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Abstract. Dynamically changing urban areas require periodic automatic monitoring, but urban
areas include various objects and different objects show diverse appearances. This makes it dif-
ficult to effectively detect urban areas. A region-growing method using the Markov random field
(MRF) model is proposed for urban detection. It consists of three modules. First, it provides an
automatic urban seed objects extraction approach by designing three features with respect to
urban characteristics. Second, the method uses an object-based MRF to model the spatial rela-
tionship between urban seed objects and surrounding objects. Third, a MRF-based region-grow-
ing criterion is proposed to detect urban areas based on seed points and spatial constraints. The
strength of the proposed method lies in two aspects. One is that automatic selection of seed
points is presented instead of manual selection. The other one is that the region-growing tech-
nique, instead of probabilistic inference, is used to solve the MRF optimization problem.
Experiments on aerial images and SPOT5 images demonstrate that our method provides a
better performance compared with the region-growing method, the classical and object-based
MRF methods, or some other state-of-art methods. © The Authors. Published by SPIE under a
Creative Commons Attribution 3.0 Unported License. Distribution or reproduction of this work in
whole or in part requires full attribution of the original publication, including its DOI. [DOI: 10
.1117/1.JRS.8.083566]
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1 Introduction

In recent years, urban detection has become more and more crucial for many applications. It
helps government agencies and urban region planners in updating the geographic information
system and forming plans. Moreover, due to an enormous number of human activities, the scope
of urban areas quickly changes from time to time. Considering the conflict between the need
for periodically detecting urban areas and the high-human cost, many approaches had been pro-
posed to automatically detect urban areas from remote sensing images.1–8 However, an urban
area is an abstract semantic object. It is a comprehensive region including several subobjects
such as buildings, roads, trees, water bodies, grass spaces, etc. This means that classical spec-
tral-based recognition methods cannot be simply transferred to extract urban areas. Hence,
besides spectral value, features that are more effective are needed for urban detection. Since
urban scenes usually have a unique texture with respect to natural scenes, texture analysis
becomes one main approach for urban monitoring.9–11 However, the texture pattern of urban
scenes is not consistent in all kinds of areas. Methods of texture analysis may suffer from
a lack of robustness. In order to answer this problem, several methods have been studied.
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For instance, Benediktsson et al.1 adopted morphological transformations to extract features of
urban areas and classify them using a neural network. Weizman and Goldberger12 built a visual
dictionary to learn the urban visual words and then detected the urban regions based on the
dictionary. Sirmacek and Ünsalan13 employed the local feature points extracted by the
Gabor filter to vote for the candidate urban areas. Furthermore, Kajimoto and Susaki14 and
Liu et al.15 extracted the urban areas from polarimetric SAR images using the polarization
orientation angle and only positive samples, respectively. However, algorithms may have less
transferability with respect to different urban characteristics, as no single-feature descriptor is
available for all kinds of the urban objects.

On the contrary, some subobjects that consist of a typical urban pattern can be well detected
according to their own characteristics. For instance, man-made objects, such as buildings6,7,16

and roads,17–19 usually have compact shapes. In contrast, spectral features are important for
detecting natural objects, e.g., vegetations20,21 and water bodies.21 Hence, an alternative way
of urban detection is to first detect some urban subobjects and then extract the entire urban
area based on the extracted subobjects. The region-based classification is a widely used approach
to detect certain land cover objects.22–25 However, different urban areas may consist of different
subobjects. Meanwhile, some subobjects, such as trees and water bodies, may appear in both
urban areas and the nonurban areas. This phenomenon makes the region-based urban detection
methods challenging, even though each urban subobject can be accurately classified. As urban
objects are spatially adjacent, one possible way to answer this problem is to take the spatial
information of objects into account. The Markov random field (MRF)26 model provides a stat-
istical way to model spatial contextual information, and it has been extended to the region level
for image classification. 23–25 For example, Wu et al.23 used some rectangular regions as the
initial objects and then classified the polarimetric SAR images using the Wishart MRF.
However, the accuracy of classification is still limited when the rectangular region is located
on the edge of some objects. Zhang et al.24 improved this method by using a mean shift to obtain
the finer initial regions. Wang and Zhang25 used the Gaussian distribution to recognize images
instead of the Wishart distribution. Although these MRF-based classification approaches usually
obtained remarkable results, they assumed that each land class obeyed a certain probability
distribution, e.g., the Wishart or Gaussian distribution. Nevertheless, the assumption about the
probability distribution does not hold in the case of detecting urban areas, as urban areas are
often represented as complex regions with various subobjects. Using the probabilistic inference
of the MRF model in terms of common probability distributions cannot appropriately detect
urban areas.

