution.
As addressed in Sec. 5.2, each algorithm is run 30 times for every scenario investigated. These
algorithms were run on PCs, the computational requirements are miniscule compared to what
was required for the brute force optimization. A single optimization run would generally com-
plete in minutes.

4.1 Integer Particle Swarm Optimization

Particle swarm optimization (PSO) interrogates a problem with a population (or swarm) of indi-
vidual potential solutions (particles). As the algorithm makes iterative steps toward an optimal
solution, it is influenced by the previous global best solution as well the individual particle’s best
previous solution. Each particle has a velocity that influences its momentum as it traverses the
solution space. Having momentum as well as influence from the global best solution helps pre-
vent particles from getting stuck in local minima.

The implementation used in this work closely follows14 which is similar to continuous PSO;
however, the dependent variables are rounded to their nearest integer and the constraints men-
tioned in Sec. 2.6 are enforced. The optimization was setup to use: 50 particles, 200 iterations
(M ¼ 200), a cognitive weight ðc1Þ of 0.6, a social weight ðc2Þ of 0.6, a velocity constriction
factor ðχÞ of 0.729, inertia weight (ω) of 0.9, and an inertial weight decay function of:

EQ-TARGET;temp:intralink-;e008;116;211ΩðiÞ ¼ ω �
�
e−

i
M∕2 � sin

�
3π

2
� ðM − iÞ

M

��
þ :001; (8)

where i is an iteration index.

4.2 Dual Annealing

Simulated annealing is a well-known heuristic for unconstrained optimization problems. It is an
improvement over basic local search methods because it allows the incumbent solution to move
in a direction that is not locally improving with a certain probability, thus allowing the solution to
escape local optima. Dual annealing is a type of simulated annealing algorithm that combines
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classical simulated annealing and fast simulated annealing. Dual annealing is a standard routine
in the SciPy Optimize package.15,16

Simulated annealing routines are generally applied to unconstrained optimization problems.
Since the problem has some constraints—all bands have lower and upper bounds, bands cannot
overlap—the objective function was modified to return a poor score if one of the constraints was
violated. In the experiments, the total number of iterations was limited to 300, and the visit
parameter was set to 2.9 (instead of the default value of 2.62). This allows the algorithm to
jump to greater distances in the search space. The remaining parameters were set to their default
values in SciPy Optimize.

4.3 Differential Evolution

Differential evolution is an evolutionary algorithm. Starting with a randomly selected set of can-
didate solutions, the algorithm iterates through a sequence of mutation, recombination, and
selection steps until a termination criterion is met. The algorithm is also included in the SciPy
Optimize package.17

The SciPy Optimize package implementation of differential evolution allows constraints to
be specified. We added constraints to limit the upper and lower bounds of the bands and con-
straints to ensure that the bands do not overlap. We set the maximum number of iterations to 300
and used default values in SciPy Optimize for all other parameters.

5 Results

5.1 Brute Force Processing

The brute force global optimum separation scores and associated bandpasses for the three- and
four-band scenarios are provided in Table 1 of the Appendix. The bandpasses are also displayed
graphically in Figs. 7 and 8. While the separation score is a useful metric for the optimization
algorithm, detection performance is best captured by examining the probability of detection (PD)
and the probability of false alarm (PFA). This done using a receiver operator characteristic (ROC)
curve. Overall performance can be quantified by taking the area under the ROC (AUROC) curve.
Figures 7 and 8 show ROC curves for the three- and four-band cases. Figure 7 shows expected
behavior for calcite and gypsum, where the optimal spectral band selection is aligned with dom-
inant spectral features. However, this does not occur with the individual case of limestone or for
the three-material case used in the optimization. It is unclear why this happened. In the individual
limestone case, the other subtle spectral features (8.5, 9.2, and 9.8 μm) may have offered more
information relative to the background spectra than the dominate feature (11 μm). In the three-
material case, one material may have gained substantially from the selected band configuration
and mask performance gains (or losses) for the other materials. Figure 8 shows more consistent
behavior for the four-band case, where bands fall on dominant spectral features. Examining the
ROC curve, in both cases, the contiguous multispectral bands perform worse than the hyper-
spectral system. An exciting result is that a multispectral system with band optimization for three
materials can produce better performance than the original hyperspectral system. Optimizing for
each individual material results in further improvement for the material under inspection; how-
ever, detection performance for the other materials declines substantially. It should be noted that
this observation applies to only this dataset. Another dataset with the same target materials, but
different background, could result in a different optimal band combination. Future work could
examine the extensibility of these bandpasses, comparing these results to results collected over
different backgrounds or different times of day (different thermal conditions).

