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Abstract. The bulloak jewel butterfly (Hypochrysops piceata) is an endangered species due to a
highly restricted distribution and complex life history, yet little is known of the availability of
suitable habitat for future conservation. The aim of this study was to examine the potential of
hyperspectral reflectance data for the discrimination of woodland species in support of bulloak
jewel butterfly’s habitat mapping. Sites from known butterfly sightings in Leyburn, Southern
Queensland, Australia, were examined using hyperspectral scanning and vegetation species dis-
crimination. Reflectance data of eight woodland vegetation species (Allocasuarina luehmannii,
Eucalyptus crebra, Eucalyptus populnea, Callitris glauca, Corymbia maculata, Angophora
leicarpa, Acacia sparsiflora, and Jacksonia scoparia) were collected at the leaf and canopy
levels using a full-range (350 to 2500 nm) hand-held nonimaging spectroradiometer. Partial
least square (PLS) regression was used to interpret the bulloak tree spectra against other veg-
etation species. The PLS results indicated high-prediction accuracies ranging from 78% to 95%
and 52% to 5% for canopy and leaf levels, respectively. The highest spectral separability was
observed at the near-infrared bands (approximately at 700 to 1355 nm), followed by selected
ranges in the short-wave infrared band where separability peaked at 1670 and 2210 nm.
The results confirmed the feasible use of hyperspectral sensing for discriminating vegetation
species and its potential use for habitat mapping of the endangered bulloak jewel butterfly.
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1 Introduction

The assessment and mapping of high biodiversity areas are vital components of conservation
planning.1,2 The location and extent of wildlife habitat, as well as the spatial distribution of wild-
life, are important considerations in developing conservation strategies to mitigate the habitat
loss and degradation.3 In assessing and mapping habitat areas, a number of bioclimatic and envi-
ronmental factors need to be considered at the appropriate level of thematic details and spatial
scales.4,5 As regards to vegetation, the assessment of its structure and composition presents cer-
tain challenges whenever vast tracts of land are involved.6 Traditional field survey and mapping

*Address all correspondence to: Wan Nor Zanariah Zainol Abdullah, E-mail: zanariah.zainolabdullah@usq.edu.au

Journal of Applied Remote Sensing 083561-1 Vol. 8, 2014

http://dx.doi.org/10.1117/1.JRS.8.083561
http://dx.doi.org/10.1117/1.JRS.8.083561
http://dx.doi.org/10.1117/1.JRS.8.083561
http://dx.doi.org/10.1117/1.JRS.8.083561
http://dx.doi.org/10.1117/1.JRS.8.083561


techniques for vegetation classification cannot always provide the required information in an
appropriate time and cost-effective manner.7,8 Geographic information systems (GIS) and remote
sensing technologies offer potential solutions to broad-scale vegetation assessment and mapping
of wildlife habitat.9–11

In the context of conservation mapping and management of wildlife, habitat is often a spe-
cies-specific concept.5 This means that the management of species, including their respective
habitat, demands that the mapping be conducted at the individual species level.12,13 This
could be a challenging task, given that the individual species may have very specific habitat
requirements which cannot be easily mapped. For instance, the bulloak jewel butterfly
(Hypochrysops piceata),14 an endangered species in southern Queensland, has close associations
with the bulloak tree (Allocasuarina luehmannii)15 such that the habitat mapping at the tree
species or plant-association level is highly preferred. Yet, mapping at the tree species level
will be difficult even for the contemporary remotely sensed data captured by multispectral
sensors.

Recent development of hyperspectral remote sensing systems, such as the Hyper-X and
HyspIRI missions, may provide significantly improved mapping of vegetation at the species
or plant association levels.16,17 Data from hyperspectral remote sensing technology increase
the capability to accurately map vegetation characteristics which were formerly not measurable
with broadband multispectral bands.18–20 For instance, vegetation discrimination studies iden-
tified that the hyperspectral imagery has accurately mapped and differentiated vegetation
species.18,21 Some studies achieved classification with high accuracies in vegetation species
discrimination analysis.17,18,21