Motivated by this observation, this paper proposes an MRF-based region-growing method to
extract urban areas. Our main contributions include two aspects. First, the proposed method
introduces a new MRF-based region-growing criterion to overcome the limitation of the tradi-
tional probabilistic inference way of the MRF model. The method retains the advantages of the
MRF model in the description of the regional spatial constraints. Both the spatial constraints and
the characteristic of urban areas are considered to design a region-growing criterion. Second, an
automatic seed objects extraction method is proposed for the MRF-based region growing. The
method automatically extracts three features to describe the spectral and granularity information
and uses these three features to detect buildings and their shadows as seed points. Our method
provides an unsupervised way to detect urban areas, which makes it possible to capture the
correlations among various urban objects by combining the benefits of region growing and
the MRF model.

The rest of this paper is organized as follows. Section 2 introduces the method for initializing
seeds, and Sec. 3 presents the details of the MRF-based region-growing method. Section 4 dis-
cusses the results obtained by applying our method on remote sensing images. Finally, Sec. 5
draws a conclusion.

2 Selection of Seed Points

The selection of seed points is a fundamental step for a region-growing algorithm. The main
concept of the selection of seed points is grounded in the observation that the buildings are
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located in every corner of the city and are often adjacent to shadow areas. Hence, we extract them
and their shadows as seed points in this section. In order to appropriately detect seed points, we
will first explore three features F1, F2 and F3. The details are given in the following sections.

2.1 Extract the Pixel-Level Spectral Value F1

Because buildings usually show a bright appearance in an image and their shadows are
dark, a spectral value F1 is used to describe this feature. Namely, for a given image
Y ¼ ðY1;Y2; : : : ;YPÞ, each spectral channel Yt (1 ≤ t ≤ P) is defined on an M × N rectangular
lattice S, i.e., S ¼ fsjs ¼ ði; jÞ; 1 ≤ i ≤ M; 1 ≤ j ≤ Ng and Yt ¼ ðytsÞM×N . Then, spectral value
F1 ¼ ðf1sÞM×N is defined as f1s ¼

Q
P
t¼1 y

t
s, which can describe the spectral value of each pixel s

on different channels.

2.2 Extract the Region-Level Spectral Variance F2

Different urban objects have various appearances, so their spectral variance should be relatively
large. Hence, we design a region-level spectral variance F2 to capture this feature. First, the
initial objects are obtained using a mean shift method,27 which constructs a probability density
to reflect the underlying distribution of points in some feature space and to map each point to the
mode of the density which is closest to it. Then, the given image Y is divided into an over-
segmented region set R, i.e., R ¼ fR1; R2; : : : ; Rkg. Each Ri of R denotes an over-segmented
region (i ¼ 1;2; : : : ; k), Ri ∩ Rj ¼ ∅ (i ≠ j), and k is the number of these regions. With the
region set R, we can further define the neighborhood system N ¼ fNiji ¼ 1;2; : : : ; kg to
describe the spatial context of regions. Here, each Ni denotes the set of regions neighboring
Ri. Let MðRiÞ be the mean value of pixels in Ri, and the local spectral variance between region
Ri and its adjacent regions can be calculated as follows:

VðRiÞ ¼
1

jNij
�
½MðRiÞ − μi�2 þ

X
j∈Ni

½MðRjÞ − μi�2
�
; (1)

where μi ¼ ð1þ jNijÞ−1½MðRiÞ þ
P

j∈Ni
MðRjÞ�, and jNij is the number of regions in Ni.