5.2 Numerical Optimization Results

The detailed optimization results are provided in Table 1 of the Appendix. For each scenario,
30 optimization runs were performed. The mean, standard deviation, median, minimum, and
maximum values are given for these 30 optimizations. The bandpasses for the maximum sep-
aration score are also given.
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Figure 9 provides a summary of algorithm performance. The mean is calculated for the four
material types of a single band number and optimization type. For example, the mean of the
three-band particle swarm algorithm 30-run means is mean (0.518, 0.576, 0.886, 0.504) =
0.621. And the mean of the 30-run standard deviations is mean (0.031, 0.105, 0.019, 0.028)
= 0.046.

For the three-band case, all three algorithms performed well and found the global maximum
for several materials. The particle swarm algorithm found the global maximum for all materials;
however, the separation score standard deviation was highest for all materials using this algo-
rithm making it the most inconsistent performer. The differential evolution algorithm produced
the best results on average with a higher mean separation score and a lower standard deviation.

In the four-band case, each algorithm found the global maximum in two out of the four
material scenarios. The differential evolution algorithm had the highest mean separation score
and the lowest mean standard deviation for the 30-run means.

Fig. 7 The brute force result for the three-band case is shown here. Each vertical pair of plots
corresponds to an optimization scenario. For each plot pair, the upper plot shows the three
material spectra of interest and selected spectral bandpasses. The lower plot shows the ROC
curves and AUROC curve values for each of the three materials of interest. This shows a com-
parison between the original hyperspectral data, three-band contiguous data, and three-band opti-
mized data.

Zelinski et al.: Optimal band selection for target detection with a LWIR multispectral imager

Journal of Applied Remote Sensing 026505-9 Apr–Jun 2022 • Vol. 16(2)



The five-band case has many more potential combinations, and it was therefore not possible
to compute a brute force result. The particle swarm algorithm produced the best results on aver-
age; however, there was large variability in the scores. The dual annealing algorithm produced
the most consistent results but only by a small margin compared with the differential evolution.
The performance margins here are closer than in the three-band case.

Figure 10 shows the best five-band optimization results for each material. The bandpasses for
the individual materials follow the dominant spectral features. However, the three-material opti-
mization lacks a bandpass over the dominant limestone feature. If the bandpasses are modified to
include a band over the dominant limestone feature an interesting observation is made (see “User
Defined” plot in Fig. 10). The AUROC values for limestone increase while the values of calcite
and gypsum both decrease. On average, the AUROC values for the optimized bands are higher
than the user defined bands. Three-material AUROC average: (0.9879 + 0.9907 + 0.9484)/3 =
0.9757, user defined AUROC average: (0.9569 + 0.9854 + 0.96168)/3 = 0.9680. The optimi-
zation algorithm would have likely favored improved performance for calcite and gypsum at the
expense of the limestone performance.

Fig. 8 The brute force results from the four-band case.
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6 Conclusion

6.1 Brute Force Computing

A brute force search of all possible spectral band combinations was performed for a three- and
four-band system using a 49-band HSI as a data source. Executing this task required using 128
nodes on LLNL’s Syrah supercomputer and 1 week to complete. Given the successful perfor-
mance of the optimization algorithms, there is little to be gained by brute force searches of this
kind in future work; the resources required are significantly greater than what is used for the
numerical optimization approach.

6.2 Numerical Optimization

Integer programing, which is a type of numerical optimization that utilizes integer valued var-
iables, was used to select band combinations from the 49-band HSI. Three algorithms were used
in the optimization: particle swarm, dual annealing, and differential evolution. Overall, the per-
formance for all three algorithms is similar. There are many instances where these algorithms
found the global optimum solution. The differential evolution algorithm produced high sepa-
ration scores more consistently than the other algorithms but only by a small margin. The particle
swarm algorithm produced a higher standard deviation of separation scores, making it the most
inconsistent performer. That said, it did achieve some of the best scores; most notably for the
three-band case, where the global maximum was found for all materials.