Mapping the habitat of the bulloak jewel butterfly (H. piceata) using hyperspectral remote
sensing data is currently unexplored, with no reported work published in the literature. Identified
as endangered by Queensland’s Nature Conservation Act 1992 and classified as a high prec-
edence under the Department of Environment and Heritage Protection (EHP), the bulloak
jewel butterfly uniquely depends on the species of bulloak tree (A. luehmannnii). Having
a mutual connection with bulloak trees, ant species (Anonychomyrma sp.), and also with the
attendance of scale insects named Rhyzococcus sp.,12,13,15,22 this butterfly occurs in bulloak or
mixed bulloak woodland on sandy and alluvial soils in southern Queensland.14,22

Remnant bulloak woodland appears to provide important resources not only as habitat for the
bulloak jewel butterfly, but also as a food resource for a number of bird species.22,23 Bulloak
woodland is also categorized as an endangered ecological community.24 Thus, there is an urgent
need for habitat mapping of woodlands associated with the bulloak tree. Furthermore, Lundie-
Jenkins and Payne15 highlighted in the Recovery Plan for the Bulloak Jewel Butterfly
(Hypochrysops piceatus) 1999–2003 the crucial need to (a) discover and confirm additional
populations of the butterfly and (b) conduct spatial mapping and predictive modeling. These
suggestions were initially proposed by Dunn and Kitching12 based on their previous butterfly
surveys.

The goal of this study was to evaluate the possible use of hyperspectral data in discrimi-
nating bulloak trees from other woodland vegetation species in a woodland remnant in
southern Queensland. The specific objectives were to (a) examine whether bulloak tree species
can be effectively differentiated from the selected woodland vegetation species at the leaf and
canopy levels from the full-range (350 to 2500 nm) hand-held spectroradiometer data and
(b) compare the prediction accuracies and errors of the species discrimination produced
from raw and transformed data. This study is part of a broader assessment focused on habitat
mapping and suitability modeling of the endangered bulloak jewel butterfly in southern
Queensland.

2 Materials and Methods

2.1 Study Area

The study area (33,400 ha) is located near Leyburn, Queensland, a town in the Darling Downs
Region (approximately 28.0167°S, 151.5667°E) as depicted in Fig. 1. A small settlement,
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Leyburn is situated 219 km southwest of Brisbane with an altitude of approximately 423 m
above mean sea level. The woodland species in this area are generally mixed in composition
and occur in multiple stages of regeneration and degradation. The dominant vegetation species in
the survey sites included bulloak (A. luehmannii), narrow-leaf ironbark (Eucalyptus crebra),
poplar box (Eucalyptus populnea), white cypress pine (Callitris glauca), spotted gum
(Corymbia maculata), apple gum (Angophora leicarpa), currawang (Acacia sparsiflora), and
dogwood (Jacksonia scoparia).

The study area is dominated by livestock grazing, representing approximately 85% of the
total area.25 Other land use types include cropping, production forestry, mining, reservoir/dam,
residential, intensive animal production, and other minimal uses.25 There are 19 regional eco-
systems (REs)26 types in the study area, of which five combinations of these REs (5730 ha in
total) are associated with the bulloak trees species.

The study area is a natural habitat of the bulloak jewel butterfly, and this species has been
sighted in the locality12,14 as marked in Fig. 1. The data collection conducted by the
Queensland’s EHP26 from 1969 to 2003 resulted in a total of 19 sightings of the bulloak
jewel butterfly in this locality. Data collection dates vary from 1969 until 2003. All
sightings are very restricted within this area. Hence, it is selected as the study area for
this project.

2.2 Field Data Collection

Field data collection was conducted in June 2013 to measure the reflectance of eight woodland
vegetation species (e.g., A. luehmannii, E. crebra, E. populnea, C. glauca, C. maculata, A. lei-
carpa, A. sparsiflora, and J. scoparia) separately at the leaf and canopy levels as depicted in
Fig. 2 and Table 1. RE maps, produced by Queensland’s EHP,26 served as a guide in the pur-
posive selection of sample locations at the plant community level. The target sites at this
level were selected based on the presence of bulloak trees, accessibility, and proximity to
plant communities where the butterfly was sighted. The information about the target sites
was collected during the preliminary survey prior to the spectrometer reading data collection.