In Eq. (1), every region has the same impact on VðRiÞ. Intuitively, it may be preferable to
determine the impacts in Eq. (1) using an adaptive way. Hence, the equation for VðRiÞ is revised
as

VðRiÞ ¼
1

jNij
�
½MðRiÞ − μ�i �2 þ

X
j∈Ni

½M�ðRj; RiÞ − μ�i �2
�
: (2)

In Eq. (2), M�ðRj; RiÞ is defined as follows:

M�ðRj; RiÞ ¼
�
MðRjÞ if α > p
αMðRjÞ þ ð1 − αÞMðRiÞ if α ≤ p ;

where α ¼ jRjj · jRij−1 and μ�i ¼ ð1þ jNijÞ−1½MðRiÞ þ
P

j∈Ni
M�ðRj; RiÞ�, region size jRij is

the number of pixels in region Ri. In this revised equation, the impact of Rj will be reduced
when the ratio of jRjj to jRij is less than p. That is to say, the effect of each region is affected
by its region size. Here, p is a threshold with which to measure the ratio between the sizes of
two regions. Since the relationship of region sizes among different objects is relatively stable, we
empirically set p as 0.3 in this paper.

Based on the VðRiÞ, F2 ¼ ðf2sÞM×N is defined as f2s ¼ V½RðsÞ�1∕2 to reflect the spectral vari-
ance among regions. Here, RðsÞ is the region to which pixel s belongs.

2.3 Extract the Granularity Information F 3

Urban areas have more different types of objects and more complicated appearances than non-
urban areas. Therefore, in the over-segmented region set R ¼ fR1; R2; : : : ; Rkg, objects of urban
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areas usually have smaller region sizes than objects of nonurban areas. In other words, the granu-
larity of urban areas is finer than that of nonurban areas. Hence, we employ the region size and
the spatial relationship among regions to define F3 ¼ ðf3sÞM×N , i.e.,

f3s ¼ ðP½RðsÞ� − P½RðsÞ� · logfP½RðsÞ�gÞ þ 1

jNRðsÞj
X

j∈NRðsÞ

fPðRjÞ − PðRjÞ · log½PðRjÞ�g; (3)

where P½RðsÞ� ¼ jRðsÞj · ðM · NÞ−1. In the above equation, P½RðsÞ� − P½RðsÞ� · logfP½RðsÞ�g is
used to reflect the region size of RðsÞ and

P
j∈NRðsÞfPðRjÞ − PðRjÞ · log½PðRjÞ�g is used to

describe the context information of regions. Note that fðxÞ ¼ x − x · logðxÞ is a monotonically
increasing convex function when x ∈ ½0;1�. Hence, the monotonicity of fðxÞ can make P½RðsÞ� −
P½RðsÞ� · logfP½RðsÞ�g to indicate the region size. What is more, if we assume that jNRðsÞj is
fixed, the convexity of fðxÞ can make

P
j∈NRðsÞfpðRjÞ − pðRjÞ · log½pðRjÞ�g take a small value

when the sizes of regions neighboring RðsÞ are close. It will lead to a consistent result with a
smooth region size, which is suitable for capturing the granularity information since the gran-
ularities of regions are usually similar for one certain object.

An example to illustrate these features is shown in Fig. 1, where Figs. 1(b), 1(d), and 1(e) are
features F1, F2 and F3 extracted from Fig. 1(a). From this example, one can see that the build-
ings in Fig. 1(b) are bright, which denotes a high F1 value, and their shadows are of the low F1

value. Similarly, the spectral variance F2 of urban areas is larger than that of others areas, and
urban areas have a small granularity F3 value. Based on these features, we design E1 ¼ ðe1sÞM×N ,
E2 ¼ ðe2sÞM×N , E