Plotting the optimized bandpasses against the target vectors revealed that the results were not
always intuitive; there are some instances of dominant spectral features not being selected for band-
passes. Themost unusual example of this being the three-band limestone optimization where smaller
features were selected over the dominant feature. There are several factors that could have caused
this, particularly the scenewhitening step that is used in ACEwhich can be heavily influenced by the
background. This behavior was also observed in the three-material optimizations for three bands and
five bands. When three materials are used in the optimization, it is possible that substantial perfor-
mance gains of one material might overshadow the decreased performance of the other two.

6.3 User Defined Optimization

In Fig. 10, the authors modified the three-material optimization by moving one band to the dom-
inant (and unused) limestone spectral feature. The band that was moved existed beyond 12 μm

Fig. 9 Bar chart shows a summary of the separation scores for each algorithm. The bar values are
produced by taking the mean value of the mean separation scores for the four material types for
each algorithm. The error bars are produced by taking the mean value of the standard deviation of
the separation scores. The dual annealing and differential evolution algorithms produced the high-
est and most consistent results for the three-band case. For the four- and five-band cases, all
algorithms are similar. It is worth noting that the particle swarm algorithm has higher variance than
the other two algorithms, which is a good thing if the optimization can be run many times—as a
higher maximum score could be more attainable with this algorithm.
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in a location that was spectrally flat for the targets used here. Moving this band improved per-
formance for limestone detection but resulted in decreased performance for calcite and gypsum.
This serves as a reminder that flat target spectra can still be informative relative to the back-
ground spectral shape. In this case, the best detection performance overall was obtained by ignor-
ing the primary limestone feature.

6.4 Future Work

Given the good optimization performance, these tests should be expanded to datasets collected
under different thermal conditions, different backgrounds, and single pixel detection. Future
work might also include modifying the objective function to penalize optimization steps that
result in large performance gains for one material at the expense of other materials.

7 Appendix

The optimal separation scores and the resulting spectral band passes for each optimization algo-
rithm and the brute force runs are presented in Table 1.

Fig. 10 Five-band results obtained from the best numerical optimizations, along with a “User
Defined” set of bandpasses in the upper left.

Zelinski et al.: Optimal band selection for target detection with a LWIR multispectral imager

Journal of Applied Remote Sensing 026505-12 Apr–Jun 2022 • Vol. 16(2)



T
ab

le
1

O
pt
im

al
se

pa
ra
tio

n
sc

or
es

an
d
as

so
ci
at
ed

ba
nd

pa
ss

es
.

S
co

re
m
ea

n
S
co

re
st
de

v
S
co

re
m
ed

ia
n

S
co

re
m
in
.