Using a simple random sampling method, a total of 40 sample trees were initially considered
within the RE sites. However, due to the reasons related to accessibility, height of tree, apparent

Fig. 1 Location and extent of the study area.
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tree health condition, and exposure to sun, only 32 trees were sampled. Four trees were sampled
for each woodland species. For each woodland species, 45 to 60 spectral measurements were
collected at the leaf level, with the same amount collected at the canopy level. The identities of
the selected species were defined by comparing the physical appearance of leaves, flowers,
fruits, and bark with those respective characteristics found in the field guide book.27 They
were further verified by consulting with the local experts during the preliminary survey work.

Fig. 2 Woodland vegetation species for species discrimination study (taxonomic designation and
details are found in Table 1). (a) Bulloak. (b) Narrow-leaf ironbark. (c) White cypress pine.
(d) Apple gum. (e) Currawang. (f) poplar box. (g) Spotted gum. (h) Dogwood.

Table 1 List of woodland species for the spectroradiometer readings and brief descriptions of
foliage/leaf.24

Item Common name Scientific name Family name Descriptions of foliage/leaf

a Bulloak Allocasuarina
luehmanni

Casuarinaceae Leaves reduced to tiny pointed scales or “leaf teeth”
which sheath the branchlets, foliage branchlets
rather wiry and erect, up to 2 mm in diameter24

b Narrow-leaf
ironbark

Eucalyptus
crebra

Myrtaceae Adult leaves disjunct, narrow-lanceolate or
lanceolate, 7- to 15-cm long, 0.9- to 1.7-cm wide,
green or gray-green, dull, concolorous24

c White cypress
pine

Calilitris
columellaris

Cupressaceae Foliage usually green, rarely glaucous, leaves
1- to 3-mm long, the dorsal surface not keeled24

d Apple gum Angohpora
leiocarpa

Myrtaceae Juvenile leaves ovate or elliptic, to 12.5-cm long,
6.5-cm wide. Adult leaves lanceolate, 9- to 17-cm
long, 2- to 3.5-cm wide, apex acute or acuminate24

e Currawang Acacia
sparsiflora

Fabaceae Branchlets angled at extremities, glabrous or with
scattered hairs (hairy on juvenile plants), narrowed
at ends, 8- to 16-cm long, 5- to 10-mm wide, thinly
coriaceous, gray-green24

f Poplar box Eucalyptus
populnea

Myrtaceae Juvenile leaves disjunct, ovate to orbiculate, dull
gray-green. Adult leaves disjunct, broad-lanceolate,
elliptic, ovate or rhomboidal, 5- to 11-cm long,
2- to 7-cm wide, green, glossy, concolorous24

g Spotted gum Eucalyptus
maculata

Myrtaceae Juvenile leaves disjunct, elliptic to ovate, glossy
green. Adult leaves disjunct, lanceolate, 10- to
21-cm long, 1.5-to 3-cm wide, green, concolorous24

h Dogwood Jacksonia
scoparia

Fabaceae Branches and branchlets erect or pendulous,
strongly angled or winged, leaves usually reduced to
scales, occasionally a few leaves present at base of
branches or on young plants, obovate, petiolate24
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A portable full-range (350 to 2500 nm) spectroradiometer from the Analytical Spectral
Devices, Inc., Boulder, Colorado.28 was used to record the reflectance data at 1-nm wavelength
intervals. This device is a hand-held battery-powered spectrometer with a fore optic cable for
light collection and a notebook computer for data logging.26 For canopy-level measurement,
the sensor was positioned about 70 cm above the canopy to record the average spectra within
a 10-cm diameter on the canopy. A twin-step ladder was used to measure the canopy reflectance.
On the other hand, for leaf-level measurement, a distance of 17-cm height was used to record
the average spectra for a 2.5-cm diameter of leaf. A precalibrated yard stick was used to measure
the distance between the sensor and the leaves. These calculations were based on the 8-deg field
of view (FOV) toward the targeted sample. The FOV is used to express the solid angle through
which light incident on the fore optic will arrive to the detector system.28

Reliable field spectrometry data collection depends upon accurate calibration of the devices
used. Thus, the sensor was calibrated using a white reference plate prior to the scanning for both
levels of measurement. The scanning was carried out on the unshadowed portion of the leaf or
canopy on a clear sunny day. For canopy measurement, the most challenging task was to choose
a part of the canopy with minimal shadow coverage from other parts of the same tree or from
adjoining trees. Thus, the best practice to cater for this issue was through a selection of an
exposed (no incident shadow) part of the canopy or a tree that has a suitable distance from
other adjacent trees.