3 ¼ ðe3sÞM×N , and E
4 ¼ ðe4sÞM×N to describe the buildings’ spectral values, dark

shadows’ spectral values, regional spectral variance, and granularity information, respectively.
They are

e1s ¼
�
1 f1s > F1

γ

0 otherwise
; e2s ¼

�
1 f1s
0 otherwise

;

e3s ¼
�
1 f2s > F2

λ

0 otherwise
; e4s ¼

�
1 f3s
0 otherwise

;

where F1
γ , F1

1−γ , F
2
λ , and F3

π denote the γ, 1 − γ, λ, and π fractile of F1, F2 and F3, respectively.
γ,λ, and π are the key parameters for the selection of seed points. The parameter γ is used to

make E1 capture the spectral feature of buildings. Since buildings usually take a high spectral
value, they are often expressed as the tail of the histogram of F1. Hence, γ is set to a high value to
get the tail of the histogram of F1, such as Fig. 1(f). Correspondingly, E2 uses 1 − γ to obtain
the first peak of the histogram of F1, which describes the dark shadows with a low F1 value.

Fig. 1 (a) Original aerial image. (b) Pixel-level spectral value. (c) Initial over-segmented region set
R. (d) Region-level spectral variance. (e) Granularity information. (f) Histogram of F 1 and γ
(g) Histogram of F 2 and λ. (h) Histogram of F 3 and π. (i) Seed points extracted based on (b),
(d), and (e).
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For the same reason, E3 and E4 are set with a high λ value and low π value to catch the tail of
the histogram of F2 and the first peak of the histogram of F3, respectively. These can extract
buildings’ spectral variance and granularity features. An illustration of setting γ, λ, and π is
shown in Figs. 1(f)–1(h).

Then, by sequentially combining E1, E2, E3, and E4, seed points can be obtained. Namely,
we first use D1 ¼ ðd1sÞM×N to get pixels belonging to buildings and adjoining the shadows, or
pixels belonging to shadows and adjoining the buildings. This is defined as

d1s ¼
� 1 if e1s ¼ 1 &

P
t∈wðs;rÞ

e2s ≥ l or e2s ¼ 1 &
P

t∈wðs;rÞ
e1s ≥ l

0 otherwise
;

where the local square window wðs; rÞ is centered at site s and its radius is r. Then, we further
consider the information of E3 and E4 by defining D2 ¼ ðd2sÞM×N and D3 ¼ ðd3sÞM×N as

d2s ¼
� 1 if d1s ¼ 1 &

P
t∈wðs;rÞ

e3s ≥ l or e3s ¼ 1 &
P

t∈wðs;rÞ
d1s ≥ l

0 otherwise

;

d3s ¼
� 1 if d2s ¼ 1 &

P
t∈wðs;rÞ

e4s ≥ l or e4s ¼ 1 &
P

t∈wðs;rÞ
d2s ≥ l

0 otherwise

:

At last, seed points will be selected as the set D ¼ fsjd3s ¼ 1; s ∈ Sg.
For r and l, these seed points are used to determine whether a local window wðs; rÞ simulta-

neously contains pixels from E1, E2, E3, and E4 and whether pixels of each kind are not less than
l. Because a building is spatially adjacent to its shadow, they can be effectively detected together
using a relative small patch of the given image. Hence, by setting r to 2 for D1, D2, and D3,
we use the local window wðs; r ¼ 2Þ as the small patch to select seed points in the following.
At the same time, if there are buildings and their shadows in the small patch, there will be at
least one pixel labeled 1 in the patch for each eis, i ¼ 1, 2, 3, 4. Therefore, l is set to 1. It means
that only a pixel which simultaneously possesses or neighbors E1, E2, E3, and E4 within the
small local window wðs; 2Þ can be chosen as the seed point. An example is shown in Fig. 1(i).
Note that one pixel would show different sizes of the Earth’s surface in remote sensing images
with various spatial resolutions, which may affect the setting of parameter r. Namely, r can be set
to 1 for the low-spatial resolution remote sensing images and be set larger than 2 for extreme
high-spatial resolution remote sensing images.

3 MRF-Based Region Growing

Based on extracted seed points, a MRF-based region-growing criterion is proposed in this sec-
tion. First, the MRFmodel is briefly reviewed. Then, the proposed criterion for urban detection is
introduced.