S
co

re
m
ax

B
an

d1
B
an

d2
B
an

d3
B
an

d4
B
an

d5

B
F
3
m
at
er
ia
ls

—
—

—
—

0.
55

51
5

8.
30

0
to

8.
76

7
8.
76

7
to

8.
95

4
9.
32

8
to

9.
79

5
—

—

B
F
ca

lc
ite

—
—

—
—

0.
67

41
05

9.
14

1
to

9.
23

4
10

.3
56

to
11

.1
97

11
.1
97

to
11

.3
84

B
F
gy

ps
um

—
—

—
—

0.
89

54
79

8.
58

0
to

8.
67

3
8.
67

3
to

8.
95

4
8.
95

4
to

11
.5
71

B
F
lim

es
to
ne

—
—

—
—

0.
56

05
47

8.
48

7
to

8.
76

7
8.
76

7
to

9.
04

7
9.
70

1
to

9.
79

5

P
S

3
m
at
er
ia
ls

0.
51

83
64

0.
03

12
76

0.
54

28
02

0.
45

37
42

0.
55

51
5

8.
30

0
to

8.
76

7
8.
76

7
to

8.
95

4
9.
32

8
to

9.
79

5

P
S

ca
lc
ite

0.
57

56
77

0.
10

51
61

0.
66

86
17

0.
45

21
16

0.
67

41
05

9.
14

1
to

9.
23

4
10

.3
56

to
11

.1
97

11
.1
97

to
11

.3
84

P
S

gy
ps

um
0.
88

64
91

0.
01

93
54

0.
89

54
79

0.
84

27
28

0.
89

54
79

8.
58

0
to

8.
67

3
8.
67

3
to

8.
95

4
8.
95

4
to

11
.5
71

P
S

lim
es

to
ne

0.
50

40
94

0.
02

81
98

0.
49

23
89

0.
46

72
29

0.
56

05
47

8.
48

7
to

8.
76

7
8.
76

7
to

9.
04

7
9.
70

1
to

9.
79

5

D
A

3
m
at
er
ia
ls

0.
48

72
46

0.
03

09
31

0.
47

56
59

0.
45

68
8

0.
55

17
99

8.
48

7
to

8.
67

3
8.
76

7
to

9.
32

8
9.
60

8
to

9.
70

1

D
A

ca
lc
ite

0.
67

09
12

0.
00

37
03

0.
67

18
09

0.
66

30
04

0.
67

41
05

9.
14

1
to

9.
23

4
10

.3
56

to
11

.1
97

11
.1
97

to
11

.3
84

D
A

gy
ps

um
0.
88

07
05

0.
01

66
15

0.
88

61
27

0.
84

95
79

0.
89

54
79

8.
58

0
to

8.
67

3
8.
67

3
to

8.
95

4
8.
95

4
to

11
.5
71

D
A

lim
es

to
ne

0.
55

12
34

0.
00

49
91

0.
00

49
91

0.
53

65
83

0.
56

00
56

9.
88

8
to

9.
98

2
11

.0
10

to
11

.2
90

11
.7
58

to
12

.0
38

D
E

3
m
at
er
ia
ls

0.
48

99
44

0.
03

05
57

0.
47

56
59

0.
47

01
09

0.
55

51
5

8.
30

0
to

8.
76

7
8.
76

7
to

8.
95

4
9.
32

8
to

9.
79

5

D
E

ca
lc
ite

0.
67

14
63

0.
00

14
47

0.
67

13
07

0.
66

73
96

0.
67

37
53

9.
14

1
to

9.
23

4
10

.4
49

to
11

.1
97

11
.1
97

to
11

.3
84

D
E

gy
ps

um
0.
89

54
71

0.
00

00
28

0.
89

54
79

0.
89

53
35

0.
89

54
79

8.
58

0
to

8.
67

3
8.
67

3
to

8.
95

4
8.
95

4
to

11
.5
71

D
E

lim
es

to
ne

0.
55

05
41

0.
00

41
38

0.
54

96
7

0.
54

25
79

0.
56

00
56

9.
88

8
to

9.
98

2
11

.0
10

to
11

.2
90

11
.7
58

to
12

.0
38

B
F
3
m
at
er
ia
ls

—
—

—
—

0.
66

00
4

8.
58

0
to

8.
67

3
9.
04

7
to

9.
23

4
10

.8
23

to
11

.2
90

11
.2
90

to
11

.4
77

—

Zelinski et al.: Optimal band selection for target detection with a LWIR multispectral imager

Journal of Applied Remote Sensing 026505-13 Apr–Jun 2022 • Vol. 16(2)



T
ab

le
1
(C

on
tin

ue
d)
.

S
co

re
m
ea

n
S
co

re
st
de

v
S
co

re
m
ed

ia
n

S
co

re
m
in
.