Reflectance data were collected between 10.00 am and 2.30 pm local time for optimal per-
formance of the sun’s azimuth and elevation. Moreover, additional calibration was performed
against a white reference plate if there was cloud interference during the recording session.
This helps in calibrating ongoing differences between multiple sources and standardizing the
measurement.

2.3 Data Preprocessing

For both levels of measurement, 10 spectra were internally averaged by the spectrometer for each
sample. All spectral datasets were stored in a computer and processed using the RS3 software
intended for use with a graphical user interface. The reflectance data were then transformed into
ASCII format. The sample datasets from the ASCII format constituted 16 raw files of reflectance
data for the eight selected vegetation species sampled at the leaf and canopy levels. These data-
sets were structured in spreadsheets to produce the data array of 45 to 60 samples for every
species by 2151 wavebands. Furthermore, bulloak species was compared with the other species
independently, since there was a need to discriminate between bulloak and other vegetation
species (e.g., bulloak versus apple gum; bulloak versus white cypress pine; and bulloak versus
narrow-leaf ironbark). Thus, the variables for the seven pairs of vegetation species were labeled
properly before exporting into the Unscrambler 9.229 software for partial least squares (PLSs)
regression analysis.

Before the calibration stage was undertaken, the spectral reflectance was preprocessed for an
optimal performance. A series of “cleaning” operations was applied for the elimination of:
(a) very short wavelengths (350 to 399 nm) and strong water vapor absorption bands: 1356
to 1480, 1791 to 2021, and 2396 to 2500 nm,18,21 (b) outliers that indicated abnormal reflectance
response as compared with other samples.20,30,31

Pretreatment or transformation of the spectral data was a significant component of a number
of spectral analyses to improve the accuracy of results. In this study, two chemometrics
pretreatment methods [moving average smoothing8,18,20 and multiplicative scatter correction
(MSC)20,31] were applied to reduce the noise and to normalize the data. The goals of smoothing
or the averaging method were to decrease the number of variables in the dataset, to eliminate
uncertainty in measurement, and to reduce the effect of noise.32 This method replaces each
point of the spectra with the average of x adjacent points, where x is a positive integer in
a matrix.32 In this case, a 3 by 3 matrix or a kernel window of moving average was selected
to transform the raw bands prior to the PLS regression analysis. On the other hand, the purpose
of MSC is to treat undesired scatter effects for both multiplicative (amplification) and additive
(offset) effects.32
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2.4 PLS Regression

The most frequently used regression techniques in spectroscopy analysis are principal com-
ponent analysis (PCA) and PLS regression.30,31,33 The PLS model is comparatively better
than the PCA because it does not include latent variables that are less important to describe
the variance of the quality measurement.20,30,31,34 The PLS regression can be defined as a
bilinear modeling method for relating the variations in one or numerous response variables
(Y-variable) to numerous predictors (X-variable).33,35 In PLS regression, information of the
independent (X-variable) variables is projected onto a small number of latent (Y-variable) var-
iables named PLS factors or components.30,35 This meant that the Y-data are used in estimating
the latent variables to ensure that the first components are those that are most relevant for
predicting the Y-variables.

The PLS comprises regression and classification tasks as well as reduction techniques
and modeling tools.31,33 Furthermore, PLS reduces the entire reflectance spectra to a few
relevant factors and regresses them to the measured parameter of a given sample.36,37

Thus, the PLS model is considered to be more robust than a multiple linear regression
calibration model.36

This method performs well when the various “X-variables” articulate common information,
i.e., when there is a great amount of correlation or collinearity. Thus, the use of PLS regression in
discrimination analysis offers better capabilities than traditional regression techniques in ana-
lyzing hyperspectral data because of its inherent high collinearity.38 Other statistical approaches
(e.g., discriminant function analysis) are not applicable for analysis involving over 1000 X-var-
iables. These alternatives have limitations in handling multicollinearity of predictor variables.