3.1 MRF Model

Let X ¼ fXRi
jRi ∈ Rg be the label random field defined on the over-segmented region set R.

We use 1 to flag urban areas and 0 to flag nonurban areas, and each random variable XRi
takes

a value of 1 or 0 to represent the label of region Ri it belongs to. If x ¼ fxRi
jRi ∈ Rg denotes

the realization of X, the optimal realization x̂ can be obtained by maximizing the posterior prob-
ability, i.e.,

x̂ ¼ argmax
x

PðXjYÞ ¼ argmax
x

PðYjXÞ · PðXÞ: (4)

The energy form of Eq. (4) is

x̂ ¼ argmin
x

f− log½PðYjXÞ� − log½PðXÞ�g: (5)
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In Eq. (5), the likelihood function PðYjXÞ is used to describe image features. In this paper,
we assume that all YRi

of Y are independent given labels. That is

PðYjXÞ ¼
Y
Ri∈R

PðYRi
jXRi

Þ:

The distribution of random field PðXÞ is assumed to be of the Markovianity property, i.e.,

PðXÞ ¼
Y
Ri∈R

PðXRi
jXRj

; j ∈ NiÞ:

Therefore, Eq. (5) can be rewritten as

x̂ ¼ argmin
x

�X
Ri∈R

½− log PðYRi
jXRi

Þ − log PðXRi
Þ�
�
: (6)

Due to the complexity caused by interactions among labels, it is difficult to find the solution
of the MRF model. Hence, the local optimal solution x̂ ¼ ðx̂Ri

Þ can be obtained as follows:

x̂Ri
¼ argmin

xRi

½− log PðYRi
jXRi

Þ − log PðXRi
Þ� ¼ argmin

xRi

½EfðRiÞ þ ElðRiÞ�; (7)

where the likelihood energy EfðRiÞ is the cost of the observation of Ri, and the label energy
ElðRiÞ is the cost of the label of Ri.

3.2 MRF-Based Region Growing

In this section, an MRF-based region-growing criterion is introduced to find the optimal reali-
zation x̂. To minimize the total energy of the MRF model, the proposed method will iteratively
merge adjacent regions that could decrease the total energy. Namely, for neighboring regions Ri

and Rt, the total changed energy EðRi; RtÞ is first calculated these two regions are merged. Based
on Eq. (7), EðRi; RtÞ equals the sum of the changed likelihood energy EfðRi; RtÞ and the
changed label energy ElðRi; RtÞ, i.e.,

EðRi; RtÞ ¼ EfðRi; RtÞ þ ElðRi; RtÞ: (8)

Here,

EfðRi; RtÞ ¼ EfðRi ∪ RtÞ − EfðRiÞ − EfðRtÞ
¼ jRij · ½MðRiÞ −MðRi ∪ RtÞ�2 þ jRtj · ½MðRtÞ −MðRi ∪ RtÞ�2; (9)

where jRij · ½MðRiÞ −MðRi ∪ RtÞ�2 and jRtj · ½MðRtÞ −MðRi ∪ RtÞ�2 can reflect the change of
the observations in region Ri and Rt, respectively. The changed label energy of Ri is defined as

ElðRi; RtÞ ¼ −
X
j∈Ni

βjRijVlðRt; RjÞ; (10)

where the pair-clique potential

VlðRt; RjÞ ¼
�
1 if xRt

¼ xRj

0 otherwise
:

ElðRi; RtÞ uses jRij to consider all changed label energies for each pixel in Ri and its neighbors
when xRi

is relabeled as xRt
. Then, by merging region Ri and its neighboring region that can

minimize the total changed energy, a MRF-based region-growing approach can realize urban
detection step by step. The details of the rule of region growing are given in Algorithm 1.

The proposed criterion is different from traditional region-growing methods, as it does not
begin from seed points but from nonseed points. We only consider the nonurban regions labeled
0 and their region sizes are less than the threshold. For each selected region Ri, the energy values
are calculated between Ri and its neighbor regions, respectively. Then, Ri is merged with the
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one neighbor region that has the minimum energy value. Hence, Ri merged with an urban region
will lead to a larger urban region; in contrast, Ri merged with a nonurban region will result a new
nonurban region. Therefore, the rule of our approach is a competition rule of region growing for
both urban and nonurban regions.