S
co

re
m
ax

B
an

d1
B
an

d2
B
an

d3
B
an

d4
B
an

d5

B
F
ca

lc
ite

—
—

—
—

0.
74

96
89

9.
14

1
to

9.
23

4
10

.2
62

to
10

.9
16

11
.2
90

to
11

.4
77

11
.7
58

to
12

.2
25

B
F
gy

ps
um

—
—

—
—

0.
88

06
33

8.
58

0
to

8.
67

3
8.
67

3
to

8.
86

0
8.
86

0
to

9.
04

7
9.
04

7
to

12
.4
12

B
F
lim

es
to
ne

—
—

—
—

0.
64

96
35

9.
88

8
to

9.
98

2
11

.0
10

to
11

.2
90

11
.4
77

to
12

.0
38

12
.0
38

to
12

.2
25

P
S

3
m
at
er
ia
ls

0.
63

83
47

0.
03

35
96

0.
65

51
21

0.
50

70
5

0.
66

00
4

8.
58

0
to

8.
67

3
9.
04

7
to

9.
23

4
10

.8
23

to
11

.2
90

11
.2
90

to
11

.4
77

P
S

ca
lc
ite

0.
73

18
9

0.
01

03
51

0.
73

00
67

0.
71

26
49

0.
74

89
04

9.
14

1
to

9.
23

4
10

.2
62

to
10

.9
16

11
.2
90

to
11

.4
77

11
.5
71

to
12

.2
25

P
S

gy
ps

um
0.
87

15
92

0.
02

49
29

0.
87

86
66

0.
74

11
22

0.
88

06
33

8.
58

0
to

8.
67

3
8.
67

3
to

8.
86

0
8.
86

0
to

9.
04

7
9.
04

7
to

12
.4
12

P
S

lim
es

to
ne

0.
61

02
39

0.
03

20
27

0.
62

61
91

0.
50

16
94

0.
63

12
05

8.
39

3
to

8.
67

3
8.
76

7
to

9.
23

4
10

.8
23

to
11

.2
90

11
.2
90

to
11

.5
71

D
A

3
m
at
er
ia
ls

0.
65

14
25

0.
01

02
02

0.
65

41
5

0.
61

72
99

0.
66

00
4

8.
58

0
to

8.
67

3
9.
04

7
to

9.
23

4
10

.8
23

to
11

.2
90

11
.2
90

to
11

.4
77

D
A

ca
lc
ite

0.
74

54
36

0.
00

63
51

0.
74

74
94

0.
72

70
42

0.
74

96
89

9.
14

1
to

9.
23

4
10

.2
62

to
10

.9
16

11
.2
90

to
11

.4
77

11
.7
58

to
12

.2
25

D
A

gy
ps

um
0.
83

37
07

0.
03

63
88

0.
83

41
92

0.
77

55
09

0.
87

71
18

8.
58

0
to

8.
67

3
8.
67

3
to

8.
76

7
8.
76

7
to

8.
95

4
8.
95

4
to

11
.6
64

D
A

lim
es

to
ne

0.
62

80
85

0.
00

37
43

0.
62

90
31

0.
61

54
28

0.
63

36
46

9.
04

7
to

9.
14

1
9.
88

8
to

10
.1
69

11
.0
10

to
11

.2
90

11
.5
71

to
12

.0
38

D
E

3
m
at
er
ia
ls

0.
65

22
39

0.
00

61
96

0.
65

46
58

0.
63

44
56

0.
65

90
07

8.
58

0
to

8.
67

3
8.
86

0
to

9.
23

4
10

.8
23

to
11

.2
90

11
.2
90

to
11

.4
77

D
E

ca
lc
ite

0.
73

69
41

0.
00

60
73

0.
73

67
9

0.
72

47
31

0.
74

96
89

9.
14

1
to

9.
23

4
10

.2
62

to
10

.9
16

11
.2
90

to
11

.4
77

11
.7
58

to
12

.2
25

D
E

gy
ps

um
0.
87

71
51

0.
00

37
13

0.
87

88
98

0.
86

79
1

0.
88

06
33

8.
58

0
to

8.
67

3
8.
67

3
to

8.
86

0
8.
86

0
to

9.
04

7
9.
04

7
to

12
.4
12

D
E

lim
es

to
ne

0.
62

34
06

0.
00

60
76

0.
62

37
69

0.
61

19
97

0.
63

81
7

9.
04

7
to

10
.0
75

11
.1
03

to
11

.2
90

11
.4
77

to
11

.8
51

12
.1
31

to
12

.2
25

P
S

3
m
at
er
ia
ls

0.
67

72
83

0.
00

83
23

0.
67

81
58

0.
64

88
76

0.
68

84
49

8.
20

6
to

8.
39

3
8.
48

7
to

8.
76

7
8.
76

7
to

9.
04

7
10

.8
23

to
11

.1
97

11
.2
90

to
11

.5
71

P
S

ca
lc
ite

0.
76

90
51

0.
00

86
0.
77

04
49

0.
74

74
97

0.
78

43
81

9.
04

7
to

9.
32

8
10

.2
62

to
10

.9
16

11
.2
90

to
11

.4
77

11
.4
77

to
11

.8
51

11
.9
44

to
12

.2
25

Zelinski et al.: Optimal band selection for target detection with a LWIR multispectral imager

Journal of Applied Remote Sensing 026505-14 Apr–Jun 2022 • Vol. 16(2)



T
ab

le
1
(C

on
tin

ue
d)
.