Furthermore, PLS requires the response of a dependent variable Y (species) which is a
categorical data to quantitatively analyze the data similar to the other traditional regression
technique. In this situation, the values for the species-type variable were coded as “0” and
“1” [e.g., bulloak (0) versus apple gum (1)]. Thus, in this study, it limited the analysis to
only two species at a time with the intention of exploring an interspecies difference.

The dataset was divided into two sets which were comprised of calibration and validation sets
for PLS regression analysis. Seventy-five percent of the dataset was used to develop a prediction
equation (calibration set), while the remaining 25% was used for the validation of the predictive
equation.20,38 In the development of the PLS model, a full cross-validation (leave-one-out)
method was used to calculate the quality of prediction and to prevent over-fitting of the cali-
bration model.32,35 This means that only one sample at a time is kept out of the calibration.
Furthermore, the performance of the PLS models was evaluated by the root-mean-square
error of prediction (RMSEP) and the coefficient of determination (r2) of the model. An accurate
PLS model should have a high regression coefficient of determination (r2) and a low RMSEP
between the predicted and measured values of each regression analysis.20,31,35

Regression analysis was led by identification and elimination of outliers using an outlier list
tool offered by Unscrambler 9.2 software. The outliers were also identified from the influence
plot which displays the sample residual-variance against leverages. It means that the outliers
were listed under the PLS components (PCs) list as signified by the influence plot. The selection
of an outlier always starts with the ones that appear first in the earliest components.29

Furthermore, samples with high-residual variance are likely to be outliers. Thus, if there
were six samples identified as outliers in the raw bands of interspecies discrimination, then
all of them will be removed prior to the PLS regression analysis. This approach was also applied
for the smoothing and MSC techniques with the same number of outliers encountered as in
the raw bands in order to compare these three techniques. It was found that less than 5% of
the dataset was considered outliers.

3 Result and Discussion

3.1 Vegetation Reflectance Properties

Leaves of woodland species display the typical spectral curves of green healthy vegetation:
high reflectance in the near-infrared (NIR) and relatively low reflectance in the visible and
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short-wave infrared (SWIR). Visual interpretation of raw spectra from Figs. 3–5 indicated the
differences in ranges across vegetation species. For example, bulloak species was displayed
and compared with dogwood (the closest spectral response) and poplar box (highly separated
spectral response).

At both leaf and canopy levels, the highest separability of the spectral magnitude was clearly
shown at the NIR band (approximately at 700 to 1355 nm) as depicted in Fig. 3. These were
followed by the selected ranges in the SWIR band (where separability peaked at 1670 and
2210 nm), green band (550 nm), and red band (650 nm). This result agreed with other research-
ers19,34,35 who concluded that the spectral difference between the species is insignificant in the
visible band but is truly notable in the NIR and SWIR bands. It means that the differences in
pigment (chlorophyll) absorption between species pairs were not the discriminating variables,
but those related to leaf internal structure (NIR-related) and leaf water content and other
biochemicals (SWIR-related) were discriminating variables.19,34,39

Fig. 3 Mean reflectance spectra at near-infrared (NIR) band (700 to 1355 nm) of three vegetation
species at (a) canopy and (b) leaf levels.

Fig. 4 Mean reflectance spectra (350 to 2500 nm) of three vegetation species at canopy level.
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At the canopy level, the bulloak-dogwood species comparison had shown the lowest sepa-
rability, whereas the bulloak-poplar box pair exhibited the highest spectral discrimination
(Fig. 4). Likewise, score plots in PLS demonstrated these patterns as shown in Figs. 6 and
7. These plots clearly show that the bulloak-poplar box pair has high discrimination.
Similarly, at the leaf level, bulloak-dogwood species revealed the lowest spectral separability
between them, while bulloak-angophora exhibited the highest separability.