Urban areas can be extracted using the region-growing criterion. Namely, urban areas are first
initialized using the label field x ¼ fxRi

jRi ∈ Rg based on seed points D, i.e., set xRi
¼ 1 if

Ri ∩ D ≠ ∅; or else, set xRi
¼ 0. Then, by increasing the thresholds, the growing criterion

gradually updates the urban areas. Note that different sun angles may affect the shadow length
and direction, but it does not change the spatial topological relationship between buildings and
their shadows. Hence, the proposed method is robust for effective detection of varying urban
areas contained in different remote sensing images.

3.3 Parameter Setting

There are two parameters in the MRF-based region-growing criterion, i.e., β and T. The potential
parameter β is used to balance the influence between EfðRi; RtÞ and ElðRi; RtÞ. A high β value
emphasizes ElðRi; RtÞ and leads to results with large homogeneous objects. On the contrary, a
low β value emphasizes EfðRi; RtÞ and is suitable for getting results with many details. Hence, β
should select different values for various applications. However, as the relationship between
urban and nonurban areas is quite stable, β is fixed and is empirically set as 0.05 for simplifying
the parameter setting.

The threshold T is used to control the process of region growing. By gradually increasing T,
small regions labeled nonurban are merged into larger urban regions or nonurban regions, then
urban areas are extracted. In practice, we used T ¼ 25 as the initial threshold and doubled the
threshold each time. The final termination threshold was determined by the change of the spec-
tral variance. The assumptions supporting this threshold selection are that urban areas consist of
various subobjects and their spectral variance should be large; if the nonurban areas are wrongly
recognized as urban areas, an abrupt change of the spectral variance should be observed. Here,
we use CRði; iþ 1Þ to show the change rate of spectral variances, i.e.,

CRði; iþ 1Þ ¼ StdTðiþ 1Þ − StdTðiÞ
StdTðiÞ ; (11)

where StdTðiÞ denotes the standard deviation of detected urban areas with termination threshold
T ¼ TðiÞ. Then, we can take the inflection point of CRði; iþ 1Þ as the final termination thresh-
old, after which CRði; iþ 1Þ will abruptly decrease. An example is shown in Fig. 2, where we
use T ¼ ½25; 50; 100; 200; 400; 800; 1600� as the candidates of termination thresholds. Some
extracted urban areas are illustrated in Figs. 2(a)–2(g). StdTðiÞ with different Ts is calculated
and given in Fig. 2(h), where the corresponding CRði; iþ 1Þs are also shown in Fig. 2(i). As
CRð200;400Þ is an inflection point, we take T ¼ 400 as the final termination threshold for this
experiment and Fig. 2(e) shows the corresponding detection result.

Algorithm 1

Input: the observed image.

Output: urban detection result.

1) Set a threshold T .

2) If there exists a region Ri satisfying jRi j < T and xRi
¼ 0, select Ri and go to step 3; else, stop.

3) For Ri and its neighbor region Rt , based on Eqs. (8–10), calculate the total changed energy EðRi ; Rt Þ.

4) Find the region R�
i that has the minimum energy value, i.e., R�

i ¼ argmin
Rt ;t∈Ni

EðRi ; Rt Þ.

Merge Ri and R�
i as a new region labeled xR�

i
, then go to step 2.
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4 Experiments

The MRF-based region-growing method provides an unsupervised way for the monitoring of
urban areas. With the aim of fully evaluating the performance of the proposed method, experi-
ments and comparisons were carried on two groups of images, i.e., aerial images (Sec. 4.1) and
SPOT5 images (Sec. 4.2).