S
co

re
m
ea

n
S
co

re
st
de

v
S
co

re
m
ed

ia
n

S
co

re
m
in
.

S
co

re
m
ax

B
an

d1
B
an

d2
B
an

d3
B
an

d4
B
an

d5

P
S

gy
ps

um
0.
83

9
0.
02

83
62

0.
83

82
25

0.
80

21
16

0.
86

94
61

8.
58

0
to

8.
67

3
8.
67

3
to

8.
76

7
8.
76

7
to

8.
86

0
8.
86

0
to

9.
04

7
9.
04

7
to

11
.2
90

P
S

lim
es

to
ne

0.
66

96
82

0.
02

56
42

0.
67

53
29

0.
54

45
62

0.
69

42
75

8.
20

6
to

8.
95

4
9.
79

5
to

10
.8
23

11
.0
10

to
11

.2
90

11
.4
77

to
11

.8
51

12
.0
38

to
12

.2
25

D
A

3
m
at
er
ia
ls

0.
68

01
2

0.
00

70
25

0.
68

28
31

0.
65

73
8

0.
68

98
15

8.
48

7
to

8.
76

7
8.
76

7
to

10
.7
29

11
.1
97

to
11

.3
84

11
.4
77

to
11

.9
44

12
.0
38

to
12

.2
25

D
A

ca
lc
ite

0.
77

46
6

0.
00

31
91

0.
77

42
62

0.
76

76
82

0.
78

43
3

9.
04

7
to

9.
23

4
10

.2
62

to
10

.9
16

11
.2
90

to
11

.4
77

11
.4
77

to
11

.8
51

11
.8
51

to
12

.2
25

D
A

gy
ps

um
0.
79

91
55

0.
00

48
3

0.
80

17
23

0.
78

75
25

0.
80

75
8.
48

7
to

8.
58

0
8.
58

0
to

8.
67

3
8.
95

4
to

9.
42

1
9.
42

1
to

10
.0
75

10
.0
75

to
12

.5
05

D
A

lim
es

to
ne

0.
67

51
65

0.
01

31
5

0.
66

83
1

0.
65

83
36

0.
70

15
29

8.
01

9
to

9.
32

8
9.
60

8
to

10
.8
23

11
.0
10

to
11

.2
90

11
.4
77

to
11

.8
51

12
.0
38

to
12

.2
25

D
E

3
m
at
er
ia
ls

0.
67

30
66

0.
00

55
58

0.
67

30
45

0.
66

21
65

0.
68

62
13

8.
58

0
to

8.
76

7
8.
86

0
to

9.
32

8
11

.1
97

to
11

.3
84

11
.4
77

to
11

.9
44

12
.0
38

to
12

.2
25

D
E

ca
lc
ite

0.
76

60
65

0.
00

45
02

0.
76

60
98

0.
75

50
09

0.
77

64
84

9.
04

7
to

9.
14

1
10

.3
56

to
11

.1
03

11
.2
90

to
11

.4
77

11
.5
71

to
11

.6
64

11
.9
44

to
12

.0
38

D
E

gy
ps

um
0.
80

46
89

0.
01

77
91

0.
79

85
03

0.
78

39
57

0.
85

19
33

8.
58

0
to

8.
67

3
8.
67

3
to

8.
86

0
8.
86

0
to

9.
04

7
9.
04

7
to

9.
14

1
9.
23

4
to

9.
32

8

D
E

lim
es

to
ne

0.
67

68
39

0.
00

60
06

0.
67

62
76

0.
66

57
75

0.
69

42
99

8.
11

3
to

9.
14

1
9.
79

5
to

10
.8
23

11
.0
10

to
11

.2
90

11
.4
77

to
11

.8
51

11
.9
44

to
12

.3
18

Zelinski et al.: Optimal band selection for target detection with a LWIR multispectral imager

Journal of Applied Remote Sensing 026505-15 Apr–Jun 2022 • Vol. 16(2)



Acknowledgments

Thank you to Janice Lawson and the team at Lawrence Livermore National Laboratory who
collected this data.