Fig. 5 Mean reflectance spectra (350 to 2500 nm) of three vegetation species at leaf level.

Fig. 6 Score plot showing discrimination between bulloak (rounded square) and dogwood
(square) at the canopy level.

Fig. 7 Score plot showing discrimination between bulloak (rounded square) and poplar box (rec-
tangle) at the canopy level.
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The spectral separability of different species pairs, such as bulloak-dogwood and bulloak-
poplar box, can be explained by their leaf attributes (e.g., color, size, texture, shape, etc.) as
described in Table 1. For instance, the needle-like modified leaves or foliage of the bulloak
tree closely resemble that of the dogwood. In comparison, the glossy and rounded dark
green leaves of an adult polar box tree are distinctly different from bulloak. These examples
also reflect the same situation in describing the spectral separability of the bulloak-angophora
species pair: bulloak’s foliage is needle-like, whereas angophora has oppositely arranged
lanceolate leaves. These findings are in agreement with Zhang et al.19 and Taylor et al.21

who demonstrated that the variations due to leaf attributes, along with other biophysical pro-
perties, leaf chemical composition, and leaf water content, were the main factors which could
contribute to the differences in spectral separability of plant foliage.

There are two significant issues for every study involving the discrimination and mapping of
vegetation: (a) the variability of biological types and (b) the spectral similarity (characteristics) of
most vegetation.40 Some of this variability can be accredited to geographical and environmental
backgrounds, some to phenology and seasonal circumstances, but most of them still remain at
the scale of communities and individual vegetation in their habitat.41 However, the spectral prop-
erties of all types of vegetation are suppressed by the similar set of pigments, structures, and
biochemicals throughout the year.40,42 In this study area, vegetation communities are nondecidu-
ous and exhibit little morphological changes.

3.2 Prediction Accuracies of PLS Regression

3.2.1 Bulloak tree versus other woodland species at leaf and canopy levels

Prediction accuracies of PLS results can be obtained from the subtraction of value one with the
RMSEP. Tables 2 and 3 summarize the PLS results for the canopy and leaf levels of raw spectra.
There were high correlations between predicted and measured values for the validated samples,
i.e., r ¼ 0.985 to 0.997 and r ¼ 0.985 to 0.996 for canopy and leaf levels, respectively. The
RMSEP was reasonably low (i.e., from 0.0433 to 0.1086 for canopy level and from 0.0542
to 0.0827 for leaf level) in range of 0 to 1, indicating good prediction accuracies.

Figure 8 reveals the accuracies of raw spectra at the canopy level range from 89.14% to
95.67%, while the accuracies at the leaf level range from 91.73% to 94.58%. Among the
seven pairs of species combination, the lowest accuracy pairs correspond to bulloak versus
narrow-leaf ironbark (89.14%) and bulloak versus apple gum (91.73%) for canopy and leaf
levels, respectively. These values were found to be relatively high. This means that the accu-
racy ranges obtained in this study were relatively close to those attained by Huang and
Apan31 (93.57% to 94.27%) who used PLS regression for detecting Sclerotinia rot disease
on celery.

Table 2 Results of PLS model from raw spectra at canopy level.

Data Correlation (r ) RMSEP Accuracy of prediction (%)

Bulloak versus apple gum 0.994 0.0733 92.67

Bulloak versus currawang 0.993 0.0802 91.99

Bulloak versus cypress 0.997 0.0433 95.67

Bulloak versus dogwood 0.997 0.0878 91.22

Bulloak versus narrow-leaf ironbark 0.985 0.1086 89.14

Bulloak versus poplar box 0.996 0.0685 93.15

Bulloak versus spotted gum 0.996 0.0622 93.78

r ¼ correlation between predicted and measured values.
RMSEP ¼ root-mean-square error of prediction.
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In most cases of PLS regression analysis of raw spectra as conducted here, the prediction
accuracies of canopy-level samples produced higher accuracies than the leaf-level sets, except
for the bulloak versus currawang, bulloak versus dogwood, and bulloak versus narrow-leaf
ironbark (Fig. 8). These higher accuracies of canopy samples may be best explained by the
differentiating reflectance of mixed materials integrated within the wider FOV of the sensor.
From the point of view of satellite radiation, a forest or woodland environment will reflect
an integrated signal from leaves, branches, and trunks of trees as well as from soil and leaf
litters.21,38 Each of these elements has substrative and additive effects on the spectral curve,
thus the ultimate reflectance will be a mixture of all of them.18