4.1 Experiments of Aerial Images

In this experiment, three aerial images, as shown in Fig. 3, are used to test our method and other
urban extraction methods. These aerial images were acquired in 2009 and are located in Taizhou
City, China. The three images have the same size of 500 × 500, and the spatial resolution is
0.4 m. The test images contain plane agriculture fields and small villages, where urban objects
show various spectral appearances and some nonurban objects are similar to seed points in terms
of spectral characteristics. This makes urban detection challenging. Moreover, the following
competitive methods are also considered for comparison:

1. The traditional region-growing method:28 it detects urban areas without employing
the MRF model.

2. The classical MRF model:29 it uses the generated probabilistic model at the pixel level to
obtain results.

3. The object-based MRF (OMRF) model:25 it extends the MRF model from the pixel level
to the object level for capturing the macrotexture pattern of a given image; this uses

Fig. 2 Example of parameter T : (a) urban area with T ¼ 25; (b) urban area with T ¼ 50; (c) urban
area with T ¼ 100; (d) urban area with T ¼ 200; (e) urban area with T ¼ 400; (f) urban area with
T ¼ 800; (g) urban area with T ¼ 1600; (h) StdT ðiÞ; and (i) CRði ; i þ 1Þ.
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Fig. 3 Experiments of aerial images: (a1)–(c1) aerial images; (a2)–(c2) traditional region
growing; (a3)–(c3) Markov random field (MRF); (a4)–(c4) object-based MRF (OMRF); (a5)–(c5)
support vector machine (SVM); (a6)–(c6) object-based SVM; and (a7)–(c7) MRF-based region
growing.
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initial over-segmented regions to build the region adjacency graph (RAG) and defines
the MRF model on the RAG to realize the segmentation.

4. The two-class support vector machine (SVM):30 it is provided by ENVI software, which
is a commonly used classification approach with training data.

5. The object-based SVM:22 it extracts the regional features from a hierarchical tree of
the scene and obtains a classification using the SVM classifier.

For the sake of fairness, we chose the same seed points to train the urban areas for the tradi-
tional region-growing method and the two SVM methods and deliberately selected samples to
train the nonurban areas for these SVM methods as well. We also tuned the parameters of these
methods to get their optimal performances. For the traditional region-growing method, we chose
the threshold parameter following the instructions in the literature.28 For the two-class SVM,
we set the radial basis function as the kernel type, the gamma in kernel function as 0.33, and
the penalty function as 100, respectively. For the object-based SVM, we use 0.1% as the ratio of
training samples based on the literature.22 Therefore, the comparison can demonstrate the differ-
ence between our model and other state-of-the-art methods.

Experimental results of aerial images are shown in Fig. 3. Here, the caption of Fig. 3 consists
of two parts, where the first part using the alphabetical order denotes different test images and the
second part using the number order denotes different detection methods. Detected urban objects
are represented as yellow masks over the test images. From the comparative test, one can see that
the proposed method exhibits a remarkable improvement for urban detection. Namely, the tradi-
tional region-growing method, as shown in Figs. 3(a2)–3(c2), still has huge misclassifications
which belong to different object categories and have similarity spectral appearances. The main
reason is that the traditional region-growing method only uses the spectral features which do not
consider the spatial constraint. By employing the spatial context information, the classical MRF
model has less misclassification of nonurban areas. However, this pixel-level generate model can
just recognize the parts of the urban areas with similar appearances, since it cannot model the
complex and macropatterns by incorporating the long-range interactions. It also wrongly labels
some urban objects as nonurban, such as the roofs of buildings and vegetation. The OMRF
model utilizes the regions to describe the macrospatial constraints and improves the classical
MRF model, e.g., Figs. 3(a4) and 3(c4). However, the OMRFmodel usually leaves the character-
istic of urban areas out of consideration, which may lead to some undesirable results such as
Fig. 3(b4). The SVM method trains data to obtain urban areas. Although it can effectively rec-
ognize buildings, urban vegetation objects are sometimes classified as nonurban areas because of
the lack of spatial information. The object-based SVM improves the pixel-based SVM and gets
results that are more consistent by considering the object semantic information with regional
features. Nevertheless, it still cannot sufficiently use spatial information whose results have
some misclassifications. Compared with these methods, our MRF-based region-growing method
first considers the urban characteristics when we select seed points, then employs the MRF
defined on the region level to capture regional spatial constraints, and finally proposes a cor-
responding region-growing criterion that utilizes these features to detect urban areas. Hence, our
method demonstrates a better performance than the other methods.