This document was prepared as an account of work sponsored by an agency of the United
States government. Neither the United States government nor Lawrence Livermore National
Security, LLC, nor any of their employees makes any warranty, expressed or implied, or assumes
any legal liability or responsibility for the accuracy, completeness, or usefulness of any infor-
mation, apparatus, product, or process disclosed, or represents that its use would not infringe
privately owned rights. Reference herein to any specific commercial product, process, or service
by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its
endorsement, recommendation, or favoring by the United States government or Lawrence
Livermore National Security, LLC. The views and opinions of authors expressed herein do not
necessarily state or reflect those of the United States government or Lawrence Livermore
National Security, LLC, and shall not be used for advertising or product endorsement purposes.
Lawrence Livermore National Laboratory is operated by Lawrence Livermore National Security,
LLC, for the U.S. Department of Energy, National Nuclear Security Administration under
Contract DE-AC52-07NA27344. Release number: LLNL-JRNL-825597.

References

1. R. D. Fiete, “Image quality and lambda FN/p for remote sensing,” Opt. Eng. 38(7),
1229–1240 (1999).

2. J. Schott, Remote Sensing: The Image Chain Approach, 2nd ed., Oxford University Press
(2007).

3. G. Begni, “Selection of the optimum spectral bands for the spot satellite,” Photogramm.
Eng. Remote Sens. 48(10), 1613–1620 (1982).

4. T. J. Schmit et al., “Introducing the next-generation Advanced Baseline Imager on GOES-R,”
Bull. Am. Meteorol. Soc. 86(8), 1079–1096 (2005).

5. N. Longbotham et al., “Prelaunch assessment of worldview-3 information content,” in
IEEE, WHISPERS (2014).

6. H. Su et al., “Optimized hyperspectral band selection using particle swarm optimization,”
IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 7(6), 2659–2670 (2014).

7. Q. Wang, F. Zhang, and X. Li, “Optimal clustering framework for hyperspectral band selec-
tion,” IEEE Trans. Geosci. Remote Sens. 56(10), 5910–5922 (2018).

8. T. Doster et al., “Designing manufacturable filters for a 16-band plenoptic camera using
differential evolution,” Proc. SPIE 10198, 1019803 (2017).

9. B. Meyer et al. “Selecting optimal spectral bands for improved detection of autofluorescent
biomarkers in multiphoton microscopy,” J. Biomed. Opt. 25(7), 071206 (2020).

10. https://speclib.asu.edu/
11. https://speclib.jpl.nasa.gov/ecospeclibdata/rock.sedimentary.limestone.solid.all.ro337.usgs

.perknic.spectrum.txt
12. D. Manolakis et al., “Is there a best hyperspectral detection algorithm?” Proc. SPIE 7334,

733402 (2009).
13. https://hpc.llnl.gov/hardware/platforms/syrah
14. E. C. Laskari, K. E. Parsopoulos, and M. N. Vrahatis, “Particle swarm optimization

for integer programming,” in Proc. IEEE Congr. Evol. Comput., Vol. 2, pp. 1582–1587
(2002).

15. Y. Xiang et al., “Generalized simulated annealing algorithm and its application to the
Thomson model,” Phys. Lett. A, 233, 216–220 (1997).

16. https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.dual_annealing.html
17. R. Storn and K. Price, “Differential evolution: a simple and efficient heuristic for global

optimization over continuous spaces,” J. Global Optim. 11, 341–359 (1997).