3.2.2 Raw spectra versus transformed data

For vegetation species discrimination involving bulloak tree spectra against the other wood-
land vegetation species, the prediction accuracy of raw spectra is reasonably higher than the
accuracy of transformed spectra (smoothing and MSC) as depicted in Tables 4 and 5 for both
canopy and leaf levels. Overall, the prediction accuracies of raw spectra and smoothing were
nearly the same, whereas MSC’s prediction accuracies consistently produced the lowest
accuracies. For example, prediction accuracies of raw spectra and the smoothing method
for bulloak versus apple gum, as well as for bulloak versus cypress (canopy level), were nearly
the same. They were 92.67% (raw) and 92.64% (smoothing) for bulloak versus apple gum,
while they were 95.67% (raw) and 95.67% (smoothing) for bulloak versus cypress. At the
leaf level, similar patterns were observed: for bulloak versus dogwood, the accuracies
were 92.45%, 92.54%, and 81.82% for raw spectra, smoothing, and MSC, respectively.

Table 3 Results of PLS model from raw spectra at leaf level.

Data Correlation (r ) RMSEP Accuracy of prediction (%)

Bulloak versus apple gum 0.985 0.0827 91.73

Bulloak versus currawang 0.995 0.0542 94.58

Bulloak versus cypress 0.988 0.0783 92.17

Bulloak versus dogwood 0.991 0.0755 92.45

Bulloak versus narrow-leaf ironbark 0.996 0.0550 94.50

Bulloak versus poplar box 0.991 0.0693 93.07

Bulloak versus spotted gum 0.993 0.0639 93.61

r ¼ correlation between predicted and measured values.
RMSEP ¼ root-mean-square error of prediction.

Fig. 8 Partial least square (PLS) accuracies of raw spectra at canopy and leaf levels.
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This situation indicated that the raw and smoothing spectra have equivalent predictive power
for species discrimination when evaluated by PLS regression.

In most cases, the PLS regression accuracies at the canopy level produced higher values
than the leaf level either for raw spectra or transformed data. However, a reverse observation
was found for the bulloak versus currawang, bulloak versus dogwood, and bulloak versus
narrow-leaf ironbark as shown in Fig. 9.

Table 4 Results of PLS model from raw and transformed data at canopy level.

Data Correlation (r ) RMSEP Accuracy of prediction (%)

A. Bulloak versus apple gum

1. Raw spectra 0.994 0.073349 92.67

2. Smoothing 0.994 0.073603 92.64

3. MSC 0.903 0.238930 79.17

B. Bulloak versus currawang

1. Raw spectra 0.993 0.080193 91.99

2. Smoothing 0.993 0.081650 91.84

3. MSC 0.928 0.208762 79.12

C. Bulloak versus cypress

1. Raw spectra 0.997 0.043289 95.67

2. Smoothing 0.997 0.043308 95.67

3. MSC 0.970 0.140115 85.99

D. Bulloak versus dogwood

1. Raw spectra 0.997 0.087771 91.22

2. Smoothing 0.997 0.082857 91.71

3. MSC 0.923 0.213178 78.68

E. Bulloak versus narrow-leaf ironbark

1. Raw spectra 0.985 0.108632 89.14

2. Smoothing 0.985 0.106842 89.32

3. MSC 0.947 0.193268 80.67

F. Bulloak versus poplar box

1. Raw spectra 0.996 0.068451 93.15

2. Smoothing 0.996 0.069287 93.07

3. MSC 0.983 0.103679 89.63

G. Bulloak versus spotted gum

1. Raw spectra 0.996 0.062182 93.78

2. Smoothing 0.996 0.062745 93.73

3. MSC 0.971 0.138749 86.13

r ¼ correlation between predicted and measured values.
RMSEP ¼ root-mean-square error of prediction.
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Figure 9 reveals that the accuracies of raw spectra and transformed data at the canopy level
range from 78.68% to 95.67%, while accuracies at the leaf level range from 52.09% to 94.58%.
The least accurate pairs correspond to bulloak versus dogwood (78.68%) and bulloak versus
cypress (52.09%) at canopy and leaf levels, respectively. Both values were generated from
the MSC’s prediction method. This suggests that the transformations executed to the raw spectra
did not generate a substantial modification in model prediction.