Experimental results are quantitatively evaluated by the overall accuracy (OA) and kappa
coefficient κ. OA and κ are the two indicators that measure the degree of similarity between
two images.31 If Pij is the proportion of subjects that were assigned to the i’th class by the
first image and the j’th class by the second image and denotes Pi• ¼

P
k
j¼1 Pij and

P
•j ¼

Pk
i¼1 Pij, then

OA ¼
Xk
i¼1

Pii; and κ ¼
Pk

i¼1 Pii −
Pk

i¼1 Pi•P•i

1 −
P

k
i¼1 Pi•P•i

.

The OA and κ of aerial images are given in Table 1.
From these quantitative indexes, we know that MRF-based region growing can enhance both

the OA and kappa for each experimental image. This also shows that our method extracts a better
scope of urban areas than do the other methods. In particular, when the topographic features are
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Table 1 Comparison of results.

Fig. 3(a) Fig. 3(b) Fig. 3(c)

κ OA κ OA κ OA

Traditional region growing 0.379 0.591 0.398 0.604 0.489 0.648

Classical MRF 0.778 0.913 0.460 0.684 0.615 0.758

OMRF 0.883 0.953 0.663 0.803 0.770 0.863

Two-class SVM 0.806 0.923 0.617 0.770 0.683 0.796

Object-based SVM 0.911 0.966 0.740 0.850 0.832 0.905

MRF-based region growing 0.914 0.967 0.902 0.952 0.886 0.938

Note: For each column, the bold value denotes the best index among all the indexes in this column.

Fig. 4 Kappa and overall accuracy (OA) of experiments of aerial images: (a) kappa and (b) OA.

Fig. 5 Experiments of SPOT5 images: (a and d) Original SPOT5 image; (b and e) ground truth
(red); and (c and f) results of MRF-based region growing (yellow).
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complex, the enhancement of indices is obvious. For clarity, the quantitative indices of Table 1
are illustrated in Fig. 4.

4.2 Experiments of SPOT5 Images

The effectiveness of the proposed method is further tested in this section. Two SPOT 5 remote
sensing images, as shown in Fig. 5, are employed for the next experiment. These test images are
located on the Pingshuo area of China. Both sizes are 438 × 438. These test images mainly
consist of three object types, i.e., urban areas, cultivated land, and woodland. Among them,
urban green space and woodland and urban building and cultivated land have similar spectral
appearances, respectively. This phenomenon increases the difficulty of urban detection.

Experiments of SOPT5 images are illustrated in Fig. 5. Compared with the ground truth,
the MRF-based region-growing method performs well and the results are close to the ground
truth. This demonstrates that our model can effectively extract urban areas from different
datasets.

5 Conclusions

To summarize, we proposed an unsupervised urban detection method by unifying the region-
growing method and the MRF model. It first uses the granularity information and spectral fea-
tures to automatically extract some typical urban objects as the seed points, which can be treated
as the skeleton for the urban areas. Then, the MRF is employed to model the spatial relationships
between urban seed points and other urban objects. At last, the region-growing criterion uses
these relationships to recognize urban nonseed objects, which will lead to consistent results. The
main novelty of the method the automatic extraction of urban seed points and the detection of
urban areas using a region-growing criterion under the regional MRF-based spatial constraints.
The effectiveness of the proposed method is validated by experimental results obtained from
various high-spatial resolution remote sensing images. Compared to a traditional region-growing
method, the classical and object-based MRF models, and the common and object-based SVM,
our method can provide more precise and more meaningful results, which verifies that our
method is suitable to detect urban areas. However, this method is only proper for urban detection.
If it is used to extract other terrestrial objects, then one has to design a new seed extraction
method and modify the region-growing criterion.

For the method presented, the potential parameter β need to be empirically set. If this param-
eter can be estimated in an adaptive way, then it will improve the current method.
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