Michael Zelinski is a research scientist at Lawrence Livermore National Laboratory whose in-
terests include image system modeling, Fourier optics, hyperspectral imaging, high-performance

Zelinski et al.: Optimal band selection for target detection with a LWIR multispectral imager

Journal of Applied Remote Sensing 026505-16 Apr–Jun 2022 • Vol. 16(2)

https://doi.org/10.1117/1.602169
https://doi.org/10.1175/BAMS-86-8-1079
https://doi.org/10.1109/JSTARS.2014.2312539
https://doi.org/10.1109/TGRS.2018.2828161
https://doi.org/10.1117/12.2262574
https://doi.org/10.1117/1.JBO.25.7.071206
https://speclib.asu.edu/
https://speclib.asu.edu/
https://speclib.asu.edu/
https://speclib.jpl.nasa.gov/ecospeclibdata/rock.sedimentary.limestone.solid.all.ro337.usgs.perknic.spectrum.txt
https://speclib.jpl.nasa.gov/ecospeclibdata/rock.sedimentary.limestone.solid.all.ro337.usgs.perknic.spectrum.txt
https://speclib.jpl.nasa.gov/ecospeclibdata/rock.sedimentary.limestone.solid.all.ro337.usgs.perknic.spectrum.txt
https://speclib.jpl.nasa.gov/ecospeclibdata/rock.sedimentary.limestone.solid.all.ro337.usgs.perknic.spectrum.txt
https://speclib.jpl.nasa.gov/ecospeclibdata/rock.sedimentary.limestone.solid.all.ro337.usgs.perknic.spectrum.txt
https://speclib.jpl.nasa.gov/ecospeclibdata/rock.sedimentary.limestone.solid.all.ro337.usgs.perknic.spectrum.txt
https://speclib.jpl.nasa.gov/ecospeclibdata/rock.sedimentary.limestone.solid.all.ro337.usgs.perknic.spectrum.txt
https://speclib.jpl.nasa.gov/ecospeclibdata/rock.sedimentary.limestone.solid.all.ro337.usgs.perknic.spectrum.txt
https://speclib.jpl.nasa.gov/ecospeclibdata/rock.sedimentary.limestone.solid.all.ro337.usgs.perknic.spectrum.txt
https://speclib.jpl.nasa.gov/ecospeclibdata/rock.sedimentary.limestone.solid.all.ro337.usgs.perknic.spectrum.txt
https://speclib.jpl.nasa.gov/ecospeclibdata/rock.sedimentary.limestone.solid.all.ro337.usgs.perknic.spectrum.txt
https://speclib.jpl.nasa.gov/ecospeclibdata/rock.sedimentary.limestone.solid.all.ro337.usgs.perknic.spectrum.txt
https://speclib.jpl.nasa.gov/ecospeclibdata/rock.sedimentary.limestone.solid.all.ro337.usgs.perknic.spectrum.txt
https://doi.org/10.1117/12.816917
https://hpc.llnl.gov/hardware/platforms/syrah
https://hpc.llnl.gov/hardware/platforms/syrah
https://hpc.llnl.gov/hardware/platforms/syrah
https://doi.org/10.1109/CEC.2002.1004478
https://doi.org/10.1016/S0375-9601(97)00474-X
https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.dual_annealing.html
https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.dual_annealing.html
https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.dual_annealing.html
https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.dual_annealing.html
https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.dual_annealing.html
https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.dual_annealing.html
https://doi.org/10.1023/A:1008202821328


computing, and machine learning. He received his master’s degree in remote sensing from
Rochester Institute of Technology in 2009.

Andrew Mastin is an operations research scientist at Lawrence Livermore National Laboratory.
He received his PhD in electrical engineering and computer science fromMassachusetts Institute
of Technology.

Vic Castillo is a scientist and former group leader in the Computational Engineering Division at
Lawrence Livermore National Laboratory with a background in computational physics, machine
learning, and system dynamics with over 30 years of experience in industry and government
research. He received his PhD from UC Davis in applied engineering in 1999.

Brian Yoxall is a mechanical engineer with deep expertise in high performance precision optical
systems, microscale assemblies, and challenging operational environments. He received his
PhD in mechanical and aeronautical engineering from UC Davis before joining LLNL in 2011.
LLNL experience includes designing and building target assemblies for the NIF, design and
build of LWIR hyperspectral sensor systems, and as a technical advisor to DOE’s Defense
Nuclear Nonproliferation R&D office.

Zelinski et al.: Optimal band selection for target detection with a LWIR multispectral imager

Journal of Applied Remote Sensing 026505-17 Apr–Jun 2022 • Vol. 16(2)