Table 5 Results of PLS model from raw spectra and transformed data at leaf level.

Data (leaf level) Correlation (r ) RMSEP Accuracy of prediction (%)

A. Bulloak versus apple gum

1. Raw spectra 0.985 0.082697 91.73

2. Smoothing 0.985 0.082770 91.72

3. MSC 0.845 0.260188 73.98

B. Bulloak versus currawang

2. Raw spectra 0.995 0.054240 94.58

3. Smoothing 0.995 0.054335 94.57

4. MSC 0.8405 0.272395 72.76

C. Bulloak versus cypress

1. Raw spectra 0.9885 0.078305 92.17

2. Smoothing 0.989 0.078605 92.14

3. MSC 0.178 0.479132 52.09

D. Bulloak versus dogwood

1. Raw spectra 0.991 0.075504 92.45

2. Smoothing 0.991 0.074623 92.54

3. MSC 0.959 0.181769 81.82

E. Bulloak versus narrow-leaf ironbark

1. Raw spectra 0.996 0.054975 94.50

2. Smoothing 0.996 0.055004 94.50

3. MSC 0.710 0.357798 64.22

F. Bulloak versus poplar box

1. Raw spectra 0.991 0.069275 93.07

2. Smoothing 0.991 0.069220 93.08

3. MSC 0.689 0.355788 64.42

G. Bulloak versus spotted gum

1. Raw spectra 0.993 0.063883 93.61

2. Smoothing 0.993 0.063838 93.62

3. MSC 0.732 0.322934 67.71

r ¼ correlation between predicted and measured values.
RMSEP ¼ root-mean-square error of prediction.
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4 Conclusions

The results from PLS regression confirm the effectiveness of narrow-band spectral reflectance
data for vegetation species discrimination sampled at the study area. Among the seven pairs of
species combinations of raw spectra, the least discrimination was observed between bulloak
versus narrow-leaf ironbark (89.14%) and bulloak versus apple gum (91.73%) for canopy
and leaf levels, respectively. In comparison with the raw spectra and transformed data, the
least accurate pairs correspond to bulloak versus dogwood (78.68%) and bulloak versus cypress
(52.09%) at canopy and leaf levels, correspondingly. These values were produced by the MSC’s
prediction method.

This study revealed that the raw spectra and smoothing (transformed) datasets have a cor-
responding predictive power for discriminating between species at the canopy and leaf levels.
However, the transformation techniques of MSC applied to the raw data did not produce sig-
nificant enhancement to the accuracy of prediction. We conclude that a full cross-validation
technique in PLS regression produced high-prediction accuracies for raw spectra and smoothing
datasets.

The spectral separability of bulloak tree against other woodland vegetation species indi-
cated good discrimination between selected regions of the spectrum. The NIR region (700 to
1355 nm) appeared to play a key role in the discrimination between species in PLS regres-
sion. However, there is a limitation for using PLS for this kind of study as it confines the
analysis to only two species at a time. In addition, studies on interspecies spectral differences
have been largely descriptive or quantitative. Discrimination was possible but was sta-
tistically based, acknowledging that there is variability within a plant group or species.
There were relative differences between spectra rather than an individual signature for
each species. Variability can be attributed to phenology, geographical, and environmental
settings, but much variation still remains at the scale of communities and individual species
in their natural habitat.

This study demonstrated the feasible use of hyperspectral data in discriminating woodland
species to help improve the mapping of bulloak jewel Butterfly habitat. The next step is to
conduct research on the use of hyperspectral imaging sensor (rather than the nonimaging
technique as conducted here) for habitat mapping.

Fig. 9 Accuracies of raw and transformed data at canopy and leaf levels.
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